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Abstract

A sequence (dn)n>o is said to be ̂ -automatic if On is a finite-state function of the base-k
digits of 7i. We say a real number is (k, 6)-automatic if its &actioaal past has a base-& expansion
that forms a A-automatic sequence, and we denote the set of all such numbers as 2/(/fc, 6). Lehr
[Theoret. Comput. Sci. 108 (1993), 385-391] proved that L(k, b) forms a vector space over Q.
In this paper we give a shortened version of the proof of Lehi's result and, answering a question
of Bach, show that the dimension of the vector space L(k, b) is uduute.

We also give an example of a tianscendental number such that aU of its positive powers
are automatic. The proof requires examining the coefficient of Xn m the formal power series
(X+X2+X4+X3+- . -)T. Along the way we are led to exanune several sequences ofindependeat
combinatorial interest.

FuaUy, we solve the open problem of whether or not the automatic reals are dosed under
product by ccliibiting a counterexample.

I

Resuine

On appelle une suite (an)n>o A-automatique si On est une fonction d'etat fini des cIiiiFres de n en
base k. On appeUe un nombre reel y (k, 6)-automatique si 1c developpement en base b de la paitie
firactioanaire de y est one suite Ai-automatique, et on ecrit L(k, b) poor 1'ensemble de ces nombres y.
Lehr [Theoret. Comput. Sci. 108 (1993), 385-391] a proave que L(k, b) est un espace vectoriel sur
Q. Dans cet article, nous donnons one version abregee de la demoastratioa du resultat de Lehr, et
nous moatrons que la dimension de 1'espace vectoriel L(k, b) est infiiu (resolution d'une question de
Bach).

Nous donnoas aussi 1'exemple d'un nombre reel tianscendant y tel que y, y, y ,. -. sont tous
des nombies automatiques. La demonstration aecessite Ie calcul du coeffident de Xn daiis la serie
formellc (X +X2 +X* + Xs + ...)r. Nous etudions aussi quelques sxutes apparentees, qui ont un
mteiet combmatoire.

EnAn, nous demontrons que 1'ensemble des nombres reels automatiqT ies n'est pas ferme pour Ie

produit (resolution d'one question ouverte).

1 Introduction.

Let (<in)n>o be an mfmite sequence over a fimte alphabet A. Then we say (an)n>o is A-automatic
if, roughly speaking, a^ is a fmite-state function of the base-ifc expansion of n.
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More precisely, we define a detenninistic fmite automaton with output (DFAO) to be a 6-tuple
M = [Q, S, i?, qo, A, r), where Q is a finite set of states, S is the finite input alphabet, ̂ : QxS - Q
is the tTansition function, qo is the uutial state, A is the faute output alphabet, and r :Q -<. ^,
is the output fimction. On mput w, the output of M is defined to be r(i5'(goi tu))- (For more

information on automata theory, see [9].)
Then. our fonnal definition of a k-automatic sequence is as follows: the sequence (an)n>o is

fe-autoinatic if there exists a DFAO su.ch. that, for all iategers n ^ 0, we have T(^(?O, (")fe)) = STI.
If this is the case, then we say that the DFAO generates (a^)n>o. Here (n)fc is defined to be the
standard base-k representation, of n over the alphabet S = {0, 1,..., fc - 1}, -WTitten. with the raost
significant digit at the left, and with. no leading zeroes. Note that (0)^ =  , the empty string.

Now let y be a real niunber, 6 be an mteger ^ 2, and suppose

y=^a, i>-l-l(modl),
t>0

where the di are mtegers satisfymg 0 ^a, < 6. That is, the sequence (oz)t>o gives the base-
6 expansioDi of {y}, the fractioncLl part of y. (TedmicaUy speakiag, we also allow the case where
a, = 6- 1 for all i ^ 0. ) If (a;), >o is a fe-automatic sequ.ence, then we say that y is a (fc, &)-autom. atic
real auinber. The set of aJl such. niunbers is denoted by L{k, b).

Lehr [12] proved that L{k, 6) is a vector apace over the rationals, but his proof was somewhat
more coinplicated than necessary. In Section 2, we simplify Lehr s proof, and generalize it soraewhat.
In Section 3 we give a simple proof that £(A, 6) is of infuute diinensioa over Q. In Sectiou 4 we
consider the question of producing a single transceadental D.tiraber y such that Q[y] C £(A, 5); our
proof reqiures examimng a(r, n), the coefficient of Xn in the fonnal power series (X + X2 + X* +
^"s ̂ -.. .)r. in Section 5 we give one proof that a(r, n) is bounded for each fixed r. Tlie proof is
based on. a relationship fco a previously-studied sequence that we explore in inore detail in Section
6. la Section 7, we provide an improved bound on a(r, n), and exhibit a relationship with the
Catalan tree of J. West. FlnaUy, m Section 8, we show tliat L{k, 6) is not dosed under product;
hence, it is not a ring.

 1
.II

2 L(A;, 5) is a vector space over Q.

Li this section, we reprove Lelu-'s res-ult that £(&, 6) is a vector space over the rationals. To do this,
it suffices to show that if y, y' are m L{k, 6), and n is any positive mteger, then each of (i) -y;
(ii) y/n; aaad (iii) y + y/ are also m L{k, b). The first is easy. The second follows iminediately fi-om.
the obsenration that long division by n is a uniform finite transdT iction, and Cobham. [3, TTim. 4]
proved that autoinatic sequences are dosed under this type of transduction. The third stateinent
will foUow from the following sUgiitly m.ore general leiruna.

Lenuna 1 (The Normalization Lenuna) £ef(a, )i>o be a, bounded k-a.utomatic sequence ofnon-
negative integers. Let C = sup;>o a;. Then y = S, >o Oi6 w a (fc, 6)-aufomaric reaZ number.

It is perhaps, worth, einphasiziag that. tMs resTilt is not related to the nomiaUzation restdts of
Frougny (see, e.g., [7]).

Proo/. The resiilt is trivial if C < 6, for then the digits in the base-i expansion of y are precisely
a,. The only difficulty occurs when. the carries are taken mto accouiit, smce carries may coine from.
arbitrarily far to the right.

^1
.<K
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The idea of the proof is as foUows: first, in a bounded nuinber of steps, we rewrite y ^
Si>o °/i&~ in such. a way that 0 ^ a'; ^ 6. Next, we show how perform the potential carries

resultmg from. the digits equal to 6.
For the first step, define gi = a, mod 6, and h^ = [at_i/6j for i ^ 0. Then clearly y =.

S>>oa^-*-l (mod 1)> where a/, = gi + /i,. Now (gi)i>o is easily seen to be fc-automatic, and the
fact that (/it)»>o is fe-autoraatic follows from a remark of Cobhaia [3, p. 174]. Hence (a^), ^o is
fc-automatic.

Now ifa, ^ (7 foraUz ^ 0, then. a/, ^ 6- 1+ [C'/6J. By repeating this transform. ation at
most |'logj>C'] times, we reach a A;-autom. atic sequence, say (e, )i>o, whose terms are all ^ 6, dnd
y=D>o^-l-l(modl).

The" second step of the constnicticn mvolves detenniamg the carry bits that arise from. the
tenns of e, that equal 6. Define the carry sequence (c, ),>o as follows:

c, f1'
.
0,

tf there exists j > i with. z,+i = 1,4. 2 =
otherwise.

= Zj_i =6-1, and zj = 6;

Then it is easy to see that if /, = ((e, + c,-) mod 6),->o, then y = E*>o/i6 (mod 1)> alld
0 ^. fi< b. Thus it suffices to create a DFAO M that generates (c, )»>o.

Our construction of M = Ms goes m several stages. Let Mo = (Q, S, ̂ , go, A, r) be a DFAO
generating (e, )t>o» here S = {0, 1,..., Jb - 1}. First, we create a nondetermmistic fijiite automaton
(NFA) Mi = (Q', S x S, S', q'o, F) that, rougUy speaking, has two noii-negative integer mputs, i
and j, and accepts if there exists n, i <n < j, such that z^ ̂  b- 1. The inputs i and j are, of
course, provided m base-A;, with. the sliorter mput padded by O's in the front, if necessziry, to make
the lengths of the expansions the same. The NFA Afi fimctions by nondeterministically guessing
the base-Jfe digits of n, zuid niamtamiiig the relationship of the current guessed n with i and j.

The states of Afi are triples of the form [q, u, v], where g   Q, and u, t;  {<, =}. The meaning
of the state [g, u, v} is that the guessed expansion of n seen so far woidd take us to state q in Mg,
and furtliermore the relatioiiship of n to the auTen.tly seeii mputs i and j is given by fun v j
(e. g., t < n = j). The start state of MI is gg = [^o, =, =]. The transition fimction Sl is given by

S'([q, u, v}, [c^)=

f [S{q, c), =, =], if (u, ̂ ) = (=, =) and <: =: d;
[S{q, c), =, <] U [S{q, d), <, =] U U^<d[5(^ ̂  <» <]' ^ (u'u) = (=> =) and c < d;
[S(q, d), <, =] U \JQ<^a[S(q, z), <, <], if (u, v) = (<, =);
[S{q, c), ==, <] U U^<k[S(q, ̂ ), <, <], if (u, v) = (=, <);

[ Uo<^<k[S{q, 2), <, <], if (u, v) = (<, <) .
Here c should be thought of as the next base-fc digit of i; d should be thought of as the next digit
of j, and z as the "guessed" next digit of n. The set of final states is given by

F={[q, <, <} : r(q^b-l}.

We leave it to the reader to verify that Mi reaJly behaves as we have claimed.
Now; usiag the standard construction, we convert Mi to a determmistic fimte autoinaton (DFA)

Afz accepting the sam. e set. Tlien, by uiterchangiiig acceptiag and non-acceptmg states ofAfzi we
get a DFA Ms that accepts the base-A representations of pairs (i, j) such that for aU. n, with
t < n< j", we have e^ = 6- 1.

Next, we create a new NFA Mt that, on mput i, "guesses" the base-fe digits of j" and simulates
A/3 on mput (t, j). Our NTA A^ also siinulates Afo on mput j, and accepts ifF Afs accepts (i, j)
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and MQ outputs 6 on mput j. Now M» can be easily converted to a DFAO Ms that (essentially)
generates the carry sequence (Ct), >o- We say "esseiicicJly" because the base-k representation of 7"
may have substantiaUy inore digits than that of i; hence only those base-A representations of ;' that
have sufficiently many leadmg zeroes will result in the correct output. However, this problem may
be easily dealt with using a trid< of Eilenberg [4, Prop. 3. 1, p. 106i. (Or see [14]. ) This corapletes
the proof of the Lemina. .

I,t remains to show thafc if y, y   L{k, b), then y + y/ 6 L[k, b). To see this, observe that
(.Vi + Vi]i>Q is ̂ -autom.atic, and then apply the Nonnalization Lemma to tliis sequence.

3 Diniension of L(k, b) over Q.

In the previoiis section, we saw that L{k, b) is a vector space over Q. Eric Bach. asked (personal
comm.Tuucation. ), what is the dunension of L(k, 6) and what is a basis? In. this section, we answer
the first question; the second is still open.

Theorem 2 L(k, 6) is of infinite dimension over (Q.

Proof. For simplicity, we prove the reszilt for fe = 2, but the proof can easily be m.odifled to liandle
the general case.

Consider the formal power series

f(X)=^X2h =X+X2+X*+X3+---.
*>0

Then it is dear tliat, for aU odd mtegers r >. 1, the nuxnber /(l/6r) is a (2, 6)-autoinatic real
number, since a DFAO generating the base-6 expansion of f(l/br) need only output 1 if its mput
is oftlie fonn (r); 0*, and output 0 otherwise.

We daisa that the nuznbers {/(l/6r) : r odd, ^ 1} are lin.early mdependeiit over Q. Assxiaie
not. Thea there exists a fmite linear coinbuiation

^ a.. /(l/62i+l) = 0,
0<i<<

(1)

with. a, 6 2Z and not aU a; = 0. Let M = maxo<t<* |a, |.
Now separate the positive and negative coefficients m Eq. (1) to obtain a new equation.

^ <i. /(l/62t+l) = S e. /(l/62l+l)
0<»<4 0<i<j

(2)

with Q<:di, a <, M and <f. e, = OforO ^ 1^3.
Now consider the base-6 representation of both sides of Eq. (2). Let (^)& = go-5i52ff3 . . . be the

representation of tlie left-hand side, and {h)b = hQ.h-^hih-^ . . . be the representation of the right-
hand side. These base-6 representations are so sparse that for n large enough, (it sTiffices to take
n > flog2(25 + 1)1 + log2(l + log;, M)), the digits immediately to the left of position (2t + 1)2" m
(^)fr are (di)b, while tliose m the same position m (/i)& are (&;)(,. It follows that d, = e,, and so
d^ = e, = 0 for Q <:i <; s. This gives us the desired contradiction. .
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4 An Infinite-Diraensional Automatic Ring Q[y]

La. the previous section, we proved that the vector space L{k, b) is of mfimte dunension over Q
by exhibiting an infinite set of liiiearly mdependent automatic nuinbers. Tliis raises the aatiu-al
question, does there exist a single real nuinber y whose positive powers are all automatic and
Unearly uidependent? hi this section, we aiiswer this question affinnatively. Again, for sunplicity,
we consider only the case A = 2, although our proof can be easily modified to handle the general
case.

Theorem 3 Let y = , (1/6), where f(X) = Efc>o-x-::'- Then every element in (Q[y] is (2, 6)-
automatic, and fu.rthermore Q[y] is of infinite dimension over Q.

Proof. Consider tlie aumber y = ,(1/6). Then ,(1/6) is traiiscendental, and hence the nuinbers
1, , (1/6), /(1/6)2, , (1/6) ,... are liaearly mdependent over (Q. This was first proved by Kempner
[10]; for a more elementary proof, see [11]. Thus the result would follow if /(1/6)1 were in £(2, 6)
for i > 2.

To prove that /(!/&)*   2/(2, 6) for i ^ 2, we use the theory of A-regular sequences. A sequence
ofmtegers (cn)n>o is said to be ̂ -regular if its fc-kemel

Kk(c) = {(Cfe. n+j-)n>0 : r ^ 0; 0 ^J < ^}

generates a fuutely-generated niodule over TL.
We now use the foUowiag tlieoreins about ^-regTilar sequences, as proved m [I]:

Theorein 4 Every k-automatic sequence is k-regular.

Theorem 5 If G{X) = ^.i>o 9iXt and H(X) = E,>o/l«-Yl are both POV}eT series in 7Z'[W}, and
their coefficient sequences (gi)i>o and (A, )t>o ire both k-regular sequences, then so is the coefficient
sequence of G{X}H{X} = E.+,=n?. /»,. X».

Theorena 6 If a k-regular sequence is bounded, then it is k-autom.atic.

Now define a(r, n) = [JS'nj/(^Y)1", Le., the coefficient of Xn in the fonricd power series f{X}r.
We now need tlie foUowiag Lerruna, whose proof is postponed tmtil the next section:

Lerauaa 7 The quantity a(r, n) is bounded by a constant that depends on r, but not on n.

It now follows froin Tlieorems 4-6 and Lemma 7 that for any given r, the coeffidents (c((r, n))n>o
of f{X)r fonn an. automatic sequence. Tlien, applying the Norraalization Lerrmia, it follows that
/(l/6)r is a (2, &)-automatic real number. Hence Q[y] C £(2, 6). .

5 o:(r, n) is bounded.

The definition of Q:(T', n) given, in the previous section implies the foUowiag mterpretation: a(r, n) is
the nuinber of coinpositions of n as the STXOI of r mtegral powers of 2. (By "coinpositions" we m.ean
that summands can be repeated and representations that differ only m the order of the siunmands
are counted as distinct.)

To complete the proof of Theorem. 3, we must prove Lemina 7: that a(r, ra) is bounded by a
constant that depends on r, but not on n.
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Sections 5-7 of the paper are devoted to two proofs of this fact. Both lead to estimates on the size
ofa(r, n). The first provides a relationship with a previously-studied sequence counting the auinber
of partitions of 1 as powers of 1/2, and leads to the estunate a(r, n) = 0(r! . 3. 6'"). The second is
inspired by notions of Kolmogorov complexity, and leads to a better bound of oi.(r, n] = 0(r! . 2r).

In this section, we provide the first proof. We first show (Theorem. 9) that any coinposition of
n as the sum of powers of 2 can be "decoiaposed" into groups of tenns, each of which smns to one
of the powers of 2 appearing m the stzindard base-2 representation of n. It then STiffices to boi-uid
a(r, n) where n is a power of 2. Next, we show (Lemraa 11) that any coraposition of 2J as the sum.
of r powers of 2 cannot include any terms smaller than y~TJ~ . From this, we can conclude that
Ct(r, n) is boiiaded for each. r.

The claims hi this section were obtamed with the assistance of Anna Lubiw.

Lemraa 8 Let .Co, a:i, a;2, . . . > -Sr ^ positive integers such ZQ ̂  a;i ^ 23 ^ ... ^!Cr> Si<><r ̂  ^ -Co;
and 2t+i | a?t /0?' Q <. i <;r -1- Then there exists an index b, 1 <;b -^r, such that $^Ki<b Xi = XQ.

Proof. Omitted for space consideratioiis. .

Theorein 9 Let n~^ Q be a positive integer, and express n as a sum of distinct powers of 2, i. e.,
n = 2al +2aa +-- . + 2at where a^ <ai< ... < dt. Then if there exists a mvltiset S of non-negative

integers such that n = S»e5 ̂ s' ^t n ^ can ̂ e Partltwned into t disjoint submultisets S-\., S-:,.. ., St
such that 2at = ^. gs, 2'/orl ^ i ^ t.

Proof. By uiduction on t. The details wiU appear in the final paper. .

Lexiuna 10 Define s's(n') to be the sum, of the bits in the base-2 expansion of n. Then if there exist
non-negative integers ci, c^,.. ., Cj (not necessarily distinct) such that n = 2C1 +2C 2 + ... + 2C', we

must have j ^ ^(n).

Proof. Clear. .

Leuania 11 Suppose ci, 02,..., c,-, m are non-negative integers such that ci ^ 02 ^
2m = 2cl + ... + 2^'. TAen ci ̂  m-j +1.

<, Cj and

Proof. We have 2m - 2CL = 2C 2 + ... + 2C', and 32(2" -2cl) = m- Ci. By Lemma 10, we have

j- 1 ^ m-ci, and the lesult follows. .

Leixuna 12 Let U'{r, m) denote the nmnber of compositions of2m as a sum of r powers of 2. Then
(7(r, m)^rr.

Proof. By Lemina 11, we know that any such coinposition of 2m must use only the powers
2m, 2"l-l,..., 2m~'"+l. Thus, at most r different powers of 2 can be used, and each power might
potentially appear m any one of r different places. This gives the boiind. .

Note tliat the bound U{r, m) .^ rr may be easily unproved to (r - I)1" for r ^ 2, by observiag
that 2m caimot be used in any composition of 2m as a sum. of 2 or more powers of 2.

We can now coniplete the first proof ofLemina 7, and prove tliat a{r, n) is bounded. If 3^(n) > r,
then by Lenmia 10, it follows that a:(r, n) = 0. J£ s^[n) ̂  r, then by Theorera 9 we caa express n m
base 2, say n = 2al + . . .+2at, and consider separately the composition of each 2at. By Lemina 12,
there are at most rr conipositioiu for eadi 2a', and since t ^ r, tliere are only a fiiiite number of
coinpositions of n as the suin of r powers of 2. .
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6 Representations as sums of powers of two.

In the previous section, we introduced U{r, m), the number of compositions of 2m as a sum of r
powers of 2.

Numerical evidence suggests that U{r, m) is eventuaUy constant, as m gets large. This is
dearly true, smce for m ^ r-1, any composition of 2m corresponds m a l-l fashion with a
composition for 2m', (m/ > m), by multipUcation by the appropriate power of 2. This suggests
defmmg Ur = U{r, r- 1).

We may improve the result of Lemma 12 stiU fujther by studymg the unordered analogue of
U(r, m]. Let V(r, m) denote the number of partitions of 2m as a sum of r powers of 2. (By
"partition" we mean that STimmands may be repeated, but representations that differ only m order
of the summands are regarded as identical. ) Then dearly U(r, m) ̂  7-!y(r, m).

We now relate V{r, m) to a quantity that has been previously studied by many authors: namely,
E^, the number of partitions of 1 as the sum of r powers of 1/2. Such a partition of 1 gives rise (by
multipUcation by as. appropriate power of 2) to a partition of 2m as a sum of r powers of 2. The
converse also holds. It therefore foUows that V{r, m) ^ Hr, and mdeed V(r, m) == ff^form ^ r-1.
(This idea also suggests another way of expressing Ur, as the ordered analogue of Hr: the number
of compositioiis of 1 as a sum of T powers of 1/2.)

Many other authors have studied the sequence

(ffr)r^l = (1, 1, 1, 2, 3, 5, 9, 16, 28, 50, 89,.. .),

which arises m computmg prefix codes for trees [5]; enumeration of elements in groupoids [13];
enumeration of codes [8]; and algebraic topology [2, 6, 16]. It is Sloane's sequence #261 [15].

It is kaown [6] that'ff^ ~ K-vr-1, where K = .25451 and i/ = 1. 79415. Hence we have the
foUowuig unproved bound for Ur and U(r, m):

Theorem 13 There exists a cojtstant K' such that U(r, m) <, Ur <: K' -T\- 1. 8r.

It would be of mterest to determine the asymptotic behavioui of Ur. Numerical evidence
suggests that perhaps U, ~ A. r! . Br, where A = . 2487 and B = 1. 1926^ (N. J. A^ Sloane was
kind enough to send us a copy of a letter dated July 22, 1975 from D. E. Knuth to R. E. Tarjaa.
In this letter Knuth studies Ur and suggests that "something liJce" Ur ~ ci»''"-c:i should be true for
coiistants Ci, C2.)

Now define Wr = maXn>o at(r, n). We have

Theorem 14 There exists a constant Kz such that Wr <, K-i-r\ . ^. Sr.

Proof. It foUows from the proof of Lemma 7 that a(r, n) achieves its maximum when the base-2
expansion of n is of the form.

r-1 r-l

(n)2 = (10r-l)t = (100 . .. 0 ).. . (100 ... Q\
t

for some i, l ^ i^ r. (It may also achieve this maximum at other strings. ) For by Theorem 9,
we may consider separately the representations for each power of 2 m the bmary expansion of n,
and by'Lemma 11, the representation for 2n uses only the terms 2", 2n-1,..., 2n-r+l. To maxiimze
a(r, n), we can assume that the ranges of the representatioiis for the various powers of 2 that appear
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m the bmary representation of n do not overlap; for dupUcate occurrences of the same power of 2
^oidd lead'to "fewer 7ompositions. This gives us a way to estimate W,, using the previously cited
bound for Hr.

There are (^^) compositions of r as the sum of i positive integers, r = h'rb2~r'_ + *'
each such composition, we can partition 2^-^ (1 ̂  j < i) into 5, powers of 2m ff(, djfferent
ways. Finally, once an uaordered representation for n is chosen, it may be re-ordered m at most r!
ways. This gives the bound

W. ^ r!ma3:|,, |^ max _ JJ H,,,
- - .. ^^^-1^^^^^--

^ r! max fr - ^ . ^i . 1. 8"
i~<i<r \i- 1

^ T'-7^m'Kl'l'v
< ^2. r!. 3. 6r,

where K-t^K^ are constants. .

It would be of mterest to determine the true asymptotic beliaviour of Wr. Nmnerical evidence
suggests that perhaps Wr~C-r\-Dr, where C = .131 and P = 1. 686.

7 An improved bound on o;(r, n).
In this section, we give another proof of the fact that a(r, n) is bounded, for each fixed r. This
proof provides a better estimate for Ot(7-, n). < ^ , ,. ^_ _ _. _ __:.

The idea of the proof is to encode each sequence of r powers of 2 adding up to n as^a pair
sequences chajacterizmg the additions m bmary notation. Suppose n = 231 + 2J3 + . .. + 2Jr. Defme
n^. = yi 4- . . . + 2-7', the ith partial sum, and consider the addition n, = n, _i + V' in base-2:

a;, 0 ldf Vi = "z-i

+ 1 OJ' = 2^
-03T

(3)
Xi 1 0^ yi = n,

Define a, to be the number of 1's m the string i,, and 6, = ^(n, ), the number of 1's m the
bmary expansion of n,. Then

0 ^a, < &"

1 < 6* ̂  6, -i +1. (5)

Given n,, the addition (3) is completely deteimined by a. (which determiiies Ae 1 where caxry
propagatio^eiids) and 6,_i (which gives the "carry distance" d, as ̂, -1 + 1 - 6, ). It foUows that
the sequence (2-'1, 2",..., 2-'r) is completely characterized by the pair of sequences

a-t = 0, as,

6i=l, 62,
., Or-l, Or;

., 6^-1, &r.

We can relate these (a, 6)-sequences to the Catalan Tree T, defined as foUow^ the root of T is
labeled 1, and each vertex labeled i has i+ 1 chUdren labeled 1, 2,. .̂ t + L (This^ tree^up to a
relabeiing, was studied previously by J. West [18, 17, 19], who observed that the number of vertices
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Figure 1: Levels 0-3 of the Catalaa Tree T

at depth d is the d + 1st Catalan number, (2^)/(d + 2). ) Let the weight of a vertex v be the
product of aU labels on the path from the root" to v, and let w(d, t) be the sum of the weight of aU
vertices labeled i at depth. d.

Levels 0-3 of T are given in Fig. 1. Note that each sequence 61,.. ., &r satisfymg (5) corresponds
to a path fi-om the root to a vertex v at depth r - 1, and the weight of the vertex v equals the
number of possible sequences ai,..., a^ satisfying (4). This gives us the upper bound a(r, n) ^
ma3:i<,-<^ w(r - l, j) ̂ - w(r, 1). The bound is not sharp; for example only 2 of the 4 a-sequences
are feasible for the" 6-sequence 1, 2, 2, 1. The reason is that the two 1's in ns must be adjacent to
aUow a carry distance of 2 fi-om na to n4, hence the carry from nz to ns, having distance 1, can
only go into one of these Is.

'We can compute w(<f, i) by definmg w{d, 0) = 0 for aU cf, and usmg the foUowmg recurrence
relation:

w{d, i)=i ^ w{d-lj). (6)
i-l<j<d

w(

We now prove the foUowmg formula for w(d, i):

Theorem 15 We have
i(2d-z+l)!

w(d^=^-^{d-i+l)\-

Proof. First, we prove the followmg lemma:

Leraraa 16 For all integers n, d ̂  0 we have

^.v-^l)-d^
0<j<n

-d. 2 ,n+l

Proof. An easy mduction on n. The details wffl. be given, m the fmal paper. .

Now we can prove Tlieorem 15, by mduction on d. The base case, d = 0, is left to the reader.
Assuine the result is true for 4 - 1. Then we have

w(4, i) = i ^
i-Kj<d

w(<f-l, j)
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i Y.
i-l<j<d

i(d-l)\
^T

i(d-l)\

j(2d-j-iy.
(by mduction)2^(d-j)[

^J'v'^1)
i-Kj-

. d. 2
"2^

i(2d-i+l)\

i-^f2d-i+l>
(by Lemina 16)

2^-. +i(d-i+l)!'
That corapletes the proof. .

By settmg i = 1, it now follows that w(<f, 1) = (2d)[/(2d . d\). (There is also a beautifid
corabmatorial proof of this fact, which is bdsed on a 1-1 correspondence between (a, 6)-sequences
and perfect m.atchings on the coniplete graph on 2d labeled vertices.)

We have therefore proved the followmg theorera:

Theorem 17 Wr = maXn>o o:(r, n) exists and we have

W, $ w(r, 1)= ̂  ~ 2r .r!. (Tr)-1/2.
8 L{k, b) is not closed under product.

At the "Them.ate" conference in Luiniay m. ]May 1993, Lehr raised the question of wh.eth.er or not
the autoinatic real iiuiiibers form. a ring, i.e., are they dosed under product? In. this section we
resolve this open problera by exhibitmg a couiiterexample. It foUows that L(k, 6) is not dosed
under squaring or taking the reciprocal.

Theorem 18 L{k, b) is not closed under product.

Proof. For siinplicity we prove the result only for fc = 2, although, the methods can easily be
extended to cover the general case. As before, we define

f(X) ̂ ^X2r =X+X2+X*+---.
r>0

We also define

g{X) = ^ ^(2m-l)2n
m>l, n>0

= Z +X2 +.?3 +^4+.Y6 + X7 +X9+ X12 + Z14 + X15 + X16 + Xu + X23 + .Y30 +...

As before, if y = ,(1/6), then y   £(2, 6). Similarly, if z = ^(1/6), then z   £(2, 6), since the
base-6 representation of z has 1's m those positions whose base-2 representations are given by the
regxdar set 1+0*. We wiU show that yz 0 £(2, 6).

First, note that

f(X)g(X) = ^ Z2r. ^(2m-i)2'l= ^ ^2-+(2"-1)2»
m>l, n>0, r>0 m>l, n>0, r>0

^. 2''4-(2'n-l)2n ̂  Y^ ^Y2r+(2"l-l)2'1 ̂  y^ ^. 2r+(2m-l)2"
r<n

m>l, n>0, r>0 m>l, n>0, r>Q
r>n

m>l, n>0, r>0

S(X) + T{X) + U(X).
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Second, note that

S[X) = E
r<n

m>l, n>0, r>0

. 2'"-r(2m-l)2n _

^2r(l+2^2m-l)) ^

£
r<"

m>l, n>0, r>0

^2r(l+2^2m-l)) ^ Y-
L -I

m^l, p^l, r^O m^l, p^l, r^O

Y^'"(l-2"-r(2r"-l))

2''(2p~m-2p-l)

Now (2r(2?-m - 2P + l))2 = lm Op-1 1 Or, so it foUows that S(X) = S,>o ̂ -Yl> where

^fl, if(i)2   1+O* 1 0-;
0, otherwise.

Hence (si)i>y is a 2-automatic sequence, and therefore S{l/b] C £(2, 6).
By the same tedmique, it can be shown that U{x) = ^,>o UiX'1, where

2, if(i)26l0+l+0*;
u, =<{ 1, if(i)26ll+0*;

0, otherwise.

It foUows that (u, )t>o is a 2-autom.atic sequence, and, by the Norrazdization Lemjna, we have
(7(1/6)  £(2, 6).

Finally, note that

jy2 ''+(2m-l)2" 
^ y ^2r(l+2m-l) ^ y^ ^-2m+r ^ y~> n^Y211.

r>0, m>l r>0, m>l
m>l, n>0, r>0

n>l

Now consider the base-6 expansion. of T(l/&), say (T(l/6))& = O. coCiCz . . .. Evidently the bcise-
b digits munediately to the left of position 2" are just (n)&. It follows that every eleraent of
{0, 1,.. ., 6 - 1}* eveiituaUy appears as a factor of the infinite sequence

C = CoClC2 ....

If we define the subword complexity pj (n) of an mfaute sequence d = (<^), >o to be the number

of distinct factors of length n which appear in d, then. we have shown that pc (n) = bn. But, by a
residt of Cobham [3], if c were fe-autom.atic for any fe, we would have j>c(n) = 0{n). This gives a
contradiction, and so T(l/6) ^ £(2, 6).

It foUows that yz ̂  £(2, 6), smce yz = 5(1/6) + T(l/6) + U(l/b). .

Theorem 19 The set £(2, 6) is not closed under the map x X2.

Proof. Suppose it were. TIien, since yz = \[{y + z)2 - (y - z)2), we would have tliat 1(2, 6) is
dosed under product, a contradiction. .

Actually, it can be sliown (using the saine tedmiques as ia the proof of Tlieorem. 18), that
ff(l/6)2^£(2, i).

Theorera 20 The set £(2, 6) is not closed under the map x -i- 1/x.

Proof. Suppose it were. Then, since y = y 4- -r-r, we would have that £(2, 6) is closed under
y-i - ,

squaring, a contradiction. .
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