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ABSTRACT. Binomial Hopf algebras and their duals, the algebras of formal divided power series (or
Hurwitz series), have been the object of study of umbral calculus. Closely related objects are divided
power Hopf algebras and their duals, the algebras of formal power series. All these algebras have
also arisen in algebraic topology, and have connections with the theory of formal groups. Since the
methods used to study these algebras have a distinct combinatorial flavour, it has long been a challenge
to develop methods providing explanations in terms of certain discrete structures. We have initiated
such a programme in [5] by defining a combinatorial model for a binomial Hopf algebra based on set
systems and their colourings. By a set system colouring, we mean a colouring of the vertices such that
each monochromatic block belongs to the set system. We have considered the binomial Hopf algebra
®,[z] over the ring ®, = Z[¢1, ¢3,...] because this is the universal one, in a sense which will be made
precise in the paper. As an application of our earlier constructions, we present here a bijective proof of
a familiar formal group law identity. The main aim of this paper is to extend the constructions in (5]
to a combinatorial model for a divided power Hopf algebra and its dual. Passing from a binomial to a
divided power Hopf algebra corresponds, in the combinatorial setup, to associating with a set system a
subgroup of its full automorphism group. Such a pair will be called a set system with an automorphism
group (often abbreviated to SSWAG). We define the umbral chromatic polynomial of a SSWAG as an
element of a certain divided power Hopf algebra; upon umbral substitution, this polynomial enumerates
the orbits of the automorphism group acting on the set system colourings, by a certain weight. We define
a Hopf algebra structure on SSWAGs, and show that the map taking a SSWAG to its umbral chromatic
polynomial is a Hopf algebra map. We present similar results for other polynomials associated with a
SSWAG. Then, we define combinatorial analogues of delta operators from umbral calculus. We succeed
in lifting to our combinatorial setup two algebraic identities concerning the interaction of a delta operator
with the product and the antipode. The obtained identities encode deep combinatorial relations.

RESUME. Les algébres de Hopf binomiales et leurs duales, les algébres de séries formelles divisées (ou
séries de Hurwitz), ont été étudiées dans le cadre du calcul ombral. Des objets trés proches sont les
algébres de puissances divisées et leurs duales, les algébres de séries formelles. Toutes ces algébres sont
apparues en topologie algébrique et sont reliées a la théorie des groupes formels. Comme les méthodes
utilisées pour étudier ces algébres ont un aspect combinatoire marqué, la question se posait depuis
longtemps de développer des méthodes fournissant des explications en termes de certaines structures
combinatoires. Nous avons commencé un tel programme dans [5], en définissant un modéle combina-
toire pour une algébre de Hopf binomiale, besé sur des systémes d’ensembles et leurs coloriages. Par
coloriage d’un systéme d’ensembles, on entend un coloriage des sommets tel que tout bloc monochro-
matique appartient-au-systéme. Nous avons considéré I’algébre de Hopf binomiale ®.[z] sur 'anneau
&. = Z[¢1, $2,...] car elle est universelle dans un sens qui sera rendu précis dans la suite de article.
Comme application de nos constructions précédentes, nous présentons une preuve bijective d’une identité
appartenant i la théorie des groupes formels. Le principal objet de cet article est d’étendre les construc-
tions de [5] & un modéle combinatoire pour une algébre de Hopf de puissances divisées et sa duale. Le
passage de 1’algébre binomiale aux puissances divisées correspond, d’un point de vue combinatoire, a
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associer 4 un systéme d’ensembles un sous-groupe de son groupe d’automorphismes (SSWAG). Nous
définissons le polyndome chromatique ombral d’'un SSWAG comme un élément d’une certaine algébre de
Hopf de puissances divisées; par substitution ombrale, ce polynome énumére, par un certain poids, les
orbites du groupe d’automorphismes agissant sur ’ensemble des coloriages. Nous définissons une struc-
ture d’algébre de Hopf sur les SSWAG, et nous montrons que l’application qui envoie un SSWAG sur
son polynéme chromatique ombral est un morphisme d’algébres de Hopf. Nous présentons des resultats
analogues pour autres polynémes associés 3 un SSWAG. Ensuite, nous définissons des analogues combi-
natoires des opérateurs delta du calcul ombral. Nous parvenons 4 relever 4 notre formalisme combinatoire
deux identités algébriques concernant l'interaction d’un opérateur delta avec le produit et ’antipode.
Les identités obtenues codent de profondes relations combinatoires.

1. BINOMIAL AND DIVIDED POWER HOPF ALGEBRAS

Let R be a commutative ring with identity. Consider a coalgebra C over R, with
coproduct § and augmentation ¢. There exists an algebra isomorphism between the dual
C* of C, with the dual algebra structure, and the algebra, under composition, of those
linear operators I on C which satisfy

(1.1) §oT=(I®T)o0é

(here I denotes the identity on C'). Such operators are known as left-invariant operators
(or shift-invariant operators if C = R[z]). This isomorphism associates with f € C* the
following composite, denoted by I';:

(1.2) c *.cecl®lcor=c.

Conversely, to a linear operator I' satisfying 1.1 corresponds the linear functional (T' | -)
€ C* defined by (I'|z) := ¢(I'z), for all z € C. Throughout, we identify C* and
its subalgebras with their images in the algebra of left-invariant operators. If C and
R are evenly graded, f: C — R is a homomorphism of degree —2, and f(C;) contains
the identity of R, then I'; will be called a delta operator. We can define the category of
coalgebras with delta operator, its morphisms being those coalgebra maps which commute
with the delta operators.

Let ®, be the graded ring Z[¢1, ¢2, . . .], where ¢; has degree 2:. Consider the graded
polynomial algebra ®.[z], with z having degree 2. Let D be the linear operator d/dz
acting on ®.[z]. It is well-known that ®.[z] is a cocommutative Hopf algebra over ®.
(called a binomial Hopf algebra), with coproduct, augmentation, and antipode specified
respectively by

(1.3) §(z)=z®1+1Qr, e(z*) = 6, S(z) = —z.

Let $2"((D)) denote the Z-module of formal divided power series (or Hurwitz series) of
the form
Dn Dn+1 Dn+i
00;!-+01m1—)!+...+a;m+... .
with a; € ®,. The graded dual of the coalgebra ®.[z] is the algebra &*((D)) :=
Dn>0 82*((D)). The duality is expressed by (D™/m!|z") = [(D™/m!)z"];=0 = bmn.
To each sequence a = (1, a1, s, ...) with o; € ®; corresponds a delta operator
D2 D'
(1.4) a(D) :=D+a1§i—+...+a;_1—i—'—+...E‘Dz((D)).
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A sequence of the above type is called an umbra. Let ¢ be the umbra (1, é1,¢2,...).
We know from [7] that (®.[z], (D)) is the universal binomial Hopf algebra with delta
operator. The action of o(D) on the polynomial p(z) is given by umbral difference:

(1.5) «D)p(z) =p(z +a) —p(z), o =i

The effect of the linear functional corresponding to e*P := I + (D) on the polynomial
p(z) is given by umbral substitution:

(1.6) (e |p()) =pla), o =ai.

The operator e can be applied repeatedly n times; we denote by e"*D the iterated
operator, and by p(na) the corresponding umbral substitution. The set of delta operators
of type 1.4 is a group under substitution (as formal power series), with identity D. We
denote by @ the umbra corresponding to the inverse of a(D), called conjugate delta
operator.

Given the delta operator a(D), there exists a unique sequence B* = (Bg(z), Bf(z),.-.)
of polynomials in ®.[z], satisfying the following conditions:

(1.7) Bg(z)=1; B3(0)=0, n>0; a(D) Ba(z) =nBg_4(z), n>0.

The sequence B* is called the (unnormalised) associated sequence of a(D). A direct
consequence of the conditions above is the fact that

(1.8) . BS(ma) = [m]a,

where [m], := m(m —1) ... (m —n +1) is the falling factorial. The associated sequence
of the delta operator D is just (1,z,22,...). The associated sequences of ¢(D) and ¢(D)
consist of the conjugate Bell polynomials and the Bell polynomials, respectively.

We now consider the graded ring (H-®). := Z[by, by, ... ], where b; has degree 2:. We
identify (H-®). with a subring of (? ® Q). via the inclusion b; #:/(i +1)!. Thus, @,
can be regarded as a subring of (H-®).. Let (H-®). {’f—,'} be the divided power algebra
over (H-®)., and let z*/i! have degree 2i. The above identifications allow us to identify
®.[z] with a subring of (H-®). {f—:}, and (H-®). {%,'—} with a subring of (® ® Q).[z]. We
can define a Hopf algebra structure on (H-®). {3:7'} by taking the coproduct

" n i zn—i

T
The antipode S is given by S(z"/n!) = (—z)"/n!. Let (H-®)**[[D]] denote the Z-module

of formal power series of the form
aoD™ + ;D" + ...+ a; D" ...,
with a; € (H-®)2. The graded dual of the coalgebra (H-®). { 1:,1} is the algebra
(H-®)*[[D]] := @nxo (H-2)*[[D]].
To each sequence a = (1,a1,as,...) with a; € (H-®)y; corresponds a delta operator
(1.10) a(D):=D+a;D*+...+a;i.1 D +... € (H-3)*[[D]].

A sequence of the above type is also called an umbra. Let b be the umbra (1, by, bs,...).
We make the following convention: the formal power series associated with an umbra
denoted by a Greek letter or a capital Roman letter will always be a Hurwitz series,
whereas if a small Roman letter is used, the corresponding formal power series is a usual
one. The set of delta operators of type 1.10 is a group under substitution, with identity
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D. As before, we denote by @ the umbra corresponding to the inverse of a(D), called
conjugate delta operator.
Given the delta operator a(D), there exists a unique sequence 3° = (83(z), 8%(z),...)

of elements in (H-®). {f—:}, satisfying the following conditions:
(1.11) folz) =1; Ba(0) =0, n>0; a(D) 33(z) = p2_4(z), n > 0.

The sequence 3 is called the normalised associated sequence of a(D). Let us note that
B?(z) = n!B8(z).
We now consider the following formal power series in two variables:

FY(X,Y) = ¢($(X) +(Y)) € 2*((X,Y)),

(1.12) FX,Y) = b(B(X) +5(Y)) € (H-®)*[X,Y]].

The formal power series f°(X,Y) is a formal group law over (H-®)., while 5(X) and
b(X) areits ezp and log-series, respectively (see [3] for an encyclopaedic description of the
theory of formal groups). There exists a unique formal power series :%(X) € (H-®)?[[X]]
such that f%(X,(X)) = 0; it is called the formal inverse. The coefficients of X"Y™
in f(X,Y), of X"/n! Y™/m! in F¥(X,Y), and of X* in i*(X) are denoted by f>_|
F?., and 4}, respectively. Note that F¢, = n!m!fs . Let L®, denote the subring
of (H-®). generated by the elements f2 . It is known from [3] that f%(X,Y), as a
formal group law over £®,, is the universal formal group law. It is also known that the

free £®.-module £®,{S%(z)} generated by the elements 8%(z) is a sub-Hopf algebra of
(H-?). {f—,'}, thought of as a Hopf algebra over L®, (i.e. the polynomials 8?(z) are closed
under multiplication with respect to the subring £®, of (H-®).).

We conclude this section by presenting two identities which will subsequently be lifted
to a combinatorial framework.

Proposition 1.13. The following identities hold for arbitrary p(z), ¢(z) € (H-®). {f-,'}

(1.14) (D) (p(z)e()) = 3 fam (B(D)"p(z)) (5(D)™ q(2))  (Leibniz rule)

n,m>0

(1.15) b(D) $(p(z)) = 3 i S(b(D)* p(2)) -

k>1
2. SET SYSTEMS, WEIGHTS, AND POLYNOMIALS

In order to construct combinatorial models for the algebraic structures in the previous
section, we need the following concepts: set systems, the Mobius type function, partition
type polynomials, umbral chromatic polynomials, and characteristic type polynomials.
In this section we define these concepts, and related ones. Then, we recall some results
obtained in [5], and give a bijective proof of a familiar formal group law identity.

Let V be a finite set, possibly empty. A collection of subsets S C 2V is called a set
system with vertices V if § € S and V = Uwes W; the set Uwes W is usually denoted
by V(S). Partitions of V' are defined in the usual way, except for the case V = @), when
{0} is considered the only partition. A preferential arrangement of V is a partition of V
together with a linear order on its blocks; we denote by o the preferential arrangement
with underlying partition o, and linear order on ¢ specified by the bijection f: o — [|o|]
(throughout, [n] := {1,2,... ,n}). Let 7 be a partition of V, and Bool(r) the Boolean
algebra of subsets of V' consisting of arbitrary unions of blocks of 7. A set system P
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satisfying # C P C Bool(r) will be called a partition system. If V # 0, then the blocks
of 7 are the atoms of the poset (P, C); we will call them, simply, the atoms of P. Since
7 is uniquely determined by P, it makes sense to denote 7 by At(P), and Bool(r) by
Bool(P). The sets belonging to Non(P) := P \ {0} \ At(P) will be called non-atoms.
Instead of considering arbitrary set sytems, in this paper we restrict ourselves to partition
systems, as they provide a nice framework for our constructions. The following are a few
examples:

Ny:={{z} : zeV}Uu {0}, Kv:=2", K. := ] 28,

Ber
where 7 is a partition of V. If V = [n], we denote Ny by Ny, and Ky by K,; furthermore,
ifn = (ny,n2,...,n,) €Z,,and 7 = {[n1], n1+[na), - .. , =1 ni+[n]}, where n+[m]:=

{n+1,n+2,...n+ m}, we denote K by Kn, n,,...,n, OF K-

The partition systems P and P’ are isomorphic if there exists a bijection f: V(P) —
V(P') such that {f(U) : U € P} =P". We denote by P and S the sets of isomorphism
classes of all partition systems, and of those with singleton atoms, respectively. In what
follows, it will be clear from the context whether we mean a partition system or its
isomorphism class, so no other notation is used for isomorphism classes. A partition o
of V(P) satisfying ¢ C P will be called a division by P; we denote by II(P) the set
of divisions by P. Similarly, we denote by A(P) the set of preferential arrangements of
V(P) with all blocks belonging to P.

Let o C Bool(P) be a partition of a set U C V(P) (necessarily U € Bool(P)). We
define the partition systems

(2.1) Plo:={X P : X CW for some W€ c},

(2.2) Plo={XeP : WCX ot WNX=0, forall Weo}Uo,

and call them the restriction of P to o, and the contraction of P through o, respectively.
The partition systems P|{U} and P/{U} will be written simply as P|U and P/U. Let
us also define

(2.3) P := U IPIU).

U€Bool(P)
Given two partition systems P and P’ with At(P') = At(P) and P’ C P, we define
the complement of P’ in P to be the partition system
(2.4) CpP’ := P\ Non(P').

The complement of P in Bool(P) will be denoted by P, and called, simply, the comple-
ment of P. Now let P; and P, be two arbitrary partition systems. Their disjoint union
will be denoted by P; - P;. We define a complementary operation by

(2.5) PL@Pr:=P;-P;.

Since isomorphism of partition systems is a congruence with respect to the operations
above, they can be defined on isomorphism classes by taking representatives.

A colouring of the partition system P with at most n colours is a map ¢: V(P) — [n],
for which the coimage is a division by P; we denote by T(P) the collection of such
maps. A map w: [I(P) — R, where R is a commutative ring, is called a "]Ci:‘]htf th.e
pair (P, w) is called a weighted partition system. The weight w is called multiplicative if
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w(oyUoz) = w(oy) w(oz) for all 01,02 € II(P) with V(o1)N V(g2) = 0. Given a partition
o C Bool(P) of a subset of V(P), we define the weight w/o: II(P/o) = R by

= w0 ={ 7 S,

By the weight of a colouring of a partition system, we understand the weight of its
coimage.

Let V be a finite set, and P a subposet of II(KXv) with the usual order by refinement.
The incidence algebra ®.(P) of P over ®, is defined to be the ®.-algebra of all functions
from the collection of intervals in P to the ring ®., with the usual module structure over
., and multiplication (or convolution) specified by

(2.7) (ix fo)(o,7) = Y filo,w) fa(w, 7).

olw<lr
The identity of ®.(P) is the function § given by §(c, 7) = 8ox. The function ¢%in ®.(P)
is defined by (¢(o,7) = 7" ¢52 ..., where m; is the number of blocks of = that are

unions of exactly ¢ + 1 blocks of o. The function (% has a convolution inverse, which is
denoted by p® (or up if there is possible ambiguity); it is called the Mobius type function
of P.

Given the partition systems P and P’ such that V(P) = V(P’) and At(P’) < At(P),
we define the weights ¢, v5,: II(P) — . as follows:

28)  14(0) = COnv ) BM0) = D shipi®m) (0.

x€T(P'|o)
Let us note that if o ¢ II(P’) then v5,(0) = —yﬁ(?,lo)u{,}(ﬁ, ); otherwise, vj,(0) is 1 if
o C At(P’), and 0 if not. We call 7%(c) the type of 7, and v$,(0) the Mdbius type of o
with respect to P’. We proved in [5] that ¢ and v$, are multiplicative weights.

We now define several polynomials in ®.[z] associated with the partition system 7P.
These polynomials will have the following form:

(2.9) B(P,w;z) = Y, w(o)pe|(z),

s€II(P)
where w: II(P) — ®. is a weight, and (pa(z))na>1 is a sequence of polynomials in ®.[z].
For each polynomial defined, we indicate the corresponding choice of w and pn(z), its
name, notation, and degree:
o w = 1%, pa(z) = =" : the partition type polynomial p?(P; z), degree 2|V (P)|;
o w = 7%, pa(z) = B¥(z) : the umbral chromatic polynomial ~4%(P; z), degree

2lV(P);

ow = u%, pa(z) =B%(z) : the modified umbral chromatic polynomial 74(P; z),
degree 2|At(P)|;

e w(o) = pﬁ(?)(ﬁ,a), pn(z) = z" : the characteristic type polynomial x#(P;z),
degree 2|At(P)|.

As discussed in [8], we have:

pP(Nniz) =14 (Kas2) = X*(Nasz) = 2",  p?(Knjz) = Bi(z),

(2.10) 1 (Nn;z) = Xx*(Kajz) = Bi(z), n>0.
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According to 1.8, upon umbral substitution at ng, the polynomials v#(P; z) and 3%(P;z)
enumerate the colourings of P with at most n colours by their type and Mobius type,
respectively.

Special cases of the polynomials defined above are well-known. For instance, the par-
tition polynomial of P investigated in [17] can be retrieved by substituting ¢; with 1 in
p*(P;z). The umbral chromatic polynomial of a set system was first defined in [11]. If
P is a simplicial complex (i.e. U € P and W C U imply W € P), then V%(O‘) = 1%(0)
for all o € II(P); hence v*(P;z) = 7%(P;z). If P is the independence complex I(G)
of a graph G, then ¥#(Z(G);z) is the umbral chromatic polynomial of the graph, first
defined in [12]. The classical chromatic polynomial of the graph can be retrieved by sub-
stituting ¢; with 1. The characteristic type polynomial of a subposet of II(Xy) appears
in [8], [10], and [11]. If P is a simplicial complex, and all the maximal partitions of II(P)
have the same number of blocks m, then the substitution ¢; — 1 maps x?(P;z) to the
characteristic polynomial of the poset II(P) (in the variable z) multiplied by z™.

In [5], we proved the following general complementation formula:

Theorem 2.11. Consider two partition systems P and P’ such that At(P) = At(P’)
and P' CP. The following identity holds:

(2.12) X¥(Piz)= Y vpl(o)x*(Plo;a).
sel(CpP)
A corollary of this result tells us that
(2.13) 7 (P;z) = x*(P;z).

Another corollary gives the following combinatorial interpretation of the elements F?. €
®, defined in Section 1:

(2.14) F¢, =vg, ({[n+m]}).

We use 2.14 to give a bijective proof of a familiar formal group law identity, which is
usually proved by formal power series manipulations (see e.g. [6]).

Proposition 2.15. Let us denote by ¢'(X) and %;(X, Y) the formal derivatives of the
corresponding formal power series. We have

= OF* !
/ — —
(2.16) #'(X) = (GY (X,O)) ,
where (-)~1 denotes, as ezpected, the multiplicative inverse in the ring ®*((X)).

3. SET SYSTEMS WITH AN AUTOMORPHISM GROUP

In this section, we consider only partition systems with isomorphism classes belonging
to S. Given a group G acting on a set X, we denote, as usual, the orbit of z € X by
G(z), and the stabilizer of by G;. A pair (S, G) consisting of a set system (of the type
mentioned above), and a group G of automorphisms of S (i.e. a subgroup of the stabilizer
of S under the action of the symmetric group on V(S) on set systems with vertices V(S))
will be called a set system with an automorphism group (often abbreviated to SSWAG).
Two SSWAGs (S1,G1) and (Sq, G,) are called isomorphic if there exists an isomorphism
f: V(81) = V(S;) of S and S such that G is the homomorphic image of G, under the
map g — fogo f~! (thus, this map is an isomorphism of G, and G;). Given a SSWAG
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(S,G) and o € II(Kv(s)), we define the restriction G|o of G to o to be the group induced
on V(o) by Nwe, Gw. Again, G|{U} will be written G|U. Given two SSWAGs, we define

(3.1)
(81, Gl) » (Sz, Gg) = (81 % Sz, G] X Gz), (Sl, G1) @ (82, Gg) = (Sl @Sg, G1 X Gg) .

These operation can be defined on isomorphism classes of SSWAGs. Given a SSWAG
(S, @), the group G acts in an obvious way on S, II(S), TI(S), and A(S). It also acts on
[.(S) by (g,¢) — cogt. A triple (S,G,w) is called a weighted SSWAG if the weight
w is constant on the orbits of G on II(S). In this paper we need the following technical
condition on the automorphism groups G considered: for each permutation in G, all its
cycles are also in G. According to [1], such a group is the direct product of its transitive
constituents, each of which is a symmetric group or a cyclic group of prime order. Let
us denote by SG and SG’ the set of isomorphism classes of all SSWAGs, and of those for
which the automorphism group satisfies the technical condition, respectively.

Consider a SSWAG (S, G). The set A(S) is partially ordered by the refinement relation
of preferential arrangements: oy < wp iff 74 is obtained from oy by amalgamating
adjacent blocks, while keeping the position of the blocks fixed. As G acts on the poset

A(S), we have an induced poset A(S)/G on the set of orbits. We adjoin a least element 0
to this poset, and define z* € (H-®).((A(S)/G) L {0}) i % similar way to (®. As before,
2 has a convolution inverse, which will be denoted by m?® (A(S)/G) 11D We define the welght

78 T1(S) — (H-®)., called divided type, by 7&(0) = 1*(0)/|G|o]|. Given a partition
system S’ such that At(S) = At(S’) and (S',G) is a SSWAG, we use m(A(S)/G)HE to
define the weight v3, & , which will be called the divided Mobius type with respect to &'.
Our definitions imply that (S,G,7&) and (S,G,v3 ;) are weighted SSWAGs. Let us
note that if G is the symmetric group on V(S) and o € II(S) is arbitrary, then 7&(c) is
obtained from 7%(o) via the substitution ¢; — b;.

Proposition 3.2. Given the above setup, let o € TI(S), and let f: o — [|o|] be an arbi-
trary bijection.

a) ml()A(S)/G)ua(O’ [O'f]) lu’H(S)( )/|G|U|

b) v4 g(a) = v5.(0)/|Gla].

c) If (8',G) € SG/, then v}, 5 i3 a multiplicative weight.

We now define several polynomials in (H-®) { } associated with the SSWAG (S, G);
all of them have degree 2|V(S)|. These polynomlals will have the following form:
(33) 0(S7G7w;x) = Z w(d) Q|g|($) )

d,GT

where w: II(S) — (H-®). is a weight such that (S,G,w) is a weighted SSWAG,
(gn(z))n>1 is a sequence of polynomials in (H-®). { f—:}, and 7 is an arbitrary transversal
of A(S)/G. For each polynomial defined, we indicate the corresponding choice of w and
gn(z), its name, and notation:

o w= TG, gn(z) = z"/n! : the partition type polynomial p%(S, G;z);
o w="1g qu(z) = ﬂb(a:) the umbral chromatic polynomial v (S G;z);
o w=1>2 26 gn(z) =P%(z) : the modified umbral chromatic polynom.lal *(S,G;z);

o w(o) = (A(s)/G)UO(O, [4]), (f: ¢ = [|o]] an arbitrary bijection), gn(z) = z"/n!

: the characteristic type polynomial x*(S,G;z).
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We intend to relate the polynomials defined above to the corresponding ones defined in
the previous section. We do this by proving a general result about the relation between
the polynomials §(P,w;z) and 6(S,G,w;z) defined in 2.9 and 3.3. The proof is based
on the weighted form of Burnside’s lemma.

Theorem 3.4. Let (S, G,w) be a weighted SSWAG with w taking values in an arbitrary
commutative and torsion free ring R. For each n > 1, consider q.(z) € R[z], and let
pa(z) = 1l ga(2).

a) We have

(3.5) 0(S,G,w;z) = ( > (S /cye(g), w/cye(g) ;x)) /G,
9€G
where cyc(g) denotes the partition of V(S) determined by the cycles of g.
b) Let w': II(S) — R be the weight defined by w'(o) := |Glo|w(c). We have

(3.6) 8(S,G,w;z) = 8(S,w';z)/|G|.

Note that if we take R = Q, gn(z) = z(z —1)...(z —n + 1)/n!, S the independence
complex of a graph, and G the automorphism group of the graph, then §(S,G,w;z) is
the chromatic polynomial of the corresponding unlabeled graph, as defined in [2]. In this
case, 3.5 is just a restatement of Theorem 3.1 in [2].

Theorem 3.4 and Proposition 3.2 imply that each of the four polynomials associated
with the weighted SSWAG (S, G) can be related to the corresponding polynomial asso-
ciated with S via 3.6. Thus, 2.13 extends naturally to SSWAGs:

(3.7) 7(S,G;z) = XS, G;z) .

We conclude this section by noting that A(X,)/S, is isomorphic to the Boolean sub-
lattice of II(K,) containing those partitions for which the elements of each block, written
in increasing order, are consecutive. According to the previous results, the normalised
conjugate Bell polynomials 3%(z) = B#(z)/n! can be computed using this lattice, rather
than II(K,) - used for the computation of B%(z) (see 2.10) — which is much larger. Sim-
ilarly, we can compare the way in which 2, and f3 = F2, /(n!m!) can be computed
combinatorially. According to 2.14, F2_ can be computed using the poset obtained from
[I(K,m) by adjoining the partition of [n+m] into only one block. Given a linearly ordered
set V = {v; < vy < ... < v}, we are now interested in those preferential arrangements
in A(Kv) which are comparable to {{v1} < {v2} < ... < {vz}}. Consider the subposet of
A(K,, ) consisting of all "shuffles” of two preferential arrangements of the previous type,
one from A(K,), and the other from A(K,pm]). According to Proposition 3.2, 8 can
be computed using the poset obtained from the previous one by adjoining the preferential
arrangement of [n + m] with only one block. This time, the first computation is more
efficient.

4. A HOPF ALGEBRA FOR SET SYSTEMS WITH AN AUTOMORPHISM GROUP

In [5] we defined several Hopf algebra structures on the free ®.-module ®.{P} generated
by the set P; in each case, ®.{S} is a sub-Hopf algebra. Qur constructions represent an
extension of the Tutte algebra of graphs defined in [9]; the extended framework allowed us
to define the product operation in a natural way (as disjoint union of set systems), whereas
for graphs, the product had a complicated expression. We now consider the the free
(H-®).-module (H-3).{SG} generated by the set SG, and graded by setting the degree
of a SSWAG (S, G) to 2|V(S)|. The operations: disjoint union, ®, and complementation
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can be extended by linearity to (H-®).{SG}. In this section, we extend the constructions
in [5] even further, by defining a Hopf algebra structure on (H -®).{SG}. As before, we
use the general method — presented in [14] and [15] - for constructing the incidence Hopf
algebra of a hereditary family of posets (intervals) with a Hopf relation.

Let §: (H-8).{SG} — (H-2).{SG} ® (H-2).{SG} be the linear map specified by

(4.1) 5(5,G) = 3 (SIU, GIU) @ (S|T, G,

UeT
where T is a transversal of the orbits of G on Ky (s) and U = V(S)\U. Lete: (H-2).{SG}
— (H-®). and n: (H-®). — (H-2).{SG} be the linear maps specified by

1 if (S,G) = ({0}, {1
wy w0 ={} RSSO = @nap.
Theorem 4.3. ((H-3).{SG},-,n,6,¢) is a commutative and cocommutative graded Hopf
algebra. The antipode S: (H-®).{SG} — (H-®).{SG} is specified by

(44) 5(5,6)= 3 (-1 IT (SIW,GIW),

t’fET Weo
where T is a transversal of the orbits of G on A(Kv(s)). The free (H-®).-module
(H-®).{SG'} generated by the set SG' is a sub-Hopf algebra.

We obtain a similar Hopf algebra structure on (H -3).{SG} by replacing the disjoint
union product with © . Complementation of SSWAGs induces an isomorphism between
these Hopf algebras. Let us denote by %, 7%, 3%, and x® the (H-®).-module homo-
morphisms of degree 0 from (H-®).{SG} to (H -®). {f—,'} mapping a SSWAG to the

corresponding polynomial associated with it. Using results from [5] and 3.6 we prove the
following theorem.

Theorem 4.5. The maps p*,x*: (H-®).{SG'}, -) — (H-®). {f,l} are Hopf algebra
maps. The map 7*: ((H-2).{SG'},0) — (H-®). {f—:} is also a Hopf algebra map. The
map 7*: (H-8).{SG'} — (H-®). {%'-} i3 a coalgebra map.

We note that the technical condition on the automorphism groups considered is es-
sential for the maps above to be coalgebra maps. The following theorem addresses the
problem of finding a combinatorial model for the Hopf algebra L®.{B%(z)} over Ld,.
Let SG” denote the subset of SG' consisting of isomorphism classes of SSWAGs (S,G)
for which there exists a partition = € II(S) such that K. € § € KU Bool(r), and G
is a subgroup of the restriction of the symmetric group on V(S) to 7. It is easy to see
that the free L®,-module 2®,{SG"} generated by the set SG” is a sub-Hopf algebra of
(H-3).{SG'} (considered as a Hopf algebra over Ly,).

Theorem 4.6. The map x® maps the set SG” to L®.{B}(z)}. Hence, we have a Hopf
algebra map x*: L®.{SG"} — L&.{f}(z)} -

Let 0: (H-®).{SG'} — (H-2). {1:,1} be a surjective coalgebra map. The adjoint map
9* of 6 is an injective algebra map; it maps (H-@)*[[D]] isomorphically to a sub-algebra
of the graded dual of (H-8).{SG'}. We use §” and 1.2 to associate a delta operator on

(H-&).{SG} with each delta operator a(D) € (H-®)?*[[D]}; it makes sense to denote this
delta operator by a(Ds), where Dy is the delta operator corresponding to D. It is not

difficult to check that the map 8: ((H-®).{SG'}, a(Ds)) — ((H-®). {%‘},a(D)) becomes
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a map of coalgebras with delta operator. We can use this result to obtain a stronger
version of Theorem 4.5. Let us note that

b(D-) (N, Sn) = (Na-1,Sn-1), D, (K,,S5.) = (Kn-1,S5n-1),
Dx (Nnv Sn) == (Nn—l’ Sn-—l) ) b(Dx) (Kru Sn) == (Kn-ly Sn—l) .
In [5] we proved that the identities 1.14 can be lifted from ®.[z] to ®.{P}. We prove
here that they can be lifted from (H-®). {f—,'} to (H-®).{SG'}.
Theorem 4.7. Let 8: (H-8).{SG'}, -) — (H-®). {%} be a Hopf algebra map (in par-
ticular pb or x®). The following identities hold in (H-9).{SG'}:

(4.8)  b(Dg) ((S1,G1) - (S2,Ga)) = > £ ((Ds)™ (S1,Gh)) - (b(De)™ (S2,G2))

n,m2>0

(4.9) b(Ds) S(S,G) = 3 & S(5(Do)" (S, G))-

k>1

These identities still hold in the Hopf algebra ((H-®).{SG'},®), and hence for Fb.
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