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Abstract

We construct partitions of the symmetric group G into intervals with respect to the
Bruhat order such that every interval is a Boolean set and the number of intervals with
9% elements is the signless Stirling number of the first kind ¢(N — 1,k). A projection
S x — S y_1 whose fibers form a partition of & with these properties is studied. Several
constructions of Laplace operators for the orthogonal and symplectic Lie algebras, which

involve this projection are reviewed.

Résumé

On construit des partitions du groupe symétrique Sy en intervalles par rapport a lordre
de Bruhat de sorte que chaque intervalle soit un ensemble booléen, et que le nombre
d’intervalles & 2% éléments soit la valeur absolue du nombre de Stirling de premiére espece
¢(N—1,k). On étudie une projection de &y — Sy—1 dont les fibres forment une partition
de Sy possédant ces propriétés. On décrit aussi plusieurs constructions d’opérateurs de

Laplace pour les algebres de Lie orthogonales et symplectiques qui font intervenir cette

projection.
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0. Introduction

Let A =(A;;) bean N X N numerical matrix and let det A be its determinant

det A = Z sgn(p)Ap(l),l SRR Ap(N),N- (01)
pES N

For any fixed map p — p' of the symmetric group Gy into itself such that the map

p p(p')~! is a bijection, formula (0.1) can be also rewritten as

det A=) sgn(pp)Apw e Ap()p (M- (0.2)
PESN

However, if the entries of the matrix A belong to a noncommutative ring, the right hand
sides of formulae (0.1) and (0.2) are different in general, and each of them can be regarded
as a noncommutative analogue of the determinant of the matrix A. Noncommutative
determinants of the form (0.1) were used in [HU] for constructing central elements in the
universal enveloping algebras for the general linear and orthogonal Lie algebras. In the case
of the orthogonal and symplectic Lie algebras central elements were constructed in [MI]
by using a determinant of the form (0.2) with a special projection p — p', &y — Gy,
where G y_; is regarded as a natural subgroup of &y (these constructions are reviewed
in Section 4). We prove here (Section 3) that the fibers of this projection form a partition
of Gy with the following properties. The fibers are intervals with respect to the Bruhat
order on G, isomorphic to the Boolean sets (as partially ordered sets). In particular,
each fiber contains 2% elements for some k € {1,...,N — 1}. Moreover, the number of
fibers containing 2* elements coincides with the signless Stirling number of the first kind
c¢(N —1,k). In Section 2 we construct a simpler partition of &y which admits the same

properties as the one formed by the fibers of this projection.

I would like to thank A. Lascoux, M. Nazarov and G. Olshanskif for valuable remarks and
discussions. I also thank B. Leclerc and J.-Y. Thibon for kind interest and encouragements.
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1. Signless Stirling numbers of the first kind

Let n and k be positive integers. The signless Stirling number of the first kind c(n, k)
s defined as the number of permutations p € &, with exactly k cycles (see, e.g., [S]). One
has the following formula which can be regarded as an equivalent definition of c(n, k) [S]:

for a formal variable z

n

Zc(n,k)a:k=3:(:z:+1)---(x+n—1). . (1.1
k=1

We shall also use the following property of the numbers ¢ (n,k) below [S]. If p = (p1,---+Pn)
is a sequence of distinct positive integers, an element p; is called a left-to-right mazimum of
p, if pj < pi for every j <. Then the number of permutations p € &, with k left-to-right
maxima is ¢(n, k).

A combinatorial proof of formula (1.1) for positive integers « can be found in [S]. The
partitions of &y constructed in Sections 2 and 3 provide an interpretation of (1.1) for
g =2, |

2. Stirling partitions of Gy

We shall consider the following two examples of partially ordered sets. The first is the

Boolean set B, consisting of 2" subsets of the set {1,2,...,n}. One defines S < T, if

S CT as sets.

The second example is the symmetric group G with the Bruhat order which is defined
as follows (see, e.g., [S]). If ¢ = (q1,---,9n) € G, then a reduction of ¢ is a permutation
obtained from ¢ by interchanging two elements g; and ¢, where 7 < j and ¢i > ¢;j- One
says that p < ¢ with respect to the Bruhat order, if p can be obtained from ¢ by a sequence

of reductions.

An interval [p,q] in Sy will be called Boolean if it is isomorphic to By for some k.
Let us call a partition of &y into Boolean intervals Stirling if for any k the number of
intervals isomorphic to B equals the signless Stirling number of the first kind ¢ (N —1, k).
In particular, the total number of intervals equals

c(N=1,1)++c(N-1,N-1)=(N-1)

One has 4 Stirling partitions of Gs:
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1 321
O 132
N2 N B N
/ ] \O/
231
O 321
\ 213 /\ 132
/ O \O/

123

213 132

/32
N
/
N\

12

We construct now a Stlrhng partition of &y for arbitrary N
Let us fix a perfnutation g=(q1,.--,qn-1) € Spy—1 and let g;; < i, < - < i, be the
left-to-right maxima of g. Consider the permutation pmax = (V,q1,- - ,qn—1) € &y and
denote by pmin the permutation which is obtained from pmax by replacing the subsequence
(N, iyy -0 Tix) with the subsequence (giy, - -5 Qix> N) and leaving the remaining entries of

Do unchanged.

Theorem 2.1. The set of intervals [pmin,pmax], where q runs over the set Gpn-1, forms a

Stirling partition of Gn.

For N = 4 this partition has the form:

4123

/ \ 4321 4312
2143

1423

21341324 >< 1243
\ / 3421 3412

1234

3124
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4213 4231 4132

N\ N
NS /

2431 31420y /

1432
2 3 14 2 3 41 1 3 42
3. Projection Gy — Gy_;
Let us define now the projection
n: &y = Gy, (3.1)

(see Introduction). It will be convenient to realize G as the group of permutations of
the indices ci,...,cn, where the ¢; are some positive integers and ¢; < -+ < cy. For
N = 2 we take as the projection m the only map &; — &;. For N > 2 we define 7y
inductively. First define a map from the set of all ordered pairs (ck,c1), k # ! into itself
by the following rule:
(ck,c1) — (e, cx), k,I<N,
(ck,cn) — (en-1,¢k), k<N -1,
(enyck) — (ckyen—-1), k<N -1, (3.2)
(CN—l,CN) = (eN-1, CN-2)
(cn,en—1) — (eN-1,CcN-2)-
Further, if p = (pi1,...,pN) is a permutation of the indices ci,...,cn, its image ¢ =
7n(p) is defined as follows. We take as (q1,qn—1) the image of the ordered pair (p1,PN)
under the map (3.2). Assuming that the projection my—2 has been already defined, we
take as (go,...,qN—2) the image of (pa,--.,PN—1) With respect to this projection, where
(p2,...,PN—-1) is regarded as a permutation of the family of the indices obtained from
{c1,...,cn} by removing p; and pn.
Let us describe now the fibers of the projection 7. Flrst we suppose that N is odd,

N =9n+1. Let ¢=(q1,..-,q2n) be an element of Syn. Consider another permutation
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7 = (qn+1,qn> n+2,qn—1,---» 92n ¢q1) and denote by A the set of left-to-right maxima in q.

It follows from the definition of mx that the element po = (g2ns- -+ Qn+1sC2nt1rdns - -+ q)
is contained in the fiber over ¢. Introduce now the elements Pmin and pmax in the fol-
lowing way. Consider the subsequence of po which has the form (Can+41sTirs-- -1 Tim)s
where qi,,- -+ in 2T€ those elements among {¢n,- - ,q1} which are contained in the set

A. Then pmin 18 obtained from po by replacing this subsequence with the subsequence

(Gaggnmny @iy C2n+1)s while the rest of pp remains unchanged.
Similarly, to get Pmax, W€ consider the subsequence of pg of the form (gj,,-- - Qe Cont1)s
where gj,,---,4j, are those elements among {gzn, - - - qn+1} Which are contained in the set

A, and replace it with the subsequence (N, gj;,- - - ,q;, ), leaving the rest of po unchanged.

If N = 2n we define for ¢ = (ql,...,an_l) € Gy,_1 the permutation g € Gan1

by ¢ = (qn,qn+1,qn_1,qn+2,qn_2,...,qgn_l,ql) and denote by A the set of the left-to-

right maxima in g. As in the previous case, it can be easily seen that the element po =

{ Biitry ,qn,cz,,v, Qn—1,---,q1) 18 contained in the fiber over ¢. The permutations Pmin

and pmax are defined in the same way as in the case of N =2n + 1.

Theorem 3.1. The fiber of the projection TN oOver a permutation ¢ € Gy-_1 is the

interval [Pmin, Pmax] 11 N with respect to the Bruhat order. Moreover, these intervals
form a Stirling partition of G .
Here is the partition of G4 formed by the fibers of the projection 7.

4213

/ \ 1432 2431
3123 2413
312442314 >< 2143
\ / rae 2341

2134

3214
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1423 4312 4321

1324 / \ 1243 3412 / \ 4132 3421 / \04231
1234 ) 3142 3241

4. Laplace operators for classical Lie algebras

Here we review several constructions of Laplace operators for the orthogonal and sym-
plectic Lie algebras which use the properties of the Capelli-type determinant whose defi-

nition involves the projection (3.1).

Capelli-type determinant. Consider a nondegenerated symmetric or alternating form
on the space CVV (in the alternating case N has to be even), and let G be its matrix in
the canonical basis of CV. Let {E;;} be the standard basis of the general linear algebra
gI(N) and let E = (E;;) be the N x N-matrix with the entries E;;. Introduce the matrix
F = (F;;) by setting

R { (GE)i; — (GE);i in the symmetric case,
¢ (GE)i; + (GE)ji in the alternating case.
Then the orthogonal and symplectic Lie algebras o(/V) and sp(/V) can be realized as the
Lie subalgebras in gl(N) spanned by the elements F}; in the symmetric and alternating
case, respectively. Let n := [N/2]. We set for:=1,...,n
N/2 —1, in the case of o(N),
pi:{N/2——i+1, in the case of sp(N)
and fof 4 = 4= 1y s1a 5V}
N/2—1i+1, in the case of o(N),
= { N/2 -1, in the case of sp(N).
The Capelli-type determinant is a formal power series in u~! with coefficients from the

universal enveloping algebra U(o(N)) or U(sp(V)), given by the formula:

F
c(u) = det G1 Z sgn(pp WG+ —— _— p(1),p'(1) ° (G + )p(N),p’(N)1 (4.1)

pECN u+pN
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where p — p' is the projection (3.1). Then

Cu) o= (w2 = 1)~ (u? = p2)e(w)
is an even monic polynomial 1n u,

C(u) = v +u?"2Cy + -+ + Con,

and all the coefficients Cax are contained in the center of the universal enveloping al-
gebra. Furthermore, the eigenvalue of Cyj in a highest weight representation L(A), A =
(A1, .-, An) is the homogeneous elementary symmetric function of degree k in the variables

—12,...,—1%, where l; = \; + p; (see [M1] for details).

The element c(u) can be regarded as an analogue of the Capelli determinant for the Lie
algebra gl(N) (see [HU], [N]). The invariance of the Capelli determinant and the Capelli-
type determinant follows from the invariance of the quantum determinant in the Yangian
for gl(N) and the Sklyanin determinant in the twisted Yangian for o(V) and sp(N) (see
[0], [MNO]).

Further we shall only consider the canonical realization (G = 1) of the orthogonal Lie

algebra o(N). For analogues of these results in the symplectic case see [M2], [M3], [MN].

Gelfand invariants. The following formula connects the well-known Gelfand invariants

tr F* and the element C(u) in the case of N = 2n: in the algebra U(o(V))[[u""]]

u—1/2 — te - Clu—-1

—— M e Com (42)
To get the corresponding formula for the case N = 2n + 1, one should multiply the right
hand side of (4.2) by the factor (1 —u™!) and leave the left hand side unchanged. The
eigenvalues of the elements tr F* in the representation L()\) had been found by Perelomov-
Popov [PP]. Relation (4.2) is an immediate consequence of their formulae. On the other
hand, this relation, as well as the corresponding relation for the Lie algebra gi(IV), can
be proved independently by using the quantum Liouville formula [MNO], which provides
another proof of the Perelomov-Popov formulae (see [M2]).
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Quasi-determinants and noncommutative symmetric functions. For m < N
denote by F(™) the submatrix of F with the entries Fij, where7,7 =1,...,m. One has the
following decomposition of the polynomial C(t) := ¢2" C(¢t~!) in the algebra U(o(V))[[t]]:

N
Ct)=[[ 1 +(F™ +N/2=m+ Dt|mm, (4.3)

m=2
where |A|mm := ((A™!)mm) ! is the mm-th quasi-determinant of a matrix A [GR1], [GR2].
For any m the coefficients of the series |1 + (F(™ + N/2 — m + 1)t|nm commute with
each other and the set of these coefficients for all m = 2,..., ¥V generates a commutative

subalgebra in U(o(V)). Let us introduce the elements Qim) by the following formula:
> . (m d .
S gt = ——log|1 - (F™ 4+ N/2 = m + 1t|mm.
k=1

They can be interpreted graphically in the following way. Let (™) denote the complete
oriented graph with the vertices {1,...,m}, the arrow from ¢ to j is labelled by the ij-th
matrix element of the matrix F(™) + N/2 —m + 1. Every path in this graph defines a
monomial in the matrix elements in a natural way. Then <I>im) is the sum of all monomials
labelling paths in F(™) of length k going from m to m, the coefficient of each monomial
being the length of the first return to m; and also @im) is the sum of those monomials
with the coefficients equal to the ratio of k to the number of returns to m.

The invariance of the coefficients of 5(t) implies that the elements &, defined by the

formula
[e o] d -
> @ttt = — = log C(t) (4.4)
k=1

belong to the center of U(0o(V)). On the other hand, due to decomposition (4.3), they can
be calculated by the formula

I )
It follows from (4.4) that ®;x_; = 0 while the eigenvalue of ®2¢/2 in L(}) is 12F 4. . 412k,

Note that an analogous graphical interpretation can be obtained for the coefficients Cyx
of the polynomial C(u), as well as for the central elements whose eigenvalues in L()) are

the complete symmetric functions in 2,...,12 (see [M3]).
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The elements @im) are a special case of the noncommutative symmetric functions as-
sociated with o matriz. A general theory of noncommutative symmetric functions has
been developed in the paper [GKLLRT], where, in particular, the corresponding results
for the Lie algebra gl(V) are contained (see also [KL]). The arguments presented here have
followed those of this paper.

Pfaffian-type elements. For a subset [ = {i1,.. . iz} in {1,..., N}, (o < tat1)
denote by F! the submatrix of F' whose rows and columns enumerated by elements of the

set I. Let Pf(F!) denote the “Pfaffian” of the matrix FF:

k I )
2" k! PE(F )= Z sgn(o) Fie(l)yiu(2) T Fiv(2k—1)ritr(2k)'
g€G 2

Then the elements

Ck 1= Z (Pf(FI))2

I, II!:Zk
belong to the center of U(o(V)) and one has the following decomposition of the Capelli-

type determinant:

— - Ck
ACRERD Y o R C=r)

This implies that the eigenvalue of c in L()) is given by the formula
R LI D (A AR (A AT ) R (&, — L)
1§i1<~~-<ik§n

Connections of the element c(u) with the Capelli identities will be discussed in [MN].

Remark. It was proved in [HU] that all the coefficients of the polynomial
3 sgn(p)(u + Flpya - (= N+ 14 Fp),n
p€ESN

belong to the center of U(o(XN)). However, the author does not know what the connection

is between these coefficients and any of the elements discussed above.
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