Counting Non-Isomorphic Planar Maps:
a General Approach via Rooted Quotient
Maps

VALERY A. LiskovETS (Minsk)

Summary

A general method for the counting of unrooted planar maps is proposed.
It reduces the problem to the enumeration of rooted maps of several classes
of three kinds: planar, projective and “circular”. The method is based upon
Burnside’s Lemma, a permutation triplet model of the maps and a rigor-
ous classification of the periodic sphere homeomorphisms, including sense-
reversing ones, into five types.

Résumé

Nous proposons une méthode générale pour le calcul des cartes planaires

non pointées. On réduit le probleme a ljénun%éra.’t,:ion des’cartes I:ointéfas de
trois classes : planaires, projectives et “circulaires . La r.nethode s’appuie sur
le Lemme de Burnside, un modele de triplet combinatoire pour les cartes eft
une classification des homéomorphismes périodiques de la sphere, y compris
ceux qui renversent ’orientation, en cing types.
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1 Introduction

In [7] we developed a general technique for the exact counting of unrooted
planar maps up to sense-preserving sphere homeomorphisms. It is based
upon Burnside’s Lemma and, due to some properties of maps (cf. [8]), re-
duces the problem to that for rooted planar maps of the same and several
auxiliary classes which depend heavily on the class under enumeration. This
method proved to be rather effective for a number of particular classes of
maps.

The aim of the present work is to extend this reductive approach (in
a slightly improved form) to orientation-reversing homeomorphisms. We
achieve it, though with considerable complications: the reduction leads not
only to rooted planar maps but also to two different generalized kinds of
rooted maps: projective and circular with singularities. For the latter type
an effective enumerative technique has not yet been developed and hardly
can turn out as simple as for planar maps. Nevertheless we think that in
many cases this approach reveals the nature and intrinsic difficulties of the
problem.

Our basic idea is to classify the symmetries of planar maps rigorously and
then to introduce the corresponding quotient maps.

The main result (Theorem) is a general uniform formula; when applied to
a particular class of planar maps, it needs to be supplemented with ad hoc
means for studying and enumerating the rooted quotient maps of the classes
arisen.

2 Maps

By a map we mean a finite cell dissection of a closed topological surface,
i.e. a dissection of it into open 0-, 1- and 2-dimensional cells called vertices,
edges and faces respectively. Other useful definitions and details can be found
in [2, 7, 13].

Any edge may be doubly oriented along and across it, i.e. we can select
directions towards one of its ends and towards one of its sides. Each edge
(including a loop and an isthmus) has four possible orientations. Such a
doubly oriented edge will be called a flag. Tt is well known (cf. [L, 5, 6, 13])
that maps allow a rigorous combinatorial description as triples of permuta-
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tions acting on the flags. The simplest map model has the form of a triple
of fixed-point-free involutions which generate a transitive group (cf. [6, 8]).
In particular the following assertion is valid.

Lemma 1. For n > 2 up to trivial homeomorphisms preserving all cells,
each map automorphism is defined uniquely by its action on the flags. This
action is regular, i.e. it consists of cycles of an equal length. Any map
automorphism is represented as a permutation that commutes with the three
model involutions, and vice versa.

Let M(n) be a set of n-edged maps. We assume the validity of the
closure condition [7] which ensures that M(n) is invariant with respect to
(the induced action of) the symmetric group ¥(Y) = 2, where Y denotes
the set of (labelled) flags, |Y| = 4n.

Proposition 1 ([8]). Let M(n) be the number of non-isomorphic (unla-
belled) maps in M(n), ME)(n) be the number of non-isomorphic L-rooted
maps and @(L) denote the Euler totient function. Then :

1

M(n) = ey Y e(L)M B (n), n > 2.

L>1,L|4n

Here an unlabelled L-rooted map is a map which has a selected cyclically
ordered L-element set of root-flags (a cycle of L°), is invariant with respect
to the selected regular permutation L°, and is considered up to symmetries
preserving the group generated by the selected cycle. This definition is a
natural generalization of the well-known notion of a rooted (i.e. l-rooted)
map. We will write M’(n) instead of M(*)(n) for the number of rooted maps.

3 Classification of planar map
automorphisms

In the case of the sphere S we will also use geometric presentations of
maps. By a result of P. Mani [10], any planar 3-connected (polyhedral)
graph may be represented on the geometrical sphere in such a way that all
its automorphisms are induced by symmetries of the sphere. For our purposes
the following assertion is therefore important.

Lemma 2 ([3], Theorem 7.4.1). Every non-trivial periodic symmetry of
the sphere is a rotation, a reflection, or the product of a (commuting) pair
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which consists of a reflection and a rotation around the azis perpendicular to
the reflection plane.

We need a more thorough classification which we found only implicitly in
the literature (cf. [4]). There exist five types (classes) of non-trivial periodic
sphere symmetries which we denote by mnemonic Greek letters.

I - rotations. Every p € I is defined by () its order I, { > 2, (i) the
pair of poles fixed by it and lying on the rotation axis, and (i) the rotation
angle 2rd/l where 1 < d < I, (d,1) = 1 (here (d,!) denotes the g.c.d. of
numbers d and [).

O - reflections. Every w € O has order 2 and a great circle of fixed points
lying in the reflection plane. The set of points fixed by it forms a great circle
lying in the reflection plane.

X - the central (antipodal) inversion. This class contains a unique sym-
metry x. It is of order 2 and has no fixed points.

© — reflections combined with the corresponding rotations of even orders
greater than 2. Every 8 € © is defined by (i) its order [, I > 4, [ is even,
(i) the pair of poles it interchanges, and (i4i) the rotation angle 2rd/l where
1 <d <, (d,1) =1. All points, except for the poles, have order [.

® — reflections combined with the corresponding rotations of odd orders
greater than 1. Every ¢ € @ is defined by (i) its order 21, I > 3, lis odd,
(#) the pair of poles it interchanges, and (i3i) the rotation angle 2wd/! where
1 < d <1, (d,1) = 1. Equatorial points have order [, while the other points,
except for the poles, have order 2[.

I-symmetries are orientation-preserving, the other types are orientation-
reversing.

Let us write K = {I,0,X,0,®}. We will also refine these symmetry
classes with various parameters. In particular, the rotation order will be
written as a superscript in parentheses.

We apply the above classification to planar maps. The cells containing
the poles are called azial and those intersecting the reflection plane are called
equatorial.

Proposition 2. Each non-trivial automorphism of a planar map belongs
to a unique class of K. It is defined by the pair of azial cells and the rotation
angle in the cases of 1,0 and ®, or by the set of equatorial cells in the case

of O.
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4 Reduction to quotient maps

The central construction of the present work is the quotient map of a
planar map by a symmetry, which turns out a certain generalized map.

A planar map is called punctured if two of its cells, other than edges, are
distinguished as axial. A projective map (that is, a map on the projective
plane) is called punctured if one of its vertices or faces is distinguished as
axial. Any pendant (i.e. 1-valent) axial vertex of a punctured map may be
declared to be singular. An edge with a singular end is also called singular
(or a half-edge). It is considered to have only two flags oriented towards the
non-singular end.

The equator of a map symmetry may be considered as a polygon with
two types of points (polygon vertices) and two types of segments (polygon
sides). Its points of intersections with edges of the map are called singular.
Segments of intersections with faces are called quasi-edges, whereas the other
map edges are called ordinary. Moreover, such polygons satisfy the following
condition:

(C1) both segments incident with a singular point are quasi-edges (they
may coincide in the case of a 1-gon, i.e. a loop).

Such a polygon will be called generalized.

Definition 1 (cf. [1, 12]). A circular map means a finite cell dissection
of a closed disc that induces a generalized polygon on the boundary and
possesses the following properties:

(C2) each face is incident with at most one boundary quasi-edge;

(C3) each boundary vertex is incident with at least one ordinary edge;

(C4) each singular boundary vertex is incident with exactly one internal
(i.e. not boundary) edge;

(C5) each ordinary edge is incident with at most one singular vertex.

In a circular map we consider a quasi-edge to belong to the face incident
with it. Such faces will be called boundary, whereas the other faces are called
internal. Thus, a quasi-edge has no flags (i.e. no 'usual’ sides and ends). On
the contrary, an ordinary boundary edge has only one side and two flags. An
ordinary internal edge incident with a singular vertex is also called singular.
It has one end and two flags.

Internal non-singular edges are called normal. An internal edge may
connect two boundary vertices.
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A circular map is called punctured if one of its internal vertices or faces
is distinguished as azial.

Planar, projective and circular maps, punctured or not, are all called
generalized maps. The number of flags in a generalized map is always even.
The number of edges in such a map is an integer or a half-integer. It is equal
to the number of normal edges plus half of the number of singular internal
edges and boundary edges; quasi-edges are not taken into account at all.

The definition and lemmas given below are merely straightforward conse-
quences of well-known facts from the theory of Riemann surfaces and covering
spaces (cf. [11, 5]).

Definition 2. A quotient map (an Q-quotient map) B = A/a of a
planar map A with respect to an automorphism o, a € Q, Q € K, means
the quotient space (or orbit space) S/ < a > together with its induced cell
dissection which forms a generalized map.

Lemma 3. The quotient map of a planar map with respect to a non-
trivial automorphism is of one of the following forms:

[-quotient maps are punctured planar maps, which may contain singular
azial vertices in the case of I¥;

O-quotient maps are circular maps;

X-quotient maps are projective maps;

©-quotient maps are punctured projective maps, which may contain a
singular azial vertez in the case of ©®);

®-quotient maps are punctured circular maps.

It is convenient to build quotient maps B geometrically with the help of
Mani’s Theorem. In particular the I-quotient map is obtained by selecting
a sphere sector with angles 27/l at the poles and then by identifying its
boundary half-circles [7]. The O-quotient map is the half of the original map
that lies above the equator and is endowed with the appropriate singular
vertices and quasi-edges on the boundary. The standard 2-fold covering of
the projective plane by the sphere induces the X-quotient map.

Lemma 4 (on lifting). B is the Q()-quotient map of a uniquely defined
planar map A with respect to a given automorphism o of type Q) with the
corresponding rotation azis and/or reflection plane.

By Propositions 1 and 2,

ME)(n) = > M®L)(n), n>2 L2>2
QeK
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where M(*L)(n) is the number of L-rooted maps in M(n) for which the
corresponding L-automorphism L° is of type .

Let Mq r(t) be the set of t-edged generalized maps that are quotient
maps of the maps in M(n) with respect to Q-automorphisms of order L. By
Proposition 2 and Lemma 4

ME@D(n) = MY, 1 (n/L), Li2n, Q € K,

where M ;(t) is the number of rooted maps in Mg 1 (¢).
Theorem. The number M(n) of non-isomorphic planar maps in M(n)
is given by the formula

M(n) = o | M/() + Mia(n/2) + 3 o) Mis(n/1) + Mp(n/2)

1>3,1n
+Mx(n/2) +2Mg 4(n/4) + D w(1)Mg(n/l)
1>6,1|n, 2|l
F Y el)Myg(n/).
1>3,1|n,lodd
Moreover, here

Mfz(n/2) = Mf,Z,l(n/2)’ n odd,
Mllz(n/2) — MI’,2,0(n/2)+MI’.2,2(n/2)7 n even,
Mi(n/2) = Mpy(n/t) = 0, n odd
Mg ,(n/4) = Mg ,(n/4), n=2 (mod 4),
Mé),4("/4) = Mé,4,o(n/4)’ 4|n,

where the third subscript means the number of singular azial vertices.

This theorem reduces the enumeration of non-isomorphic planar maps to
that of rooted quotient maps of six classes. In the case of all planar maps
without restrictions (Step 7 of our program [9]) it is possible to advance the
result considerably. This will be described elsewhere.
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