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Abstract

We construct partitions of the symmetric group G^\ into intervals with respect to the

Briihat order such that every interval is a Boolean set and the number of intervals with

2 elements is the signless Stirling number of the first kind c(JV - l, k). A projection

©AT ->. ©^v-i whose fibers form a partition of ©^ with these properties is studied. Several

constructions of Laplace operators for the orthogonai and symplectic Lie algebras, which

involve this projection are reviewed.

Resume

On constniit des partitions du groupe symetrique ©jv en intervalles par rapport a 1'ordre

de Bruhat de sorte que chaque intervalle soit un ensemble booleen, et que Ie nombre

d'intervalles a 2k elements soit la valeur absolue du nombre de Stirling de premiere espece

c (Ar- 1, ̂ ). On etudie une projection de ©^v -)- GN-I dont les fibres formen. t une partition

de 6 ̂ y possedant ces proprietes. On decrit aussi plusieirrs constructions d'operateurs de

Laplace pour les algebres de Lie orthogonales et symplectiques qui font intervemr cette

projection.
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0. Introduction

Let A = (A, j) bean ̂ V x N numerical matrix and let det A be its determinant

detA= ^ sgn(p)Ap(i), r--Ap(^), ^/.
p S,v

(0. 1)

For any fixed map p ^ p' ot the symmetric group ©,v into itself such that the map
p ^ p{p'}~1 is a bijection, formula (0. 1) can be also rewritten as

detA = ^ sgn(pp')Ap(i), p'(i) . . . Ap(^)^(^).
peSjv

(0. 2)

However, if the entries of the matrix A belong to a noncommutative ring, the right hand

sides of formulae (0. 1) and (0. 2) are different in general, and each of them can be regarded
as a noncommutative analogue of the determinant of the matrix A. Noncoinmutative

determinants of the form (0. 1) were used in [HU] for constructing central elements in the

universal enveloping algebras for the general Unear and orthogonal Lie algebras. In the case
of the orthogonal and symplectic Lie algebras central elements were constructed in [Ml]
by using a determinant of the form (0.2) with a special projection p ^ p', GN -^ GN-I,
where 6jv-i is regarded as a natural subgroup of GN (these constructions are reviewed
in Section 4). We prove here (Section 3) that the fibers of this projection form a partition
of 6 N with the foUowing properties. The fibers are intervals with respect to the Bruhat
order on GN, isomorphic to the Boolean sets (as partially ordered sets). In particular,
each fiber contains 2k elements for some k ^ {1,..., N - 1}. Moreover, the number of

fibers containing 2fc elements coincides with the signless Stirling number of the first kind
c(^V - 1, k). In Section 2 we construct a siinpler partition of GN which adinits the same
properties as the one formed by the fibers of this projection.

I would like to thank A. Lascoux, M. Nazarov and G. Olshanski? for valuable remarks and

discussions. I also thank B. Leclerc and J.-Y. Thibon for kind interest and encouragements.
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1. Signless Stirling numbers of the first kind

Let n and k be positive integers. The signless Stirling number of the first kind c(n, fc)

is defined as the number of permutations p   ©n with exactly k cycles (see, e. g., [S]). One

has the following formula which can be regarded as an eqruvalent definition of c(n, fc) [S]:

for a formal variable x

^c{n, k)xk =x(x+l')---{x+n- 1). (1. 1)
fc=l

We shall also use the following property of the numbers c (n, k) below [S]. Ifj? = (pi,... , j?n)

is a sequence of distinct positive integers, an element p, is called a Ie ft-to-right maximum of

p, if pj < pi for every j < i. Then the number of pennutations p 6 ©n with k left-to-right

maxima is c(n, fc).

A combinatorial proof of fonnula (1. 1) for positive integers x can be found in [S]. The

partitions of ©^ constructed in Sections 2 and 3 provide an interpretation of (1. 1) for

x=2.

2. Stirling partitions of ©^

We shall consider the following two examples of partially ordered sets. The first is the

Boolean set Bn consisting of 2" subsets of the set {1, 2,... , n}. One defines S <; T, if

S CT as sets.

The second example is the symmetric group GN with the Bruhat order which is defined

as follows (see, e. g., [S]). Ifg = (gi,..., g^)   ©N') then a reduction of g is a pennutation

obtained from q by interchanging two elements $; and qj, where i < j and qi > qj. One

says that p < q with respect to the Bruhat order, if p can be obtained from g by a sequence

of reductions.

An interved [p, g] in GN W1U be called Boolean if it is isoraorphic to Bk for some k.

Let us call a partition of ©jv into Boolean mtervals Stirling if for any k the number of

intervals isomorphic to Bk equals the signless Stirling number of the first kind c (JV - 1, k).

In particular, the total number of intervals equals

c{N-l, l)+---+c(N-l, N-l)=(N- 1)!

One has 4 Stirling partitions of ©3:
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32 1

n 21 3

0

3 2 1

n 1 3 2

0

3 1 2 0: :0 23 1 3 1 2 0: :0 23 1

v
1 3 2

3 1 2

a

0
1 23

3Z1

0

v
21 3

23 1

n

0
1 23

3 2 1

0

2 1 3 0: :0 1 3 2 Z 1 3 0: :0 1 3 2

v
1 23

0
23 1 v

1 2 3

0
3 1 2

We construct now a Stirling partition of ©^v for arbitrary TV.

Let us fijc a permutation g = (gi,..., qN-i) £ ©N-i and let 9ii <9t2 < ... < g,, ; 
be the

left-to-right maxima of q. Consider the permutation pmax = (N, gi,..., qN -i)   ©N and

denote by pmin the permutation which is obtained from pma.x by replacing the subsequence

(2V, 9ii,.. . , Stfc) with the subsequence (g,^,... , $;^, JV) and leaving the remaining entries of

Pmax unchanged.

Theorem 2. 1. The set of intervals [pmin^Pmax]? where q runs over the set ©N-I, forms a

Stirling partition of GN-

For JV = 4 this partition has the form:

3124 rf2 1 4 3

2134

1423

1243

4321

0

0
3421

4312

0

0
3412

1234
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4213

a
4231

.
0.

4132

a

3214 0: :0 2413 3241 0:

u

:0 2431 31420;

'0'

:0 1432

u
2314 2341 1342

3. Projection ©,v -^ ©;v-i

Let us define now the projection

TT^v : GN ~i- ©2V-1) (3. 1)

(see Introduction). It will be convenient to realize ©^ as the group of permutations of
the indices ci,..., Cjv, where the c, are some positive integers andci < ... < c^. For
N = 2 we take as the projection ^2 the only map ©3 -^ ©i- ForJV > 2 we define TT^

inductively. First define a map from the set of all ordered pairs (cfc, c;), k ^ I into itself
by the following rule:

(cfc, c;)^ (c;, Cfc), k, l<N,

{ck, CN)^(cN-i, Ck), k<N-l,

(cN, Cfc)^(cfc, c^v-i), k<N-l, (3. 2)

(c^v_i, C^) 1-+ (c^v_i, C^_2),

(cAT, C^_i) l->- (c^_i, CAT_2).

Further, if p = (pi,..., P^) is a permutation of the indices ci,..., cjv, its image q =

TT^v(p) is defined as follows. We take as (gi, gN-i) the image of the ordered pair (pi, pN)

under the map (3. 2). Assuming that the projectiou TT^-Z has been already defined, we
take as (92,..., 9N-2) the image of (p2,. .. , PN-i) with respect to this projection, where

(p2,... , PN-i) is regarded as a permutation of the family of the indices obtained from

{ci,..., civ} by removing pi and PN-
Let us describe now the fibers of the projection TT^/. First we suppose that N is odd,

N =2n+l. Let g = ($1,..., 92n) be an element of ©2n. Consider another permutation
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q= (gn+l, ̂ n, gn+2i?n-l. . . . »?2n, ?l) and denote by A the set of left-to-right maxima in q.

It follows from the definition of TT;V that the element po = (g'2n; . . . i^n+ii C2n+i, 9n,. .. , ^i)

is contained in the fiber over q. Introduce now the elements pmjn and pm ax 
in the fol-

lowing way. Consider the subsequence of po which has the form (c^n-f-i, g,,,. . . , $,^),

where q^,..., q^ are those elements among {^n,... , ^1} which are contained in the set

A. Then pmis. is obtained from po by replacing this subsequence with the subsequence

(g^,..., g^, C2n+i), while the rest of po remains unchanged.

Similarly, to get pmax, we consider the subsequence of po of the form {q^,... , $^, czn+i),

where ̂ ^,..., qj^ are those elements among {q^n, . . ., 9n+i } which are contained in the set

A, and replace it with the subsequence (N, qj^,..., $^), leaving the rest of po unchanged.

li N = 2n we define for q = (gi,... , $2n-i)   ©2n-i the permutation q 6 ©2n-i

by ^ = (gn, 9n+i, 9n-i, 9n+2, 9n-2,..., 92n-i, 9i) and denote by A the set of the left-to-

right maxima in q. As in the previous case, it can be easily seen that the element po =

(g2n-li . . . . ilm C2m 9n-li . . . »9l) is contained in the fiber over q. The permutations paua

and prnax 
ELTe defined in the same way as in the case ofAr = 2n+ 1.

Theorem 3.1. The fiber of the projection TTN over a permutation q   ©N-I ̂  the

interval [pmin. Pmax] ^ ®N w'i'*A respect to the Bruhat order. Moreover, these mtervsds

form a Stirling partition of GN.

Here is the partition of ©4 formed by the fibers of the projection ^4.

3214

3124

2413

2143

1432

0

0
1342

2431

0

0
2341

2134
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1324

4312

.
0.

4321

A

1243 34120:

v
1234 3142

:0 4132 34210: :0 4231

v
3241

4. Laplace operators for classical Lie algebras

Here we review several constructions of Laplace operators for the orthogonal and sym-

plectic Lie algebras which use the properties of the Capelli-type determinant whose defi-

nition involves the projection (3. 1).

Capelli-type determinant. Consider a nondegenerated symmetric or alternating form

on the space CN (m the alternating case N has to be even), and let G be its matrix in

the canonical basis of CN. Let {Eij} be the standard basis of the general linear algebra

0[(^V) and let E = (E, ^-) be the N x A^-matrix with the entries £', j. Introduce the matrix

F = (Fij) by setting

f {GE)ij - (GE)ji in the symmetric case,

1J "- 1, {GE)ij + {GE)ji in the alternating case.

Then the orthogonal and symplectic Lie algebras o(N) and 3p{N) can be realized as the

Lie subalgebras in 0((iV) spanned by the elements Fij in the symmetric and alternating

case, respectively. Let n := [^V/2]. We set for ? = 1,.. ., n:

f N/2 - i, in the case of o(lV),
pi= \ N / 2 - z + 1, in the case of s^{N)

ajid for i = n+1,... , N:

f 7V/2 - i + 1, in the case of o{N),
pt = \ N/2 - i, in the case of sp(JV).

The Capelli-type determinant is a. formal power series in u-l with coeflncients from the
universal enveloping algebra U(o(^)) or U(5p(AT)), given by the formula:

F ,_ F

c(u)=detG-1 g sgn(pp')(G+^-)p(i), p-(i)-.. ((?+^-^-)p(7V), p'(^), (4. 1)
p^Gff
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where p >-> p' is the projection (3. 1). Then

C'(u):=^2-^)... (u2-^)c(»)

is an even monic polynomial in u,

C'(u)=^n+^rl-'Cf 2+. --^-C'2n,

and aU. the coefficients C-ik al'e contained in the center of the universal enveloping al-

gebra. Fnrthermore, the eigenvalue of C-^k in a highest weight representation -^(A), A =

(Ai,..., An)is the homogeneous elementary symmetric function of degree k in the variables

-^,..., -/^, where J, = A. + /?; (see [Ml] for details).

The element c(u) caxi be regarded as an analogue of the Capelli determinant for the Lie

algebra 0t(A^) (see [HU], [N]). The invariance of the CapeUi determinant and the Capelli-

type determinant follows from the invariance of the quantum determinant in the Yangian

for 0((^V) and the Sklyanin determinant in the twisted Yangian for o(JV) and sp(N) (see

[O], [MNO]).

Further we shall only consider the canonical realization (G! = 1) of the orthogonal Lie

algebra o{N). For anzdogues of these results in the symplectic case see [M2], [M3], [MNj.

Gelfand invariants. The following formula connects the well-known Gelfand invariants

trFk and the element C'(u) in the case of JV = 2n: in the algebra U(o(IV))[[u-1]]

u-1/2 trFA
u I^(u-f-pi)^1

C(u - 1)
~CW~ (4. 2)

To get the corresponding formula for the case N = 2n+ 1, one shoiild multiply the right

hand side of (4. 2) by the factor (1 - u-l) and leave the left hand side unchanged. The

eigenvalues of the elements tr F in the representation L(\) had been found by Perelomov-

Popov [PP]. Relation (4. 2) is Ein immediate consequence of their fonnulae. On the other

hand, this relation, as well as the corresponding relation for the Lie algebra fl((iV), can

be proved independently by using the quantiun Liouville formula [MNO], which provides

another proof of the Perelomov-Popov formulae (see [M2]).

T

^

s
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Quasi-determinants and noncommutative symmetric functions. For m <^ N

denote by F(m) the submatrix of F with the entries F,j, where i, j = 1,... , m. One has the

following decomposition of the polynomial C(t) := t2n C(t~1) in the algebra U(o(. V))[[f]]:

N

C(t) = 11 |1 + (^(m) + N/2 - m + 1)*|, (4. 3)
m=2

where |A|mm := {(A~l)mm) is the. mm-th quasi-determinantofa. ma. tnx A [GR1], [GR2].

For any m the coefflcients of the series |1 + (F(-m^ + N/2 - m + l)<[mm commute with

each other ajid the set of these coefficients for all m = 2,... , ^V generates a commutative

subalgebra in U(o(^V)). Let us introduce the elements $^ by the following formula:

^^m)^-i=-^log|l-(F(m)+^/2-m+l)f|^.
jt=l

They can be interpreted graphically in the following way. Let ^m^ denote the complete

oriented graph with the vertices {1,... , m}, the arrow from i to j is labelled by the ij-th

matrix element of the matrix F^m^ + N/2 - m + 1. Every path in this graph defines a

monomial in the matrix elements in a natural way. Then ^ ' is the sum of all monomials

labelling paths in J'(m) of length k going from m to m, the coefficient of each monomial

being the length of the first return to m; and also ^ ls ^e sum °^ those monomials

with the coefl&cients equal to the ratio of k to the niunber of retiims to m.

The invariance of the coeflBcients of C(t) implies that the elements $fc defined by the

formida

E^fc~l=-^logcw
fc=l

(4. 4)

belong to the center of U(o(iV)). On the other hand, due to decomposition (4. 3), they can

be calciilated by the formula

$fe = ^?) + +<).

It follows from (4. 4) that $2^-1 = 0 while the eigenvalue of $2Ji;/2 in £(A) is ̂ fc+- . . +1^.

Note that an analogoiis graphical interpretation can be obtained for the coefficients C^k

of the polyaomial C'(u), as well as for the central elements whose eigenvalues in L(\) are

the complete symmetric functions in l^,... , 1^ (see [M3]).
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The elements ^ are a special case of the noncommutative symmetric functions as-

sociated with a matrix. A general theory of noncommutative syminetric functions has

been developed in the paper [GKLLRT], where, in particular, the corresponding results

for the Lie algebra Q^N) are contained (see also [KL ). The arguments presented here have

followed those of this paper.

Pfaffian-type elements. For a subset I = {ii,... , ?2A:} in {!,..., A?'}, (ta < Za+i)

denote by FI the submatrix of F whose rows and columns eniimerated by elements of the

set I. Let Pf(-F/) denote the "Pfaffian" of the matrix F1:

2fcA;!Pf(F/)= ^ sgn(^)^(z). M. )---FM-), M-)-
o-eSst:

Then the elements

c,.. = ^ (Pf(F7))2
/, |J|=2fc

belong to the center of L'(o(-^V)) and one has the following decomposition of the Capelli-

type determinant:
n

c(u) = 1+ > ; -, -- ̂  , ^ - -^-.
^(u2-^)... (u2-^)'

This implies that the eigenvalue of Ck in L{\) is given by the fonnula

(-i)fc E (^ - A^-i)(^ - P?^. -2) . . -(^ - P?J.
Kil<-<«it<n

Connections of the element c(u) with the Capelli identities will be discussed in [MN].

Remark. It was proved in [HU] that all the coefficients of the polyaomial

^ sgii(p)(u + F)p(i), i ... (u -N+ 1 + F)p(N),N
P SN

belong to the center of U(o(iV)). However, the author does not know what the connection

is between these coefficients and any of the elements discussed above.

!]
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