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SUMMARY

We consider the semi-simple algebra which arises as the centralizer of
a tensor power of the fundamental representation of the orthogonal
group. There is a canonical basis in every irreducible representation
of this algebra; it is an analogue of the Young basis in an irreducible
representation of the symmetric group. We evaluate the action of the
generators of this algebra in the canonical basis. Then we introduce
an analogue of the degenerate affine Hecke algebra for this centralizer

algebra.

RESUME

Nous considérons ’algebre semi-simple qui apparait comme commu-
tant d’une puissance tensorielle de la répresentation fondamentale du
groupe ortogonal. Il existe une base canonique dans toute représent-
ation irréductible de cette algeébre; c’est un analogue de la base de
Young d’une représentation irréductible du groupe symétrique. Nous
calculons I’action des générateurs de cette algebre sur la base canon-
ique. Alors nous définissons un analogue de I'algebre de Hecke affine
dégénérée pour cette algebre semi-simpie.
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INTRODUCTION

Let G be one of the classical groups GL(N,C), O(N,C), Sp(N,C) acting on the
vector space U = CV. The question how the n-th tensor power of the representation
U decomposes into irreducible summands leads to studying the centralizer C(n, N)
in End(U)®" of the image of the group G. By the definition of the algebra C(n, N)
we have the ascending chain of subalgebras

C(1,N)cC(2,N)c...cC(n,N).

Moreover, for the classical group G any irreducible representation of C(n, N) ap-
pears at most once in the restriction of an irreducible representation of C(n+1, N).
Therefore a canonical basis exists in any irreducible representation V of C(n,N).
Its vectors are the eigenvectors for the subalgebra X (n, N) in C(n, N) generated
by all the central elements in the members of the above chain.

For the group G = GL(N,C) the centralizer C(n, N) is generated by the per-
mutational action of the symmetric group S(n) in U®". The action of S(n) on the
vectors of the canonical basis in V was described for the first time by A. Young [Y].
G.Murphy [Mp] rederived the formulas from [Y] by using the properties of the
subalgebra X (n, N).

Let us now suppose that G is the orthogonal group O(N,C). To describe the cor-
responding centralizer algebra C(n, N) explicitly, R. Brauer [Br] introduced certain
complex associative algebra B(n, N) along with a homomorphism onto C(n, N).
This homomorphism is injective if and only if N 2> n. There is also a chain of

subalgebras
B(1,N) Cc B(2,N) C ... C B(n,N).

The group algebra C[S(n)] is contained in B(n, N ) as a subalgebra. The structure
of the algebra B(n, N) was investigated by P.Hanlon and D. Wales; see [HW] and
references therein. In the present note we will also work with B(n, N ) and regard
V as a representation of the latter algebra.

For N > n an explicit description of the action of the algebra B(n,N) on the
vectors of the canonical basis in V was given by J.Murakami in [Mk]. His de-
scription was based on the results of [JMO]. In this note for any N we give a new
description of this action based entirely on the properties of the subalgebra X (n, N )
in C(n,N). We present our method as a sequence of propositions and theorems
but omit their proofs. All the proofs shall be given in a more detailed publication.
The case G = Sp(IN, C) is quite similar and shall be also considered elsewhere.

In Section 2 we introduce a remarkable family of pairwise commuting elements
z1,...,Tn of the algebra B(n, N). For every n the element z,4; belongs to the
centralizer of the subalgebra B(n, N) in B(n + 1, N). The elements zy,...,Z, are
the analogues of the pairwise commuting elements of C[S(n)] which were used in
[Ju,Mu]. Their images in C (n, N) belong to the subalgebra X (n, N). The vectors
of the canonical basis in V are eigenvectors of the elements z;,...,Z, and we
evaluate the respective eigenvalues; see Theorem 2.6.

There is a natural projection map B(n + 1,N) — B(n,N) commuting with
both left and right multiplication by the elements from B(n, N); this map has been
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already used by H. Wenzl in [W]. The images of powers of the element z,4; with
respect to this map are certain central elements of the algebra B(n, N). We evaluate
the eigenvalues of these central elements in every irreducible representation V; see
Theorem 3.8.

The algebra B(n, N) comes with a family of generators sy, ..., Sp—1; S1,.- ., Sn—1-
The elements sy, . .., Sp—1 are the standard generators of the symmetric group S(n).
Moreover, the quotient of the algebra B(n, N) with respect to the ideal generated
by 31, ..., 38,1 is isomorphic to C[S(n)]. We point out certain relations between the
elements z1,...,Z, and the generators of B(n, N); see Proposition 2.3. By using
Proposition 2.3 and Theorems 2.6, 3.8 we describe the action of these generators on
the vectors of the canonical basis in every representation V. For the representations
which factorize through C[S(n)] our formulas coincide with those from [Y].

In Section 4 we use the results of Sections 2 and 3 as a motivation to introduce
a new algebra. This algebra is an analogue of the degenerate affine Hecke algebra
He(n) from [C1,C2] and [D]. We will denote the new algebra by We(n, N) and
call it the affine degenerate Wenzl algebra. The algebra He(n) ia a quotient of
We(n, N); see Corollary 4.9. For each m =0,1,2,... the algebra We(n, N) admits
a homomorphism to the centralizer of the subalgebra B(m, N) in B(m+n, N). The
kernels of all these homomorphisms have the zero intersection; see Theorem 4.7.
We use these homomorphisms to construct a linear basis in the algebra We(n, N);
see Theorem 4.6. The irreducible finite-dimensional representations of the algebra
We(n, N) will be considered elsewhere.

I should like to thank D. E. Evans, A. O. Morris, G. I. Olshanski and A. M. Vershik
for numerous discussions. I should also like to thank all my colleagues at the Institut
Gaspard Monge, Université Marne-la-Vallée for their generous hospitality.

1. BRAUER CENTRALIZER ALGEBRA

Let n be a positive integer and N be an arbitrary complex parameter. Denote by
G(n) be the set of all graphs with 2n vertices and n edges such that each vertex
is incident with an edge. We will enumerate the vertices by 1,...,n,1,...,7. In
other words, G(n) consists of all partitions of the set {1,...,n,1,... ,7A} into pairs.
We will define the Brauer algebra B(n,N) as an associative algebra over C with
the basic elements b(y), v € G(n).

To describe the product b(7y) b(v’) in B(n,N) consider the graph obtained by
identifying the vertices 1,...,7 of v with the vertices 1,...,n of v’ respectively.
Let ¢ be the quantity of loops in this graph. Remove all the loops and replace
the remaining connected components by single edges, retaining the numbers of the

terminal vertices. Denote by -’ the resulting graph, then by definition
(1.1) b(7)b(v") = N?-b(v-7").

Evidently, the dimension of B(n,N) is equal to 1-3-5-...-(2n—1). The algebra
B(n, N) contains the group algebra of the symmetric group S(n); one can identify
an element s of S(n) with b(v) where the edges of v are {s(1),1},...,{s(n),n}.

An edge of the form {k, k} will be called vertical. We will regard B(n — 1, N) as
a subalgebra of B(n, N) with the basic elements b(y) where 7 contains the vertical
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edge {n,n}. Along with a transposition (k,1) in S(n) we will consider the element
(&, 1) = b(7) of B(n, N) where the only non-vertical edges of v are {k,} and {k,}.

We will sometimes write sx and 3 instead of (k,k + 1) and (k,k + 1) respec-
tively. The elements si,...,5n-1;51,--- ,5n_1 generate the algebra B(n,N). One
can directly verify the following relations for these elements:

(1.2) s% =i 15 513 = N3k, SkSk = 5k Sk = Sk;

(1.3) Sk Skl Sk = Sk+1 Sk Sk+1; Sk 5k+13k = 5ki  Sk+1 Sk Sk+1 = Sk+1;
(1.4) Sk Sk+1 Sk = Sk+1 5k} Sk+1 Sk Sk+1 = Sk+1 Sk;

(1.5) Sk S| = SISk, SkSI =S8k, SkSI = §; Sk, \k—ll > 1.

Proposition 1.1. The relations (1.2) to (1.5) are defining relations for B(n,N).
For the proof of this proposition see [BW, Section 5]. Now suppose that N is a

positive integer. Consider the n-th tensor power of the representation U =CN of é ‘
the orthogonal group G = O(N,C). Let u(1), ... ,u(N) be the standard orthogonal 3
basis in U; denote by u(i; ... 1) the vector u(i1) ®...®u(in) in U®". Consider the &
centralizer algebra C(n,N) = Endg(U®"). El
Proposition 1.2. a) There is a homomorphism B(n,N) — C(n,N ) where the -‘ |
action of (k,1) and (k,1) in U®" for k <l1s defined by |
(1.6) (k1) - w(is .o ik eeeit oo in) = (i1 et ko),
b &
1) - u(in .ok .. i) = 8(ik ) - > iyt innin): 3
i=1 3

b) This homomorphism is surjective for any positive integer N.
c¢) This homomorphism is injective if and only if N 2 n.

The algebra C(n, N) is semisimple by its definition; the irreducible representations
of C(n, N) are parametrized [Wy, Theorem 5.7.F ] by the Young diagrams with at
most N boxes in the first-two columns and with n — 2r boxes altogether where
r=0,1,...,[n/2]. Denote the set of all such diagrams by O(n, N). Let V(A,n) be
the representation of C(n, N) corresponding to a diagram A € O(n, N ). The next
proposition is contained in [L, Theorem I); see also [Ki, Section 3].

Proposition 1.3. The restriction of V(\,n) onto C(n — 1,N) decomposes into
the direct sum ® V (u,n — 1) where pu ranges over all the diagrams p € O(n—1,N)
m

obtained from A by removing or adding a boz.
Corollary 1.4. Each irreducible representation of C(n—1, N) appears at most once

in the restriction onto C(n —1,N) of an irreducible representation of C(n, N).

2. Jucys-MurPHY ELEMENTS FOR B(n, N)

By definition for any complex parameter N we have the chain of subalgebras

(2.1) B(1,N)c B(2,N)C...C B(n, N).

T S O T
BT < S R
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In this section we will introduce a remarkable family of pairwise commuting ele-
ments in B(n, V) corresponding to this chain; cf. [Ju,Mu]. For every k =1,...,n
consider the element of B(k, N)

N-1 ER——

(2.2) Tk = +5 (k1) = (&, D).

Lemma 2.1. The element z; commutes with all the elements of B(k — 1, N).
Corollary 2.2. The elements z1,...,z, of B(n,N) pairwise commute.

Proposition 2.3. The following relations hold in the algebra B(n,N):

(2.3) Sk T] = T| Sk, Sk T = Ty Sk; l#k,k+1;
Sk Tk — Tk+1Sk =8k — 1, Sk Tht1 — Tk Sk =1 — 8k;

5k (z + iEk+1) =0, ($k + Tk41) 5k = 0.

Corollary 2.4. The elements i +...+z¢, withi=1,3,... are central in B(n, N).

It follows from the definition (1.1) that for any b € B(k,N) there is a unique
element b’ € B(k — 1, N) such that

(2.6) 5Lb3k = b’ 5;

cf. [W, Proposition 2.2]. Moreover, the map b~ b’ evidently commutes with the
left and right multiplication by elements from the subalgebra B(k—1, N) C B(k, N).
In particular, due to Lemma 2.1 we have

(2.7) SiTis=2"5; i=0,1,2,...
where z,(c ) = N and z,c ,z,(f), . are central elements of the algebra B(k — 1, N).
In Section 4 we will provide explicit formulas for these elements; see Corollary 4.3

‘and the subsequent remark. Here we will point out only some relations that the
definition (2.7) implies.

Lemma 2.5. We have the relations
(2.8) —220 = Z LA S W N

Consider the generating series

Zy(w) =Y 2P u™ € B(n, N)[[u™]]-

120
From the relations (2.3) to (2.7) we obtain that

(2.9) Zi(u) = Zi(—u) + Zk(u) Zi(—uw)/u — (Ze(uw) + Zk(—w)) /2u.

455



Therefore for the series Qx(u) determined by the equality
(2.10) Qr(u) - (u+1/2) = Zy(u) +u—1/2

we obtain the relation Qk(u)Qx(—u) = 1.
From now on until the end of Section 3 we will assume that the parameter N is
a positive integer. We will then have the chain of semisimple algebras

(2.11) C(1,N)cC(2,N)cC...c C(n,N).

Consider the subalgebra X (n, N) in C(n, N) generated by all the central elements
of C(1,N),C(2,N),...,C(n,N). It follows from Corollary 1.4 that the subalgebra
X(n, N) is maximal commutative.

There is a canonical basis in every representation space V(A,n) of C(n, N ) cor-
responding to the chain (2.11); it consists of the eigenvectors of the subalgebra
X(n,N). The basic vectors are parametrized by the sequences

A= (A(1),...,A(n)) € O(1,N) x ... x O(n, N)

where A(n) = A and each two neighbouring terms of the sequence differ by exactly
one box. Denote by £(\,n) the set of all such sequences. Let v(A) be the basic
vector in V (A, n) corresponding to a sequence A € L(A,n). Up to a scalar multiplier,
it is uniquely determined by the following condition: v(A) € V(A(k), k) in the
restriction of V(A,n) onto C(k,N) for any k=1,...,n - 1.

We will regard V(\,n) as a representation of the algebra B (n,N) also. In the
next section we will use the elements zi,...,Z, € B(n, N ) to describe the action
of the generators si,...,8n—1; 81, -+, 8n-1 of B(n, N) on the vector v(A) € V(A n).
It follows from Corollary 1.4 and Lemma 2.1 that the images in C(n,N) of the
elements 1, . . . , Zn belong to the subalgebra X(n, N). Denote by zx(A) the eigen-
value of z; corresponding to the vector v(A). For any A € L(A, n) we will define
A(0) as the empty partition. If a box of the diagram A occurs in the row ¢ and the
column 7 then the difference j — i is called the content of this box.

Theorem 2.6. Suppose that the diagrams A(k — 1) and A(k) differ by the boz
occuring in the row i and the column j. Then

(2.12) ) o (_1\/_2—_1_ s e z>

where the upper sign in + corresponds to the case A(k) D A(k — 1) while the lower
sign corresponds to A(k) C A(k —1).

Corollary 2.7. Suppose that N is odd or N >2n—1. Then:
a) the images in C(n, N) of the elements Ty, ..., Zn generate the algebra X (n, N);
b) the images in C(n, N) of the elements zi+... +zt withi=1,3,... generate
the centre of the algebra C(n,N).

For N = 2,4,...,2n — 2 the statements a) and b) of Corollary 2.7 are no longer
valid. However, the elements z1, . .., T, will suffice to describe the action in V' (), n)
of the generators s, ..., Sn—1; S1y--+,3n-1 of B(n,N) for any positive integer N.
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3. YOUNG ORTOGONAL ForM FOR C(n,N)

It this section we will make explicit the matrix elements sx(A, A"), 5x(A, A’) of the
generators sk, 5k € B(n, N) in the canonical basis of the representation V' (A, n):

seov(A) = D s(AAN) (), S = Y E(AA) ().

N€eL(\n) NeL(An)

Note that each of the vectors v(A) € V(A, n) here is defined up to a scalar multiplier.
Before specifying these multipliers we will determine the diagonal matrix elements
se(A, A), 3k(A, A) along with all the products sg(A, A") sk (A, A), 5e(A, A') 5 (A, A).

Let an index k € {1,...,n — 1} and a sequence A € L(A,n) be fixed. Denote by
V (A, k) the subspace in V' (A, n) spanned by the vectors v(A’) such that A'(l) = A(l)
for any [ # k. The action of s; and 3 in V(\,n) preserves this subspace.

Proposition 3.1. Suppose that A(k — 1) # A(k+1). Then 5 -v(A) =0.
Proposition 3.2. Suppose that A(k — 1) # A(k +1). Then zx(A) # zx+1(A) and
sk(A, A) = (T (M) — ze(A))

Observe that if A(k — 1) # A(k + 1) then the space V(A, k) has the dimension at
most two. Therefore due to the relation sZ = 1 we get

Corollary 3.3. Suppose that A(k—1) # A(k+1) andv(A') € V(A k) with A # A'.
Then si(A, A') sk(A,A) = 1 — (ze41 (A) — zi(A)) ™

Two Young diagrams are associated if the sum of the lengths of their first columns

equals IV while the lengths of their other columns respecively coinside. In paticular,
for an even N a diagram is self-associated if its first column consists of N/2 boxes.

Lemma 3.4. For any v(A') € V(A, k) we have zx(A) +zx(A') # 0 unless N is odd
and A’ = A where the diagrams A(k — 1), A(k) are associated.

Let us now consider the case A(k—1) = A(k+1). Due to Theorem 2.6 we then have
zx(A') + zk41(A") = 0 for any v(A’) € V(A, k). The next two lemmas are contained
in [RW, Theorem 2.4(b)].

Lemma 3.5. Suppose that A(k —1) = A(k+1). Then

dim U (A(k), N)
dimU(A(k +1),N)

§k(A, A) =

Lemma 3.6. Suppose that A(k — 1) = A(k + 1). Then the image of the action of
5y in the subspace V (A, k) is one-dimensional.

Corollary 3.7. Suppose that A(k —1) = A(k + 1) and v(A') € V(A k). Then
5e(A, A) 3k(A, A) = 5k(A, A) 3 (A, A).
There are well known explicit formulas for the dimension of the irreducible repre-

sentation U (), N) of the orthogonal group G; see for instance [ EK, Section 3]. Due
to Lemma 3.5 these formulas already provide certain expressions for the matrix




element 3x(A,A). In this section we will employ the relations (2.4) and (2.7) to

determine 5¢x(A, A) independently of any explicit formulas for dimU (X, N).
Suppose that A(k—1) = A(k+1) = p. Let [ be the quantity of pairwise distinct

rows (or columns) in the diagram p. Then one can obtain [+ 1 diagrams by adding

a box to u and [ diagrams by removing a box from p. Let ¢i,...,c41 and dy, ..., d;

be the contents of these boxes respectively. Denote by bi,..., b+ the numbers
(N-1)/2+c1,..-, (N — 1)/2+ce1, —(N — /2—di,...,—(N=-1)/2—4d

taken in an arbitrary order; then

(3.1) by + ...+ by = (N-1)/24+c+...+ap—di—...—di = (N-1)/2.

Denote by z,(:) (1) the eigenvalue of the central element z,(:) € B(k—1,N) defined
by (2.7) in the representation V(u, k — 1). Consider the formal power series in u~l

o2 w4 b
Quw =Y awu =] —i
i>0 j=1 J

the coefficients g1 (1), ¢2(u), - - - are the symmetric Schur g-functionsin by, ..., bat1.
Theorem 3.8. For everyi=1,2,... we have the equality

z/(ci) () = qinn (1) + ai(p)/2.

Corollary 3.9. Suppose that A(k —1) = A(k + 1) = p and let zx(A) = b. Then

(26+1) [] b+Y  rpx_12;
bj

b#b
b

b—
- 11 Z+b if b=—1/2.
bi#b 7

§k(A, A) =

Proposition 3.10. Suppose that A(k —1) = A(k+1) and v(A) € V(A k). Then
(3.2) se(A,A) = (5(A, A') = 6(A, A)) (zx(A) + zk(A) 7
unless N is odd and A' = A where the diagrams A(k), A(k — 1) are associated. In
the latter case sg(A,A) = 1.
Now let the index k run through the set {1,...,n — 1} while the sequences A, A’
run through the set £(A,n). If v(A') ¢ V(A, k) then se(A,A) =35k(AA) =0.
Suppose that v(A') € V(A,k). As we have already mentioned, the vectors
v(A),v(A) € V(A,n) are defined up to scalar multipliers. Up to the choice of
these multipliers Proposition 3.1 and Corollaries 3.7,3.9 describe the matrix ele-
ment 5x(A,A’) while Propositions 3.2,3.10 and Corollary 3.3 describe the matrix
element si (A, A’). The following theorem completes the description of these matrix
elements.

Theorem 3.11. Suppose that v(A') € V(A k) and A # A’. Then one can assume:
(3.3) se(MA) = sp(A,A) >0 if A(k—1) # A(k + 1),
(3.4) 5e(AN) =5(N,A) >0 if Ak—1)= Ak +1).
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4. DEGENERATE AFFINE WENZL ALGEBRA

, In this section we will be again assuming that NNV is an arbitrary complex number.
5 We will now use the results of Section 2 as a motivation to introduce a new object.
This is the complex associative algebra generated by the algebra B(n,N) along
with the pairwise commuting elements y1,...,¥n and central elements wy, ws, ...
subjected to the following relations. We impose the relations

(4.1) Sk =usk, Sk =wud; LFEE+LL
(4.2) SkUk — Yks15k =Sk — 1, SkUk+1 — Yk Sk = 1 — Sk;
(4.3) 8k (ye +vk+1) =0, (U +Yr+1) Sk =0.

Moreover, we impose the relations

(4.4) fiys =wd; =12 ...

We will view this algebra as an analogue of the degenerate affine Hecke algebra
He(n) considered in [C1,C2] and [D]; see Corollary 4.9 below. We will denote
the above introduced algebra by We(n, N ) and call it the degenerate affine Wenzl
algebra in honour of H. Wenzl who has used the maps

B(k,N)— B(k—1,N): b= b; k=12..,n-1

defined by (2.6) to prove that the algebra B(n, N) is semisimple when N is not an
integer.
It is convenient to put wo = N. The equality (4.4) is then valid for ¢ = 0 also.

The assignements
(1)

Y > Tk, Wit 2

define a homomorphism
(4.5) 7 : We(n,N) — B(n,N)

identical on B(n, N) by the relations (2.3) to (2.5) and (2.7). The relations (4.1)
to (4.4) imply that

‘ 1
(4.6) 2w =wi + Y (WY wiwio =13,
j=1

In particular, we have w1 = N (N —1)/2. Morover, the following proposition holds.

Proposition 4.1. The elements y{ +...+ y,‘t with i = 1,3,... are central in the
algebra We(n, N).

We have the ascending chain of algebras We(1, N) C We(2,N) C ... by definition.
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Proposition 4.2. For each k =1,2, ... we have the equalities
(4.7) Scvbse=wls; =012 ...
where w,(:) is a central element of the algebra We(k —1,N). The generating series

Wi(u) = Z w,(ci) u™
i>0
satisfy

Wea(w) tu=1/2 _ (wtul =1 (u=u)’
Wi(u) +u—1/2 (u—yk)?—1 (u+ye)?

(4.8)

Consider the series Z(u) and Qk(u) defined by (2.9) and (2.10) respectively. Since
z; = (N — 1)/2 we have
_u+(N-1)/2
Q) =3 Twone

Furthermore,
7 Wi(uw) — Zi(w)

for every k = 1,2, ... by (4.7). Thus we obtain the following corollary to Proposi-
tion 4.2.

Corollary 4.3. For everyk=1,2,... we have

k—

I-Il (u+z)? -1 (u — z;)?

(u—z)2—1 (u+z)? '

_u+(N-1)/2
Qk(u)—u_(N_l)/z :

=1

When N is a positive integer this statement can be also derived from Corollary
9.4 and Theorems 2.6 ,3.8 due to the next observation. Consider a Young diagram
p with m boxes and | pairwise distinct rows. Let ¢;,...,c41 and di,...,d; be
respectively the contents of the boxes that can be added to or removed from p. Let
e1,.-.,en be the contents of the boxes of y. Then for any A € C and 7 > 0

I+1 [ m
> (h+c) - > (h+d;) =hE+ > (h+e+1) —2(h+e;) + (h+ej — 1)
j=1

j=1 j=1

In the remaing part of this section will construct a linear basis in the algebra
We(n, N). Let us equip the algebra We(n, N) with an ascending filtration by
defining the degrees of its generators in the following way:

deg sk = deg 5 =0, deg Yk = 1, deg w(‘) =0.

Denote by uj the image of the element yx € We(n, N) in the corresponding graded
algebra gr We(n, N). In the latter algebra by the relations (4.1) to (4.3) we have

(4.9) supsh = Ugk), SE Sifa)s
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These relations along with (4.1) and (4.3) imply that

(4.10) (8L} By = Ty (B B), T2 K1)
(4.11) (k1) - (ug +w) =0, (u+uw)-(kI)=0; k52 .

(4.12) (k,D) uf (k,))=0; i=1,2,...; k#L

By definition, the elements b(y) where v runs through the set of graphs G(n),
constitute a linear basis in the algebra B(n, N). Any edge of a graph v € G(n) of
the form {k,1} or {k,l} will be called horizontal. If k < | then the vertex k or k
will be called the left end of the horizontal edge {k,!} or {k,[} respectively. The
vertex | or | will be then called the right end.

The number of horizontal edges in a graph v € G(n) is even. If this number is 27,
the element b(y) € B(n, N) has the form of the product (k1,0) ... (k- ;) -s where
s € S(n) and all ky,1y,..., k[, are pairwise distinct. The elements b(y) where the
graph v has 2r horizontal edges or more, span a two-sided ideal in B(n, N).

Lemma 4.4. Let u be a monomial in uy,...,u, . For any two graphs v,7' € G(n)
we have the equality in the algebra gr We(n, N)

(413) | b(7) ub(v) = & - u' b(7) b(y') "

where € € {1,0,—1} and u’,u” are certain monomials in uy, ..., u, .

Consider any graph v € G(n) with exactly 2r horizontal edges. Let
ki, ke, ki, kL and Iy,...,0,0,...0

be all the left ends and the right ends of the horizontal edges respectively.

Lemma 4.5. For any two monomials u and u’ in u,,...,u, we have the equality
in the algebra gr We(n, N)

ub(y)u' =e-ul... un b(y) ul... uln
where € € {1,0,—1} and
(4.14) ket eeeile) = =08 $#08 = BE {lunsli}-

Any product in the algebra We(n, N) of the form

(4.15) gy b(y) vty whrwl

will be called a regular monomial if the exponents i,...,%, and ji,...,jn satisfy
the conditions (4.14). The two theorems below are the main results of this section.
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Theorem 4.6. All the regular monomials (4.15) constitute a basis in We(n,N).

By the relations (2.3) to (2.5) and (2.7) for every m =0, 1, 2, ... the assignements

()

Sk Smaks Sk Smtks Yk 7 Tmky Wi Zma
define a homomorphism
T : We(n,N) — B(m +n,N).

In particular, the homomorphism 7y coincides with (4.5). Furthermore, by Lemma
2.1 the image of the homomorphism 7m commutes with the subalgebra B(m, N) in
B(m +n,N).

Theorem 4.7. The kernels of mo, ™1, T2, - - - have the zero intersection.

Due to Lemmas 4.4,4.5 and to the equalities (4.6) every element of the algebra
We(n, N) can be expressed as a linear combination of regular monomials. Thus
both Theorems 4.6 and 4.7 follow from the next proposition; cf. [O, Lemma 2.1.11].

Proposition 4.8. Given a finite set F of regular monomials in We(n,N) there
ezists m € {0,1,2,...} such that the images in B(m +n, N) of all the monomials
from F with respect to the homomorphism 7, are linearly independent.

We will now compare the algebra We (n, N) with the degenerate affine Hecke algebra
He(n) from [C1,C2] and [D]. The latter algebra is generated by the group algebra
C[S(n)] and the pairwise commuting elements vy, . . ., Vs subjected to the relations

Sk Ul = VI Sk, £k k+1;

Sk Uk — Vk+1 Sk = —1, Sk Vk+1 — Uk Sk = 1.

By the relations (4.1) to (4.4) we have the following corollary to Theorem 4.6.

Corollary 4.9. For any fa, f4,... € C the assignements Sk — Sk, Sk 0, Yk — Uk
and
wii—*f,;, i=2,4,...

determine a homomorphism of the algebra We(n, N) onto He(n).

The subalgebra in He(n) generated by the elements v1,...,Un is maximal commu-
tative. The centre of the algebra He(n) consists of all symmetric polynomials in
vy,...,Un. For the proofs of these two statements see [C2,Section 1]. The next
corollary provides analogues of these statements for the algebra We (n,N).

Corollary 4.10. The subalgebra in We(n, N) generated by the elements y1,-- - Yn
and wy, Wa, --- 8 mazimal commutative. The elements yi4.. 4y, withi=1,3,...
and w; with i = 2,4,... generate the centre of the algebra We(n,N).
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