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ABSTRACT. We give a minor summation formula of PfafBans and give Schur function iden-
titles as applications of this formula. These formulae (which are regarded as a kind of
Littlewood formulae) involve Schur functions and Cebysev polynomials. These new types
of formulae are stated in the last section. The simplest cases of these formulae are inter-
preted as character formulae of certain representations. As corollaries of these formulae we
obtain certain new identities on the generating functions of partitions.

Nous donnons une formule sommatoire pour les pfafSens, et corrLme application, des
identites sur les fonctions de Schur. Ces formules font interveair les fonctions de Schur et

les polynomes de Cebysev, et peuvent etre vues comme des identites de type Littlewood.
Ces nouvelles formules sont enoncees dans la derniere section. Les cas les plus simples
sont interpretes comme des formules de caracteres pour certaines representations. Comme
corollaires, nous obtenons de nouvelles identites satisfaites par des fonctions generatrices de
partitions.

1. INTRODUCTION

In the paper [IW], we exploited a minor summation formula of Pfaffians which is an
extension of the formula given in [Ok]. In this talk I would like to state this minor sum-
mation formula and certain Schur function identities which are obtained as applications
of this formula. Some of these identities can be interpreted as character identities of
certain representations. (See [IOW].)

2. MINOR SUMMATION FORMULA OF PFAFFIANS

Let r, m, n be positive integers such that r ^ m, n. Let T be an arbitrary m by n
matrix. For two sequences t = {ii,... , ir) and k = (fci,..., fcr ), let T^ = Tk1'' ^ 

denote

the sub-matrix of T obtained by picking up the rows ajid columns indexed by t and fc,
respectively.

Assmne m <, n and let B be an arbitrary n by n antisymmetric matrix, that is,
B = [bij) satisfies bij = -6ji. As long as B is a square antisymmetric matrix, we write
Bi = B(\... i^ for 5^ = B,11"",̂  in abbreviatiou. One of the main result in [IW] is the
following theorem. (See p. 6, Theorem 1 of [TW].)
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Theorem 2. 1. Let m <: n and T = {t^) be an arbitrary m by n matrix. Let m be even
and B = (6ifc) be any n by n ajitisyminetric matrix with entries 5, fc. Then

(2. 1) ^ pf(B,,.., Jdet(T,\--;m, J=pf(Q),
l<ki<---<km<n

where Q is the m by m antisymnaetric matrix defined by Q .= TB T, i. e.

(2.2) Q., == ^ 6fe;det(T^'), (l^?, J^m).
Kk<Kn

We regard the Pfaffian pf(Bjfc) as certain "weights" of the subdeterminants det(T^""^^).
By changing this antisymmetric matrix we obtain a considerably wide variation of the
minor summation formula. Set Sn = {s, j) to be the antisymmetric matrix defined by

Szj = { 0

1 ifl ^! <J ̂ n,

ifl^i=j ^ n,

-1 ifl <:j <i <: n.

It is easy to see that pf{Ski... k^) = 1 for any sequence k when m is even. So we have

(2. 3) ^ det(T,\"m^)=pf(Q),
KJki<-<fcm<n

with Q = TStT. This special case appeared in [Ok] and applied to calculate the gener-
ating functions of the totally symmetric plane partitions. The lattice path interpretation
of this formula and very fruitful applications of this fonni-da are studied in [Ste].

In. fact, we gave a quantum version of this formula in [IW], and this theorem is the
$=1 case of Theorem 1 in [TW]. We also gave a summation formula in which some
column indices are fixed, and a summation fonnula in which not only column indices but
also row indices move. The q = 1 case of these formulae can be proved not only by an
algebraic method but also by a lattice path method. The quantum version was proved
only by an algebraic method; here we state applications in which ouly the above formula
wiU be used.

3. NOTATION AND PRELIMINARIES

Now we review some basic notation which may be foiind in [Ma . A weakly decreasing
sequence of nonnegative integers A := (AI, --- , Am) with Ai $: ... ^Am >0is called
a partition of |A| = AI + ... + Am. The partition A = (Ai, A^,... ) defined by A/, =
lt{7 : ^j ^ 2} ls called the conjugate partition of A. Let n(A) = ^,>i(^ - l)Ai ==
St >l (2)' ^or eac^ ce^ x = (2'^) m ^' ^e .boo^e-n<§'^ of A at a; is defi-ned to be

h(x) = A; -j + A'. - i + 1. Suppose that the main diagonal of X consists of r = p(A)
nodes. Let a:, = A, - i and (3, = X', - i for 1^ z ^ r. We sometimes denote the partition
A by A == (ai,..., oir\/3i,..., /3r) = (a|/3), which is called the Frobenius notation. If a is

?

Â
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a nonnegative integer which doesn't coincide with any of 0'i, then let 9(0;, a) denote the
number of o;i which are bigger than a. For example, A = (5441) is the partition of 14
and p(A) = 3. This partition is denoted by A = (421|310) in the Frobenius notation. If
a = (310) then q(a, 2) = 1 and (o; + Ija) = (421|310). This partition A = (421|310) is
visualized by the Young diagram:

Let A = (ai,..., o:r[/3i,... , /?r) be a partition expressed in the Frobenius notation.
Let a and b be nonnegative integers such that a ^ a-^,... , 0r and 6 7^ /3i,... , ^r. There
are some k and I such that crfe > a > afc+i and ^i > b > /3;-)-i. The partition A W (a|5) is
defined by

(3. 1) A IUJ (a[6) = (ai,... , a;fc, a, a^+i, Q;r[/3i ,..., f3i, b, ̂ +1,..., Pr).

For example, (421|310)l"J(0|2) = (4210|3210). Thus the Yoimg diagram of (421|310)l"J(0|2)
is given by

We now review the definition of Cebysev's polynomiaJs. The polynomials defined
by Tn{x~) == cos(narccosa;) are called Cebysev's polynoinials of the first kind, Eind, on
the other hand, the polynomials !7n(a-) = sin(narccosa;)/V^l -a;2 are called Cebysev's
polynoinials of the second kind. Both are known, to satisfy the saxn. e recurrence formula:

(3. 2) Pn+, (x~)-2xPn{x)+P^(x)=Q.

The first few polynomials are easily calciilated from the following recursive formula.

(3. 3)

To(3:) = 1, Uo(x) = 0,

Tn+, (x)=xTn{x)+{x2-l)Un(x)
Un+l{x) = T^(X) + xUn{x).

The Weyl character formula tells us how to calculate the characters of the finite
dimensional irreducible representations of highest weight A = ^, A, et of classical groups.
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Let FA be the irreducible representation of highest weight A. Then the character is given
by

ch(FA) =
. _^y(w) ̂w(\+S)

E.^(-l)'(w)eu'(i) '
Z^wgW

where W is the Weyl group and S is half the sum of positive roots. These characters
can be written as fractions of certain determinants for each classical group. In the case
of GL(m, C~), the finite dimensional irreducible characters are the weU-known symmetric
functions called the Schur functions, which are given by

(3. 4) S\(, Xi,. . . , Xm) =
^, +m-j|

.
m-j

where Ai >: ... ^ A^ >0 andall A; are integers. In the case of 0(2m +1, C), the finite-
dimensional irreducible characters are parametrized by highest weights A = ^; A. e. with
AI ^ ... ^Am >0, and written as

(3. 5) so^xf\..., x^\l)=
1^A, +m-j+l/2 ^-(A, +m-j+l/2)]

~xi ' 1_____1

- X.^m-j+'l/2 _ ^-(m-j+l/2)
\xt ~ ' ~ '.ci

where A, are aU integers or all half integers. hi the case of 5'p(2m, C)_the finite-
dimensional irreducible characters are parametrized by highest weights A = ^, A, e, with
\i>. ... > \m>. 0, and written as

(3. 6)
^, +m-j+l _ ^-(A, +m-j+l)|

.

±1 ^±l^ _ \xi' ' ~xi
^f-,..., a;^-J= -^m-j+1 _^-(m-j+l)| '

\X; - X,

where A, are all integers. In the case of 0(2m, C), the finite-dimensional irreducible
characters are parametrized by highest weights A = ^, Aie, with \i >. ... ̂  Am-i ^
|Am| ^ 0, and written as

(3. 7) so^x±\..., x^)=
^A, +m-j ^-(\, +m-j)^ ̂  \3:>'+m~j - x^x}+m~j)\

^-j+x^m-j}\

This teUs us how we should take T in the above theorem for each case.

T = (xrj)
T=^-^12-x^n-]Jrll2))
T=(^+1-^-("-J+1))
T = (^-. + ̂ -(»-. )) a^d T = (^-J - ^(n-J))

We take the above T for each case of G'£(m, C), 0(2m + 1, C), 5p(2m, C), 0(2m, C),
respectively.
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4. SCHUR FUNCTION IDENTITIES

Typical examples of Littlewood s formulae are the followings.

m

(4. 1) ^^A)^(2;i,..., ^)=U(l-^, )-1 ]r] (l-.F, a-, )-1,
l<i<j<,m;=1

m

(4. 2) s<r^^,..., ^=n^^n^^
\ i=l " '*'1 Ki<j<m " "''"'.'

where the sumination is over all partitions A, and c(A) (resp. r(A)) stands for the number
of columns (resp. rows) of odd length. (See [Ma].)

The following formulae are also called the Littlewood formulae.

(4. 3) ^ {-l)^s^x,,..., x^= U (l-^, ^-),
A=(a|a+l) ^<:i<J<:m

m

(4.4) ^ (-l)m+p(A)^(^i,..., ^)=II(l-^) H (l-.r^-),
A=(a|a) 1=1 l<, i<j<,m

(4. 5) ^ (-l)m^(. r,,..., ^)= H (1-^, ).
A=(a+l|a) l^i'^^m

(See [KT].)
We should mention that our minor summation fonnula gives a proof of all the above

formulae. Moreover a deforraation of this proof gives us several Schur function identities
of this kind. First we enumerate these identities.

Theorem 4. 1. Let m be a positive integer.

oo 00 m

(4. 6) Y, Uk+i{a^S(r+k, k){x^..., Xm)=Y[<il-2axi+x]r1.
k=Q -=0 1=1

(4. 7)
m-fc

^C7fe+i(a) ̂  5(2rifc)(a-i,...,. z;m)=n(l+2aa;, +a;^
fc=0 t=l

In the fonner identity there appear the Schur functions indexed by the partitions with
(r + k) ceUs in the first row and k cells in the second row. On the other hand, in the
latter identity there appear the Schur functions indexed by the partitions with (r + k)
cells in the first column and k ceUs in the second column. These identities have clear

meaning in representation theory as follows. The products appearing in these formiilae
are nothing but the characters of SU(2) ® GL{n, C) acting on the space of polynomial
rings of 2n variables and of the n-fold tensor product of Grassmann algebra of 2 variables,
respectively. Hence our formulae are interpreted as the character identities which describe
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the irreducible decompositions of such spaces under the joint actions of groups SU{2)
andG'^n(C). _. _ ... " ^_ __.. _"

If we'put x, = q2 i in the latter formula and put m -^ oo then we obtain a (com-

binatorial) proof of the g-expansion formula of Jacob! theta functions ̂ i and ̂ 2, for
example,

(4-8) co . ^
^^r) = 2 ^(-l)"9(n+^2 sin(2n + l^u = 2Qo^ sin^" ̂ (1 - 2g2" cos27ru + g4"),

n=0

where q = el7rr (Imr > 0) and Qo = F[^i(l - ?2n)-
Theorem 4. 2. Let m be a positive integer. Then

^ (-1)^+^5, (^,..., ^)
A=(a+l|a)

(4. 9)
+ 2 ̂  Tfc(a) ^ (-l)lM+?(A-fc-l). ^(o|fc-i)(^,... ̂ m)

ik=l

m

A=(a+l|a)
a?fc-l

=1[[{l+2axi+x]) [[ {1-XiXj).
i=l l^i<j^m

If we put x, = q2 i in this formula and we use the ^-expansion formula of Jacobi's theta

fi.Liiction~i93, we obtain the foUowing coroUary.

Corollary 4. 1.

(4-10) , _^,. (-l)lMW>i^']y[^)=Kris'
A=(a+l|a)

Let m be a nonnegative mteger.

^ (_^^,, ^(^» _n^ ̂ ^., -ig^i.
A=(^l]a) xe^Wm)

The foUowing theorems also have the same speciaUzation, but we omit it here.
Theorem 4.3. Let m be a positive integer. Then

|A|-P(^:
(-1)'"' 2' ' S), {xi,..., x^

A=(a+2|a)

(4. 12)
+f:W(.)+(a-l (a)} ^ (_l)^^^. ->

fc=l

m

A=(a+2|a)
ayfk-1

X {5^|u, (o|fc-l)(a;l,.. -^m)-5Al!il(l|fe-l)(a;l'---'2'm;

=JJ(l+2a^. +^)(l-^) H (1-^7-)-
Kt<j<m1=1
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Theorem 4. 4. Let m be a positive integer. Then

E (-D^+^^,..., ^)
A=(a+3|a)

m

+E^^(a) E (-i)m+^-l}
(4. 13) fc=l A=(a+3|a)

ayk-1

X {s\w(0\k-l)^l,.. .,. Cm) - ^Al"J(2|Jc-l)(-Z'l, - .., 2-m)}
m

={'[(l+2a^+r?) ][J (l-r. -r, ).
Ki<j<m1=1

In the rest of this section we briefly describe the key ideas of the proof of these
identities. The following lemma is the key lemma to evaluate the Pfaffian we treat.

Lemma 4. 1. Let m be a positive integer and put

(4. 14)

Then

(4. 15)

Qm(s, y)=
m /^Tn^, m ^2(^xm-ym)2 (l-tmxmym)

x-y 1 - txy

pf [Qm(x^X^^^ = ^(m-2)/4 JJ ^ _ ^. )(i _ ^^.^
Ki<j<2m

If we apply Theorem 2. 1 to B and Q given by

(4. 16) £ 0kl
0<k<Kim+d-2

Xk X1
yk yl

= -(1 + lax + a;2)(l + 2ay + y2)
m\2{xm-ym)

x -y

then we obtain Theorem 4. 1 from Lemma 4. 1 with * = 0. We should notice that Theo-

rem 4. 1 can. be generalized by replacing the above 1 4- 2ax + a"2 by a general polynomial
of degree d.

Let m be a positive integer and let B = (/3fe;)o<fc, i<m-i be an antisymmetric matrix
of size m, that is to say, its entries satisfy the restraints /9;fc = -^kt. Set b, to be the
i-th row vector of B for 0 <i <, m-l. The matrix B is said to be (row^syi ninetncaHy

proportional if the (m - 1 - fc)-th row is proportional to the k-th. Thafc is to say, there
is some Cfc such that bm-i-fc = Cfcbfc or bfc = Cfcbm-i-A for each 0 ^ A; ^ [a] - 1.
Further B is called row-symmetric if the b^-i-fc =bfc forO ̂ ^ ^ [s-j - 1, and B is
called row-antisyinmetnc if the b^-i-fc = -bfe forO ^ A; ^ [I2^1-] - 1. This notion is

important since it makes it possible to find all the subpfaffians pf(Bj-i... ^) of B. From
now on we assume that B is always supposed to be antisymmetric matnx.

Let P(a-) = ao 4-ai.z; + ... + arf.c(i be a polynomial of degree d. P(x) is said to
be symmetnc if a, = an-i for Q <i ̂  [^], and P(a;) is said to be antisymmetric if
a, = -a^-, for 0 ^ z ^ [^-],

385



MASAO ISHIKAWA

Lemma 4. 2. Let P(x) be a polynomlal of degree d. Let B = (/?fe;)o<fc, r<4m+d-2 be tAe
(diagonal-)antisyi iiiiietric matrix of size (4m + c? - 1) which satisfy

(4. 17) E 0kl
0<k<K4m+d-2

Xk X1
yk yl =-P^x}P{y)Q{x, y).

The matrix B becomes (row-)syminetrically proportional for all m if and only if P{x)
is syinmetric or antisyminetnc. Further, if the polynomial P(x) is syminetric then B
becomes row-sym-meiiric, on the other band, if P{x) is aiitisynainetric then B becomes
row-ajitisyimnetnc.

From now we apply Theorem 2. 1 to this T and B given by (4. 17). Basically it is
possible to find some sort of formiila for each antisymmetric matrix of the form (4. 17)
if it is row-symmetric or row-antisyinmetric. Here we investigate each formula for small
d. When d = 0, we obtain the formula (4. 3) from this argument. If c? = 1 and -P(-r) is
ajitisymmetric, we obtain the formula (4. 4). It is easy to see that the case of c? = 1 and
P{x) being symmetric reduces to this case. If d = 2 and P(x) is antisymmetric, then we
obtain the fonnula (4. 5). These are the known Littlewood type form.ulae. If we assume
rf == 2 and P{x) is synxmetric, then we obtain Theorem 4. 2.

If (f = 3 and P(x) is cuatisyminetric, we obtain Theorem 4. 3. The case of c? = 3 and
P(a;) being symmetric essentially reduces to this CELSC.

If rf = 4 and P(.r) is antisymmetric, we obtain Theorem 4. 4.
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