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ABSTRACT. Binomial Hopf algebras and their duals, the algebras of formal divided power series (or
Hiirwitz series), have been the object of study of umbral calculus. Closely related objects are divided
power Hopf algebras and their duals, the algebras of forinal power series. All these algebras have
also arisen in algebraic topology, and have connections with the theory of formal groups. Smce the
methods used to study these algebras have a distinct combinatorial flavour, it has long been a challenge
to develop methods providmg explanations in terms of certain discrete structures. We have initiated
such a programme m [5] by defining a combinatorial model for a binomial Hopf algebra based on set
systems and their colourings. By a set system colouring, we mean a coloiirmg of the vertices such that
each monochromatic block belongs to the set system. We have coiisidered the binomial Hopf algebra
$, [.c] over the ring $* = Z[i^i, ̂2, . . .] because this is the universal one, m a sense which will be made
precise in the paper. As an application of our earlier constractioiis, we present here a bijective proof of
a familiar formal group law identity. The main aim of this paper is to extend the constructions in [5]
to a combinatorial model for a divided power Hopf algebra and its dual. Passing from a binomial to a
divided power Hopf algebra corresponds, m the combinatorial setup, to associating with a set system a
subgroup of its fuU automorphism group. Such a pair wUl be called a set system with an automorphism
group (often abbreviated to SSWAG). We define the umbral chromatic polynomial of a SSWAG as an
element of a certain divided power Hopf algebra; upon umbral substitution, this polynomial enumerates
the orbits of the automorphism group acting on the set system colourings, by a certain weight. We define
a Hopf algebra structure on SSWAGs, and show that the map taking a SSWAG to its umbral chromatic
polynomial is a Hopf algebra map. We present similar resiilts for other polynomials associated with a
SSWAG. Then, we define combinatorial analogues of delta operators from umbral calculus. We succeed
la lifting to our combinatorial setup two algebraic identities concernmg the interaction of a delta operator
with the product and the antipode. The obtamed identities encode deep combinatorial relations.

R^SUM^. Les algebres de Hopf binomiales et leurs duales, les algebres de series formelles divisees (ou
series de Huiwitz), out etc etudiees dans Ie cadre du calcul ombral. Des objets tres proches sont les
algebres de puissances divisees et leurs duales, les algebres de series formelles. Toutes ces algebres sout
apparues en topologie algebrique et sont reUees a la theorie des groupes formels. Comme les methodes
utilise'es poiir etudier ces algebres oat un aspect combmatoire marque, la question se posait depuis
longtemps de developper des methodes foumissaut des expUcations en termes de certaines structures
combmatoires. Nous avails commence un tel programme dans [5], en definissant un modele combina-
toire pour une algebre de Hopf bmomiale, bese sur des systemes d'ensembles et leuis coloriages. Par
coloriage d'un systeme d'ensembles, on enteud un coloriage des sommets tel que tout bloc monochro-
matique appartient au systeme. Nous avons considere I'algebre de Hopf binomiale $. [a;] sur 1'anneau
$. = Z[<^i, <^2,... ] car elle est universelle dans un seiis qiii sera rendu precis dans la suite de 1'article.
Comme appUcation de nos constructions precedentes, nous presentons une preuve bijective d'une identite
appartenant a la theorie des groupes formels. Le principal objet de cet artide est d'etendre les construc-
tions de [5] a un modele combinatoire pour une algebre de Hopf de puissances divisees et sa duale. Le
passage de 1'algebre binomiale aux puissances divisees correspond, d'un pomt de vue combinatoire, a,
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associer a un systeme d'ensembles un sous-groupe de son groupe d'automorphismes (SSWAG). Nous
definissons Ie polynome chromatique ombral d'un SSWAG comme un element d'une certaine algebre de
Hopf de puissances divisees; par substitution ombrale, ce polynome enumere, par un certam poids, les
orbites du groupe d'automorphismes agissaat sur 1'ensemble des coloriages. Nous definissons une struc-
ture d'algebre de Hopf sur les SSWAG, et uous montrons que 1'application qui envoie un SSWAG sur
son polynome chromatique ombral est un morphisme d'algebres de Hopf. Nous presentoas des resulfcats
analogues pour autres polynomes associes a un SSWAG. Ensuite, nous definissons des analogues combi-
natoires des operateurs delta du calcul ombral. Nous parvenons a relever a notre formalisme combinatoire
deux identites algebriques coacernant 1'interactioa d un operateur delta avec Ie produit et 1 antipode.
Les identites obtenues codent de profondes relations combinatoires.

1. BlNOMIAL AND DIVIDED POWER HOPF ALGEBRAS

Let J2 be a coininutative ring with identity. Consider a coalgebra C over 12, with
coproduct S and augmentation e. There exists an algebra isomorphism between the dual
C* of (7, with the dual algebra structure, and the algebra, under composition, of those
linear operators T os. C which satisfy

(1. 1) SoT={I®T)oS

(here I denotes the identity on (7). Such operators are kaown as left-invariant operators
(or shift-invariant operators if C = i?[.r]). This isomorphism associates with f G C* the
following composite, denoted by F/:

(1. 2) C®C1-®^ C®R^:C.
Conversely, to a linear operator T satisfying 1. 1 corresponds the linear functional (F | .)

  
C* defined by (F | x} := e(F2;), for all a;   C. Throughout, we identify C* and

its subalgebras with their images in the algebra of left-invariant operators. If C and
R are evenly graded, f:C -^ Ris a. homomorphism of degree -2, and f(Ct) contains
the identity of J2, then Tf will be caUed a delta operator. We can define the category of
coalgebras with delta operator, its morphisms being those coalgebra maps which commute
with the delta operators.

Let $» be the graded ring Z[<?i>i, <^2, . .. ], where <^,- has degree 2i. Consider the graded
polynomial sdgebra $«[a;], with a; having degree 2. Let D be the linear operator dfdx
acting on $. [a;]. It is well-known that $. [a;] is a cocommutative Hopf algebra over $«
(called a binomial Hop f algebra), with coproduct, augmentation, and antipode specified
respectively by

(1. 3) S(x) =x<^l+l®x, e(xt) = Sio , S(x) = -x.

Let $2"((P)) denote the Z-module of formal divided power series (or Hurwitz series) of
the form

Dn Dn+l Dn+i
o'o-,- + Q!l7-7T7 + ... + o'.T--^ + .. . ,

n! '(n+1)! ' [n +1)\

with a,   $2«. The graded dual of the coalgebra $, [a;] is the algebra $. ((!?)) :=
®^>o $2"((£>)). The duality is expressed by {Dmjm\ \ xn} = [(Dm/ml)xn^=o = <?^n.

To each sequence a = (l, ai, o;2,... ) with Oi,   $21 corresponds a delta operator

(1. 4) a(P):=Z)+ai^+... +Q.-i^+... $2((P)).
2! i\
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A sequence of the above type is called an umbra. Let <f) be the umbra (l, <^i, ^2, ... ).
We know from [7] that ($. [^]>^(I))) is the umversal binomial Hopf algebra with delta
operator. The action of a(D) on the polynomial p(a-) is given by umbral difference:

(1. 5) a(D)p(x) = p(x + a) - p(x) , a's a, -i.

The effect of the linear functional corresponding to ea£> := I + o:(D) on the polynomial
p(x) is given by umbral substitution:

(1. 6) (eaD [ p{x)} = p(a) , a' = a. -i .
The operator eaD can be applied repeatedly n times; we denote by enaD the iterated
operator, and by p(na) the correspouding umbral substitution. The set of delta operators
of type 1.4 is a group under substitution (as formal power series), with identity D. We
denote by d the umbra corresponding to the inverse of a(D), called conjugate delta
operator.

Given the delta operator oc(D), there exists a unique sequence Bot = {B^(x), B^(x),...)
of polynomials in $. [a'], satisfying the following conditions:

(1.7) B^(x)=l; B;(0)=0, n>0; Q(D)B^(x)=nB^(x), n>Q.
The sequence Bot is caUed the (unnormalised) associated sequence of a(D). A direct
consequence of the conditions above is the fact that

(1.8) . ^(ma)=[m]n,
where [m]n := m(m - 1) ... (m -n+1) is the falling factorial. The associated sequence
of the delta operator D is just (1, a;, a;2,... ). The assodated sequences of <^(-D) and ̂(Z?)
consist of the conjugate Bell polynomials and the Bell polynomials, respectively.

We now consider the graded ring (i?'$)» := Z[&i, &2, ... ], where 6, has degree 2i. We
identify (jEf-$). with a subring of ($ <g> Q)« via the inclusion 6, ̂  ^.-/(i + 1)!. Thus, $,
can be regarded as a subring of (ff-$)- Let (ff-$), {^-} be the divided power algebra
over (5'-$)«, and let xt li\ have degree 2i. The above identifications allow us to identify

$. [a-] with a subring of (H-^ {^}, and (ff. $), {^} with a subring of ($ ® Q)*[a;]. We
can define a Hopf algebra structure on (ff-$)» {^-} by taking the coproduct

xn ^xl
^T"£ir®

,n-«

(1-9> ^"£o^®(^)T-
The antipode S is given by S(xn/n\) = (-a;)"/n!. Let (ff. $)2n[[P]] denote the Z-module
of formal power series of the form

aoD" + ai£>"+l + ... + a.D"+' + ... ,

with a.   (-H'-$)2«. The graded dual of the coalgebra (ff-$). {£r} is the algebra
{H^Y[[D}}:=Q^(H-^2n[[D}}.

To each sequence a = (1, di, 02,... ) with a,   (H-^i corresponds a delta operator

(1. 10) a(P) :=D+ ai£>2 + ... + a.-iD' + ...   (^. $)2[[^]j.
A sequence of the above type is also caUed an umbra. Let b be the umbra (l, &i, 6-2, . . . ).
We make the following convention: the formal power series assodated with an umbra
denoted by a Greek letter or a capital Roman letter will always be a Hurwitz series,
whereas if a small Roman letter is used, the corresponding formal power series is a usual
one. The set of delta operators of type 1. 10 is a group under substitution, with identity
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D. As before, we denote by a the umbra corresponding to the inverse of a(Z)), called
conjugate delta operator.

Given the delta operator a(D), there exists a unique sequence ^a = (/3^(3:), /3^(a;),...)
of elements in (^'. $)» \ £r }., satisfying the following conditions:

(1. 11) P5(x)=l; ^(0)=0, n>0; a(D)^(x)=/3^(x), n>0.

The sequence ^a is called the normalised associated sequence of a(D). Let us note that
B^(x) = nWx).

We now consider the following formal power series in two variables:

F\X, V) := <^ (^{X} + ̂ (F) )   $2((X, V)),

(1. 12) AX, Y) :=b(b(X)+b(Y})   (J:f. $)2[[x, r]].
The formal power series fb(X, Y) is a formal group law over (ff-$)., while b(X) and
b(X) are its exp and log-series, respectively (see [3] for an encyclopaedic description of the
theory of formal groups). There exists a unique formal power series ib(X)   (-Hr -$)2[[X]]
such that fb(X, ib(X)) = 0; it is called the formal inverse. The coeffidents of XnYm
m fb(X, Y\, of Xn/n\ Ym/m\ in F^X. Y), and of Xfc in ib(X) are denoted by /^,
F^,, and ib^ respectively. Note that F^ = n!m!/^. Let L$. denote the subring
of (fiT-$)» generated by the elements f^. It is known from [3] that fb(X, Y), as a
formal group law over L$«, is the universal formal group law. It is also known that the
free L$.-module z'$, {/3.6(.c)} generated by the elements /3^(x) is a. sub-Hopf algebra of
(fi'-$), { ̂ - ̂ , thought of as a Hopf algebra over £$» (i.e. the polynomials ^(x) are closed
under multipUcation with respect to the subring £$« of (J?'-$). ).

We conclude this section by presenting two identities which will subsequently be lifted
to a coinbinatorial framework.

Proposition 1. 13. The following identities hold for arbitrary p(x), q{x)   (5'-$)« { ̂  \:

(1. 14) 6(Z?) (p{x)q(x)) = ^ f_ (b(D)n p(x)) WDF q{x}) (Leibniz rule)
n,m>0

(1. 15) b{D)S(p(x))=^i", SWD)kp(x))
Jk>l

2. SET SYSTEMS, WEIGHTS, AND POLYNOMIALS

In order to construct combinatorial models for the algebraic structures in the previous
section, we need the following concepts: set systems, the Mobius type function, partition
type polyaomials, umbral chromatic polyuomials, and characteristic type polynomials.
In this section we define these concepts, and related ones. Then, we recall some results
obtained in [5], and give a bijective proof of a familiar formal group law identity.

Let V be a finite set, possibly empty. A coUection of subsets S C 2V is called a set
system with vertices V if0   <? and V == Uwe5 ̂ ; the set Uws5 ly is usually denoted
by V(S). Partitions of V are defined in the usual way, except for the case V = 0, when
{0} is considered the only partition. A preferential arrangement of V is a partition of V
together with a linear order on its blocks; we denote by o-y the preferential arrangement
with underlying partition <7, and linear order on a specified by the bijection /: <r -^ [|<7|]
(throughout, [n] := {1, 2,. .. , n}). Let TT be a partition of V, and Bool(Tr) the Boolean
algebra of subsets of V consisting of arbitrary unions of blocks of a-. A set system P

a
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satisfying TT C P C Bool(Tr) wiU be caUed a partition system. If V 7^ 0, then the blocks
of TT are the atoms of the poset (75, C); we wiU call them, simply, the atoms of P. Since
TT is uniquely determined by 77, it maJces sense to denote TT by At(75), and BooI(Tr) by
Bool('P). The sets belonging to NonC?) :== P \ {0} \ At(^) wiU be called non-atoms.
Instead of considering arbitrary set sytems, in this paper we restrict ourselves to partition
systems, as they provide a nice framework for our constructions. The following are a few
examples:

^fy.. ={{x} : xeV}u{9}, K,v := 2l A:, :=U2B
Bgir

where T is a partition of V. If V == [n], we denote ̂ /y by ̂ /n, and ̂ Cy by )Cn; furthermore,
ifn = (ni, n2,... , "r)  Z',., and7r = {[ni], ni+[n2],... , EF=i1 n. +[nr]}5 where n+[m] :=
{n+ l, n +2,... n+m), we denote ̂  by ̂ Cni, n2,..., ^ or K,n.

The partition systems V and V are isomorpluc if there exists a bijection /: V(77) ->.
V(P') such that {f(U) : U  ?} =P'. We denote by P and § the sets of isomorphism
classes of aU partition systeins, and of those with singleton atoms, respectively. In what
follows, it wiU. be clear from the context whether we mean a partition system or its
isomorpliism class, so no other notation is used for isomorphism classes. A partition a-
of V(P) satisfying cr C P will be caUed a division by "P; we denote by n(?) the set
of divisions by T>. Similarly, we denote by A("P) the set of preferential arrangements of
VCP) with all blocks belonging to T>.

Let o C BoolCP) be a partition of a set !7 C V(7?) (necessarily V   BoolC?)). We
define the partition systems

(2. 1) 'P\a:=={XeP : XCW for some W   <r} ,

(2.2) p/o- :={x eP : wcxoiwnx=9, for aU W^a}Ua,

and call them the restriction of P to <7, aud the contraction of 73 through <7, respectively.
The partition systems P\{U} and P/{U} will be written simply as P\U and 7?/U. Let
us also define

(2.3) ii(^):= U n{p\u).
UeBool(P)

Given two partition systems P and 77/ with AtCPQ = At(-P) and V C -P, we define
the complement of 7?/ in P to be the partition system

(2. 4) C^7?/ := P \ Non(-P') .

The complement of V in Bool(77) will be denoted by P, and called, simply, the comple-
ment of T. Now let 7?i and Pi be two arbitrary partition systems. Their disjoint union
will be denoted by 77i . Pi. We define a complementary operation by

(2. 5) 7?i Q Ps := Pi . V2

Since isomorphism of partition systems is a congrueiice with respect to the operations
above, they can be defined on isomorphism classes by taldng representatives.

A colouring of the partition system P with at most n colonis is a map c: V{'P) -*. [nj,
for which the coimage is a division by P; we denote by Tn^P) the coUection of such
maps. A map w: Tl(P) -> R, where R is a. commutative ring, is called ak wet9^t[ the
pair ('P, w) is called a weighted partition system. The weight w is called multiplicati-re if
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w(<7iU<72) = w(cri)w((72) for aU <7i, <72   it(P) with y(o-i)ny(52) = 0. Given a partition
o- C Bool("P) of a subset of V(P), we define the weight w/cr: HCP/cr) -^ -R by

(2. 6)
W(7T) ifTTCHCP)

^!<rW=\ ov"/ ;tewTse/
By the weight of a colouring of a partition system, we understand the weight of its
coimage.

Let V be a finite set, and P a subposet of Tl(JCv) with the usual order by refinement.
The incidence algebra $. (P) of P over $. is defined to be the ̂ . -algebra of aJl functions
from the coUection of intervals in P to the ring $«, with the usual module structure over
$,, and multiplication (or convolution) specified by

(2. 7) (/1*/2)(^7T):= E /l(o-^)/2(^, 7r).
<r<u<ir

The identity of $, (P) is the function S given by S{cr, 7r) = ^. The function C^ in ̂ "(P)
is defined by ̂ ('7^') = ^l^2 ... ' wherc m« is the number of blocks of v tlia^are
unions of exactly i+1 blocks of a. The function C^ has a convolution rnvei^e, which is
denoted by ̂  (or i^p if there is possible ambiguity); it is called the Mobius type function
of P.

Given the partition systems T> and Pl such that V{-P} = V{V'} and At(P/) ̂  AtCP),
we define the weights r^, v^, : HCP) -> $. as foUows:

(2.8) rW := ̂ 0^^)^) , 4'W ..- E . . ̂ 'H(0'T) ̂ (^^) .
» n(77'k)

Let us note that if cr ̂  fi(P/) then 4. (a) = -^(-p^)u{^a^ otherwise, 4, (a) is 1 if
o- C, At(P'), and 0 if not. We caU r^(cr) the type of <r, and ̂ , (o-) the Mobius type of o-
with respect to V. We proved in [5] that r^ and v^,, are multiplicative weights.

We now define several polynomials in $. [a;] assodated with the partition system 77.
These polynomials will have the following form:

(2. 9) 0CP, w;x):= ^ w{a)p^{x),
<r n(^)

where w: HCP) -^ $. is a weight, and (pn (a;))n^i is a sequence of polynomials in $. [4
For each polynomial defined, we indicate the corresponding choice of w and pn (x), its

name, notation, and degree:
, V]=T^, p^(x) = Xn : the partition type polynoniial ^(P ; x) degree 2|V(77)|;
, ^ ^ \^ p\^ = B^{x) : the umbral chromatic polynoinial 7^CP;z), degree

2\V{P)\;
^ U, = l4, Pn{x) =B^(z) : the modified umbral chiomatic polynomial ̂ CP;x),

degree 2|At(^)h
. w(a) = /X$(.P)(O, <T), Pn(a;) = xn : the characteristic type polynomial x0 (^;^)>

degree 2|AtCP)).
As discussed in [8], we have:

^(X. ; x) = 7^(^" ; ̂  = X^(^n ;^) = ^" , P'i>(Jcn ; a;) = B^(a;) '

(2. 10) ^(X. ; x) = x^n; ̂ ) = 5^(x), " > 0.
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According to 1.8, upon umbral substitution at n<f>, the polynomiaJs ̂ (P; a;) and ̂ (P ; x)
enumerate the colourings of V with at most n colours by their type and Mobius type,
respectively.

Spedal cases of the polynomials defined above are weU-known. For instance, the par-
tition polynomial of 75 investigated in [17] can be retrieved by substituting <^, with 1 in
^('P ;a:). Tlie umbral chromatic polyn.omial of a set system was first defined in [11]. K
-P is a simpUdal complex (i.e. U\V a.^W CU imply W   P), then 4(<7) = T<^(<7)
for aU <r e DC?); hence ̂ (P; a;) = ^(P ;x}. H 'P is the independence complex I(G)
of a graph G, ' then ̂ (l{G};x~} is the umbral chromatic polynoimal of the graph, first
defined in [12]. The classical chromatic polynomial of the graph can be retneyed by sub-

stituting <^,- with 1. The characteristic type polynomial of a subposet of II(^v) aPPea-rs
in [8], [10], and [11]. K 77 is a simpUdal complex, and aU the maxima! partitions of n('P)
have the same number of blocks m, then the substitution (f>, h-> 1 maps ^(P; x) to the
characteristic polynomial of the poset Il(P) (in the variable a;) multiplied by xm.

In [5], we proved the following general complementation formula:
Theorem 2. 11. Consider two partition systems T and V such that At(75) = At(7;>/)
and 'P' C'P. The follovnng identity holds:

(2. 12) x^/;^)= E ^^)^(^/^;^).
<ren(Cy7>')

A coroUary of this result teUs us that

(2. 13) ^(P;x)=x^CP^)-
Another corollary gives the following combinatorial interpretation of the elements F^

^ =<.({["+m]})-
$. defined in Section 1:

(2. 14)
We use 2. 14 to give a bijective proof of a familiar formal group law identity, which is
usually proved by formal power series manipulations (see e.g. [6]).

Proposition 2. 15. Let us denote by ̂ '(X) and ̂ -(X, Y) the formal derivatives of the
corresponding formed power series. We have

r9F^... _^-1
(2. 16) ^W=[^r(^0)J ,
where (. )-1 denotes, as expected, the multiplicative inverse in the ring ̂ *((X)).

3. SET SYSTEMS WH-H AN AUTOMORPHISM GROUP

In this section, we consider only partition systems with isomorphism classes belonging
to S. Given a group G acting on a set X, we denote, as usual, the orbit oi x ^ X by
G(x), and the stabiUzer of x by G^. A pair (5, G) consisting of a set system (of the type
mentioned above), and a group G of automorphisias of S (i.e. a subgioup of the stabiHzer
of S under the action of the symmetric group on V{S) on set systems with vertices V(S))
wiU be called a set system with an automorphism group (often abbreviated to SSWAG).
Two SSWAGs (<?i, d) and (<?2, Gi) are called isomorphic if there exists an isomorphism
/: V(Si) -^ v(s^) oiSi and <?2 such that G-z is the homomorphic image of Gi imder the
map g ^ fogo f (thus, this map is an isomorphism of Gi and Gi}- Given a SSWAG
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(<?, G) and <7   TL{K. v(s))i we define the restriction G\cr ot G to a- to be the group induced
on V(cr) by C\^^ Gw Again, G\[U} wiU be written G\U. Given two SSWAGs, we define

(3. 1)
(<?!, Gi) . (<?2, G2) := (<?! . <?2, Gl x Gz), (<?i, Gi) Q (.Sz, G'2) := (<Sl © <S2, Gi X G'z) .

These operation can be defined on isomorphism classes of SSWAGs. Given a SSWAG
(<S, G), the group G acts in an obvious way on S, H(<S), II(<?), aud A(<?). It also acts on
Fn(<?) by (g, c) ^-> c o g-l. A triple (S, G, w) is caUed a weighted SSWAG ii the weight
w is constant on the orbits of G on H(<S). In tlus paper we need the following technical
condition on the autoinorplusin groups G considered: for each pennutation in G, aU its
cydes are also in G. According to [I], such a group is the direct product of its transitive
constituents, each of which is a symmetric group or a cyclic group of prime order. Let
us denote by SG and SG/ the set of isomorphism classes of all SSWAGs, and of those for
which the automorphism group satisfies the technical condition, respectively.

Consider a SSWAG (<?, G). The set A(<?) is partially ordered by the refinement relation
of preferential arrangements: o-y < Vfi iff Vfi is obtained from <7/ by amalgainating
adjacent blocks, while keeping the position of the blocks fixed. As G acts on the poset
A(<?), we have an induced poset A(S)/G on the set of orbits. We adjoin a least element 0
to this poset, and define zb e (Jf-$). ((A(<?)/G!) U {0}) in a similar way to C^. As before,
z& has a convolution inverse, which will be denoted by m6, /^,, ^,,, ^. We define the weight

r^: II(<S) ->. (ff-$)., called divided type, by T^((T) := r'i'{cr)/\G\cr\. Given a partition
system S' such that At(<S) = At(<S/) and (<?', (?) is a SSWAG, we use ml'^s)/G)u'S to
define the weight v^, c , which wiU be called the divided Mobius type with respect to S'.
OUT definitions imply that (S, G, r^) and (<S, G, r^, c) are weighted SSWAGs. Let us
note that if G is the symmetric group on V{S} and o- C II(<5) is arbitrary, then T^(cr) is
obtained from T'^(o') via the substitution ^, *-> 6,.

Proposition 3. 2. Given the above setup, let a   !i(S), and let f: a -^ [\a\} be an arbi-
trary bijection.

^m?^)/c)uo(o'^])=^)(o. (T)/IG'l<rl-
&;^(<7)=4(^)/1<?M.
c) If (<?', G)   SG', then v^i Q is a multiplicative weight.

We now define several polynomials in (Jf-$)» \^^ associated with the SSWAG (S, G);
aU of them have degree 2|y(<?)|. These polynomials wiU have the following form:

(3. 3) 0(S, G, w;x):= ^ w(<r)^|(z),
<fj T

where w: II(<S)-^ (ff-$). is a weight such that (<?, G, w) is a weighted SSWAG,
(qn {x))n>i is a sequence of polynomials in (fir -$), {^-^ and T is an arbitrary transversal

of A{S}IG. For each polynoinial defined, we indicate the corresponding choice of w and
qn {x), its name, and notation:

. w = r^, qn {x) = xn/n\ : the partition type polynomial pb(S, G;x);

. w = r^, qn (x) = /3^(a:) : the umbral chromatic polynomial 7(>(<?, G;x);

. iy == i/L qn{x) =0b, {x) : the modified umbral chromatic polynomial 76(<S, <?; a;);

. w(a) = m^^^^g(0, [<r/]), (/: <7 -^ [|<r|] an arbitrary bijection), qn (x) = xn/n\

: the characteristic type polynomial ^ (<S, G;x).
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We intend to relate the polynomials defined above to the corresponding ones defined in
the previous section. We do this by proving a general result about the relation between
the polynomials ^(P, u;;a;) and 0{S, G, w;x) defined in 2. 9 and 3.3. The proof is based
on the weighted form of Burnside's lemma.

Theoreni 3. 4. Let (<S, G, w) be a weighted SSWAG with w taking values in an arbitrary
commutative and torsion free ring R. For each n > 1, consider ^n(a-)   R[x], a-nd let
p^(x) :=n\qn (x).

a) We have

(3. 5) 6{S, G, w;x)= | ^^/cyc(g), w/cyc(g);x)\/\G\,
g G

where cyc(g) denotes the partition ofV(S) determined by the cycles of g.
b) Let w': H(<S) -> R be the weight defined by w'(cr) := \G\cr\ w(a-). We have

(3. 6) 6{S, G, w;x}=9{S, w';x}l\G\.
Note that if we take 12 = <Q, qn(x) = x(x - 1)... (z - n + l)/n!, <S the independeuce

coniplex of a graph, and G the automorphisin group of the graph, then ^(<S, (3, w ; .r) is
the chromatic polynomial of the corresponding unlabeled graph, as defined in [2]. Li this
case, 3. 5 is just a restatement of Theorem 3. 1 in [2].

Theorein. 3.4 and Proposition 3.2 imply that each of the four polynoinials associated
with the weighted SSWAG (<?, G) can be related to the corresponding polynoinial asso-
dated with S via 3.6. Thus, 2. 13 extends naturally to SSWAGs:

(3. 7) ^{S, G-, x)=xb(S, G;x).
We conclude this section by noting that A{K.n) Sn is isomorphic to the Boolean sub-

lattice of H(^Cn) coutaimng those partitions for which the elements of each block, written
in increasing order, are consecutive. According to the previous results, the normalised
conjugate BeU polynomials /3^(x) = B^(x)/n\ can be computed using this lattice, rather
than H(^Cn) - used for the computation of B^(x) (see 2. 10) - which, is much larger. Sim-
ilarly, we can compare the way in which F^ and /^ = F^/(n\ m!) can be computed
combinatoriaUy. According to 2. 14, F^ can be computed using the poset obtained from
II(A^n, m) by adjoining the partition of [n+m] into only one block. Given a linearly ordered
setV = {vi < v-i < ... < Vk}, 'we are now interested in those preferential arrangements
in A(/Cy) which are comparable to{{ui} < {^2} < ... < {ufc}}- Consider the subposet of
A()Cn, m) consisting of aU "shuffles" of two preferential arrangements of the previous type,
one from A(XJn), and the other from A(/Cn+[m])- According to Proposition 3.2, f^ can
be computed using the poset obtained from the previous one by adjoining the preferential
arrangement of [n + m] with only one block. This time, the first computation is more
effident.

4. A HOPF ALGEBRA FOR SET SYSTEMS WITH AN AUTOMORPHISM GROUP

la [5] we defined several Hopf algebra structures on the free ̂ . -module $«{P} generated
by the set P; in each case, $«{S} is a sub-Hopf algebra. Our constructions represent an
extension of the Tutte algebra of graphs defined in [9]; the extended frameworlc allowed us
to define the product operation in a natural way (as disjoint union of set systems), whereas
for graphs, the product had a complicated expression. We now consider the the free
(Jf-$)«-module (^f-$)*{SG} generated by the set SG, and graded by setting the degree
of a SSWAG (<S, G) to 2|y(<?)|. The operations: disjoint union, ©, and com.plem.entation
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can be extended by Unearity to (iif. $), {SG}. In this section, we extend_the constructions
m[5] even further, by defining a Hopf algebra structure on (H-^[SG}. As before, we
use the general method - presented in [14] and [15] - for constructing the incidence Hopf
algebra of a hereditary family of posets (intervals) with a Hopf relation.

Yet ̂ : (ff-$). {SG}''-» (5'^). {SG} 0 (fi"-$). {SG} be the linear map specified by
(4. 1) <?(<?, G) := $; (<S|;7, G\U) ® (<?|y, G|ZT),

(7 T

wliererisatransversaloftheorbitsofGon/C^) ^dU=V(S)\U. 'Let£: (J?. $). {SG}
-^ (ff-$). and 77: (fi'. $)« -^ (5'-$). {SG} be the Unear maps specified by

(4. 2) e(<S, G):= 1 if(5, G)=({0}, {l})
0 otherwise.

^(i)=(W, {i}).

Theorem 4.3. ((Jf-$)«{SG},. ,77, <5, e) is a commutative and cocommutative graded Hopf
algebra. The antipode S:~ (H-^{SG} -^ (ff. $). {SG} is specified by

(4. 4) S{S, G}= E(-1)H II(<S|TV, G|Ty),
<r/er we<r

where T is a transversal of the orbits of G on A{!CV(S))- The free (H-^-module
(£T-$)«{SG/} generated by the set SG' is a sub-Hopf algebra.

We obtain a similar Hopf algebra structure on (ff. $), {SG} by replacing the disjoint
union product with © . Complement ation of SSWAGs induces an isomorphism between
these Hopf algebras.

" 

Let us'denote by p\ fb, 7fc, and x6 the (ff. $), -module homo-

morplusms oFdegree 0 from (ff. $). {SG} to (J7-$). {£r} mappmg a SSWAG to the
corresponding polynomial assodated with it. Using results from [5] and 3. 6 we prove the
following theorem.

Theorem 4. 5. The maps p\xb: ((i:f-$). {SG/}, . ) -^ (^^). {^} fflre ffoP^ a^e6"1
maps. The map ̂ : ((ff. $). {SG'}, ©) ̂ (ff. $). {^} " a/50 a Hopf algebra map. The
map 7&: (ff-$). {SG/} ̂  (-ff-$)* {^-} " a coalgebra map.

We note that the techmcal condition on the automorphism groups considered is es-
sential for the maps above to be coalgebra maps. The foUowing theorem addresses the
probiem of finding a combinatorial model for the Hopf algebra £$«{^(a;)} ovel L$-

Let SG" denote the subset of §G' consisting of isomorpliism classes of SSWAGs (<?, G)
for which there exists a partition TT   H(<?) such that /C» C <? C K;» UBool(Tr), and G
is a subgroup of the restriction of the symmetnc group on^y(5) to TT^ Itisea^y to see
thatThe°fre^L$. -module L$. {SG"} generated by the set SG" is a sub-Hopf algebra of
(JEr-$)»{SG'} (considered as a Hopf algebra over L$. ).
Theorem 4.6. The map xb maps the set SG" to L$. {^(a;)}. Hence, we have a Hopf
algebra map xb-- L^{SG"} -^ L^Wx)}.

Let 0: (fi'-$). {SG/} -^ (fi'-$). {^} be a surjective coalgebramap. The adjomt map
^ of 9 is an injective algebra map;it'maps (fi'-$)*[[P]] isomorphicaJly to a sub-algebra
of the graded dual of (ff. $). {SG'}. We use ̂  and 1.2 to assodate a delta operator on
(fr'. $~).°{SG} with each delta operator a(D)e(H-^Y[[D}}; it makes sense to denote this
delta operator by a(£><»), where De is the delta operator corresponding to P. It is not
difficult to check that the map 9: ((fi-. $). {SG/}, a(^)) ̂  ((J:f. $). {£r}, a(P)) becomes
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a map of coalgebras with delta operator. We can use this result to obtain a stronger
version of Theorem 4.5. Let us note that

b{D^) (^Vn, 5^) = (X. -i, 5'n-i) , D^ (^, 5J = (^Cn-1, 5»_l) ,
D, (A^., ̂ ) = (X. -i, ̂ -i) , b(D^ (^, ̂ ) == (^Cn-i, 5»-i).

In [5] we proved that the identities 1.14 can be lifted from $. [r] to $. {P}. We prove
here that they cafl be Ufted from (ff. $). {^} to (fi-. $). {SG/}.
Theorem 4. 7. Let ff: ((ff. $). {SG/}, . ) -> (£'. $). {^} 6e a Hopf algebra map (in par-
ticular pb or xb)- The following identities hold in (Jf-$). {SG/}:
(4. 8) 6(P. )((<Si, G', ). (^, G2))= ^ fL(b(Der{S,, G^-(b(Der^G^

n,m>0

(4. 9) b{De) S{S, G) = E ̂  5(6(Z?, )fc (5, G')).
fc>l

These, identities still hold in the Hopf algebra ((5'. $). {§G/}, ®), and hence for ̂ b .
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