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Abstract. We derive in a simple way the perimeter generating function for the column-
convex polyominoes.

R6sum6. Nous retrouvons de fa^on facile la serie generatrice des polyominos verticale-
ment convexes, comptes suivant Ie perimetre.

1. Introduction

Besides its purely mathematical interest, the computation of the self-avoiding polygon
( SAP, Fig. 1 ) perimeter and area generating functions would have a significant bearing on
the study of physical problems like fusion and evaporation, the configuration of polymer
molecules and gel formation. But despite strenuous efforts over the past 40 years, so far
only some restricted classes of the SAP'S have been enumerated. Further, in all the blown
enumerations two SAP'S are identified iff they can be transformed one into the other by a
translation ( the reflections and rotations are not allowed ).

An important restricted class of the SAP'S arises if we impose convexity in the direction
of one of the lattice axes. When this axis is the y-axis, we speak of the column-convex
polyominoes ( cc-polyominoes, Fig.2 ).
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Figure 1. A self-avoiding

polygon ( SAP )
Figure 2. A column-convex

( ec-) polyomino

Notation 1. Let P be a cc-polyommo. We shall write Se{P) for the number of
horizontal edges of P, and Ve(P] for the number of vertical edges of P. |

Definition 1. Let 0 be some family of cc-polyominoes. By the perimeter generating
function [gf) for 0 we mean the formal sum Epgn xH<p^yve^. |

The cc-polyominoes were mtroduced by Temperley [12] m 1956. The area gf of this
-model was. found, on .the spot [12]. On the contrary, the perimeter gf of the cc-polyoniinoes
G{x, y) ( and not to speak of their perimeter+ area gf ) remained unknown for a long
time after Temperley's paper had been published. At last Delest [5] applied the DSV-
methodology [2, 6, 11, 13, 14] and the computer algebra program MACSYMA to obtain a
formula for G{x, x}. Subsequently Brak, Guttmann and Entmg [4] rederived the function
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G{x, x) using the Temperley methodology and Mathematica. Thus it turned out that the
formula given in [5] can be written in a simpler form. The result of Brak et al. was
generalized to the case x 7^ y by Lin [9].

In the course of preparation of their paper [7], Feretic and Svrtan were firstly using
the DSV-methodology. So they encoded the cc-polyominoes and set up a system of four
nonlinear equations. Some manipulation of this system left them with a single degree-
four algebraic equation satisfied by G[x, y). Wishing to calculate the then unknown Taylor
coefficients of G{x, y) by the Lagrange inversion, they factored that algebraic equation. The
result was that

x^l-HY
'

where

(1 - y2 )2(l - 2H)[(1 - 3HY - a;2(l - HY\

H== r^- (2>
The equation (1) made it possible to express < a;2cy2 u > G as a certain threefold sum of

binomial coefScients. But the final surprise was still lurking nearby. Naraely, after a while

one of the authors of [7] found it out that the division of (1) by 1-H leads to a biquadratic
equation satisfied by the function L = (l - 3fT)/(l - H]. Solving that biquadratic equation
and using H .= 1 - 2/(3 - L), the following unexpectedly simple formula for G{x, y} was
obtained:

G'(x, 3/)=(l-y2) 1-
2y^

3V2-
^

l+a;2+ M
,
2.,2

(i - x^y - 16xxy
,
2 \ 2(1 -1/2)

(3)

In [7] there is also an alternative proof for (3), which was found later. This second proof
uses the Temperley recurrences [12], but the way of solving the recurrences is different than
in [4, 9].

The aun of the present paper is to give an explanation for the "magic" behaviour of
the functioiis like H and L. In section 2 we introduce two new classes of plane figures,
whose abbreviated names are tapoes and stapoes. It is established by mspection that
B = J/(l+ J}, where J = (the perimeter gf for the stapoes)/(l - y2 ). In section 3 we use

the DSV-methodology to derive the function J and thereby the functions H and G. The
computations are easy, because we have to solve just one quadratic equation Instead of a
system of quadratic equations.

2. Two new objects

Let P be a cc-polyomino. The upper left comer of the first coluaan of P is called the
north-west pole of P and is denoted by NW{P}. The lower right comer of the last column
of P is said to be the south-east pole of P ( notation: SE{P) ).

Imagine a plane figure T obtained by appending a vertical segment of d   No lattice
units to the south-east pole of a cc-polyomino P. We say that T is a tailed polyomino (for

Xl
¥1
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short: tapo ). Naturally, the appended segment is termed the tail of T. By the columns of
a tapo T we mean the columns of the underlying cc-polyomino P. The north-west pole of
T is defined by NW[T} = NW{P), while the south-east pole SE[T} is defined to be the
lower endpoint of the tail of T. See Fig. 3.

Now let us define the second new object. Suppose that, for some n 6 N, n-1 arbitrary
tapoes Ti,..., Tn-i and a tapo with a null tail Tn are given. Let Ti,... , Tn be disposed in
a way that, for 2 < i <n, the north-west pole of T, coincides with the south-east pole of
^. -1.

In a situation like this we say that the union S = Ui<,-<n7i is a stapo ( short for: a
sequence of tailed polyominoes ). The tapoes Ti,..., Tn are called the parts of S. By the
columns of a stapo we mean the columns of its parts. See Fig. 4. Observe that the one-part
stapoes are cc-polyominoes.

It is useful to adopt the following convention:
Convention. Let a tapo T be obtained by appending a segment of length d to a.

cc-polyommo which has 2v vertical edges. Then T has 2v + 2d vertical edges. |
Naturally, by the vertical perimeter of a stapo we mean the sum of the vertical perimeters

of its parts. With these conventions, in the sequel we shall apply Notation 1 and Definition
1 not only to the cc-polyominoes, but also to the tapoes ajid stapoes.

Let Hd be the perimeter gf for the tapoes whose tail is exactly d units long. It is easy
to see that Hd = y2 <fG>, where G is the perimeter gf for the cc-polyominoes. By this remark

and (2), the perimeter gf for all the tapoes is

Zy2dG=^=H. (4)
d>0 y

An n-part stapo is , in substance, a sequence of n - 1 tapoes and one cc-polyomino.
Hence the perimeter gf for the n-part stapoes is Hn~lG. Let I be the perimeter gf for all
the stapoes. We have

(5)
G

= E Hn-VG = -
">1 H'

Further, it is convenient to put

^=J/(l-y2 ). (6)
The function J can be interpreted as the peruneter gf for the generalized stapoes, whose
last part, too, is allowed to have a tail. From (2) and (5) it follows that

H
J=

r=~s:'
so that

H=l-
1+J'

(7)

(8)

3. The DSV-computation of the function G
3.1. Preliminaries on words and languages

Mostly due to the papers of the Bordeaux group for enumerative combinatorics [5, 6, ... ],
the algebraic language ( i. e. DSV-) methodology is today a popular counting technique.
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Here we shall dispense with giving an introduction to this method. However, we shall
give some non-standard defi.nitions concerning the free naonoid {^, y, y}*, which is the one
relevant to our forthcoming proof.

For r   {2:, !/, y}*, we put 6{v) = |v|y - \v\g and say that <5(v) is the rank of v.

NW(T)

5:k:y:

T

3ri:y:

l"ncst;y'i

9a:yq

w

J;:'
2°dnest:y

1
61a:y3

'SE(T)

Figure 3. A tailed polyomino
(tapo) with four columns and

24 vertical edges

Figure 4. A stapo ajid
the nests of its code
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Figure 5. The "partial ranks" of the word which encodes the
stapo of Fig.4, i. e. the numbers <?, (^(5)), (»' =0, 1,..., 18).
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Let w   {x, y, y}* and let \w\x = n. Clearly, w can be written as ui-z-uz'z-. -Un-z-Un+i,
where u,   {y, y}\ for every t. The word u, will be called the ith nest of w. Now, we put
6o(w) = 0, ̂ i(w) = <5(ui) and

<S', (w) = <?(ui . 2;- us ... s . u. ) (t = 2,. .., n + 1). (9)

Also, we define r(w) to be the word obtained from. w by swapping the nests u; and u, +i,
for every i == 2, 4,... , 2 [n/2j.

We say that iy is a Motzkin word if the rank of w is zero and the rajiks of all the left
factors of w are nonnegative.

We say that w is a word with pure nests if every nest of w belongs either to {y}* or to
{y}'.

The letter B will denote the language formed by the Motzkin words with pure nests.
For example, \etw=y-x-yy'x-x-y-x-y-x- yyy. This w is zin element of S, the

numbers So{w),..., 6e{w) are 0, 1, 3, 3, 2, 3, 0 and r(w) ==y-x-x-yy-x-y-x-y-x -yyy.

3. 2. A coding for the stapoes

Let 5 be a stapo with c columns and 2v vertical edges (c, v   N). Let y, and Y, be the
mmimal and the maximal ordinate of the ith coluinn of 5'. Observe that for all i, we have
Y, > y. and Y, > y,+i.

We define the code of S to be the word w = ^{S) having the following properties:

i) w is a Motzkm word with pure nests;

ii) |w|. =2c-l;

iii) <?2. -i(w) =Yi-y, -l (i 6s), 1 and Su(w) = Y;- - y.+i - 1 (i   c-1).

( To be sure, there is only one such w. ) Essentially, we encode the stapoes similarly as
Delest [5] encoded the cc-polyoniinoes. An example for our coding is shown m. Figures 4
and 5.

Let u, denote the ith nest of w. Owing to the purity of these nests, we have |u, | = |^(u<)|,
for every i   2c. This fact and the property iii) imply

|ui| =Vl -yi - 1, |u2e| =Ye-ye-l,

and for t" £ c - 1,

|u2. | = |y, - y. +i|> |"2.+i| = \Yi+i - Yi\.

Assume, without loss of generality, that the minunal abscissa of 5' is zero. Clearly, S has
Yi - yi vertical edges with abscissa zero and Ye - y, vertical edges with abscissa c. Further,
whether a tail with abscissa »" 6 c- 1 exist or not, there are always |y, - y,+i| + |y;-+i - Y{\
vertical edges-with abscissa i. ( This statement may be checked by examinmg Fig.4). Smce
S has 2v vertical edges, putting our remarks together we find

\w\«+\w\g= E |uy|=2v-2.
l<}<tc

(10)

lThe symbol c. denotes the set of integers {1, 2,..., c}.
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Let

5cu = {w  S : |w|^ = 2c - 1, |w|y + \w\g = 2u -2 }.

We have proved the following result:
Proposition 1. We have ip[S)   S^,. I
It is of interest to make some considerations about the word r(w), where w is code of

the stapo S. Quite obviously, the nests of this word are pure, and we have

]r(w)|, = 2c - 1, |r(u/)|, + |r(w)[, = 2v - 2. (11)

Having determined the ranks of the nests of w with the aid of the above property iii), from
the definition of r(w) we obtain

^. -i^(w))=^-y, -l (i fi) (12)

and

S^r{w))=Y^-y, -l (i e c_^). (13)

Thus, in the general situation we don't know whether a number S'a{T(w)) be nonnegative
or negative. But let us see what happens in the special case of S being a cc-polyomino.
Then y;-+i > y, for every i 6 c - 1, so that (12) and (13) give

5, (r(u;))>0 (Vy 2c-l). (14)

On account of the purity of nests, (14) proves that in this case r(ty} is a Motzkin word.
Let

^ct = {w e ^cu : T-(w) also lies in Bcu }.

We have:

Proposition 2. If 5 is a cc-polyomino, then ̂ (S)   S^. I
Notation 2. For c, v £ N, Seu will denote the family ofstapoes having c coluBans ajid

2v vertical edges. Also, we put

Pc»={ P ^ Scv '. jP is a cc-polyomino }.|

To be fair, so far we have only proved that ̂ {Seu) c Bcu and V'(-Pcu) c B^,. But it is just
a technical matter to arrive at a stronger conclusion:

Proposition 3. i/» is a bijection between Scv and Seu, and also a bijection between Pcv
and S,t. |

Now, the absence of the awkward requirement nr(w)   Bcv" indicates that it will prob-
ably be easier to enumerate the family Scu than the family B^,. In fact, it was right for this
reason that the stapoes have been introduced.

3.3. The granunar and the algebra

We define a power series B[x, y) as follows. For t', j"   No, the coefficient of x'y} in B,
usually written as < xty} > B, \s

card{ w   B : \w\x = t", \w\y + \w\g = j }.
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Next, let D(x, y) = [B{x, y) - B[-x, y)}/2. The definitions and Proposition 3 imply

< r2cy2 u 
> I = |5.J = |B,J =< x2c-ly2 u-2 >B=

=<xlc-ly'tv-'t >D=<xtcylu >xylD (c, vGN). (15)
Since in the power series I and xy2 D all the powers of x and y are even, (15) implies

I = xylD. (16)

It is readily seen that the language S has the unambiguous grammar

B =e+xB+y[B-e)y{e+xB}. (17)

Letting the letters in (17) commute and putting y = y, we find that the gf B{x, y)
satisfies the quadratic equation

B=l+xB+ y2{B - 1)(1 + xB},

or equivalently
xy^B2 - (1 -z)(l -y2 )B+ 1- y2 = 0.

Solving the equation (18) we obtain

. 
(l-r)(l-y2 )-AV2

B=-~2x^

2(l-y2 )-Al/2-AV2
D=

4xy2

(18)

(19)

(20)

where A± = (l ± a;)2(l - y2)2 ± 4xy2 (l - y2 ). Using (16) to obtain J, (6) to obtain J, (8)
to obtain H and (2) to obtain G, we get the following theorem:

Theorem 1. The perimeter generating function for the column-convex polyominoes is
given by

G'(x, y)=(l-y2) 1-

6- ^ (i-xY- 4xy2
^y2 ~\

4zy2
(l+r)'+r=7y"j

.0 (21)

Let 5_/ and Sy denote the first and the second of the square roots which appear m the
denominator of (21). The fact that the formulas (3) and (21) determine the same fimction
is due to the possibility to write 5V2 +<5J:/2 as [<?-+<?+ +2(5-^+)1/2]1/2. Next, it follows from
(21) that

8^ = 22, + ^/2, (22)
where L = {1 - 3ff)/(l - H}. When suitably squared two times, (22) turns into the
biquadratic equation

£--(1+^'+^[^]'=0, (23)
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the same one which appeared unexpectedly in [7]. Finally, rewriting (23) in the form
4a;2y2

l-JL=(l-y^(L+l)(^-^) (24)
and then multiplying by (1 - -B')/2, we obtain the equation (1).
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