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SUMMARY

We consider the semi-simple algebra which arises as the centralizer of
a tensor power of the fundamental representation of the orthogonal
group. There is a canonical basis in every irreducible representation
of this algebra; it is an analogue of the Young basis m an irreducible
representation of the sym metric group. We evaluate the action of the
generators of this algebra in the canonical basis. Then we mtroduce
an analogue of the degenerate affine Hecke algebra for this centralizer
algebra.

RESUME

Nous considerous 1'algebre seini-simple qm apparait comme commu-
tant d'une puissance tensorielle de la representation fondamentale du
groupe ortogonal. U existe une base canomque dans toute represent-
ation irreductible de cette algebre; c'est un analogue de la base de
Young d'une representation irreductible du groupe symetrique. Nous
calculons 1'action des generateurs de cette algebre sur la base canon-
ique. Alors nous defiiussons un analogue de 1'algebre de Hecke affine
degeneree pour cette algebre semi-simple.
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INTRODUCTION

Let G be one of the classical groups GL{N, C), 0(^V, C), 5p(JV, C) acting on the
vector space U = CN. The question how the n-th tensor power of the representation
U decomposes into irreducible siimmands leads to studying the centraUzer C'(n, N)
in End(?7)®n of the image of the group G. By the definition of the algebra C'(n, N}
we have the ascending chain of subalgebras

C{l, N)CC{2, N)C... CC{n, N).

Moreover, for the classical group G any irreducible representation of C{n, N) ap-
pears at most once in the restriction of an irreducible representation of C'(n+1, N).
Therefore a canonical basis exists in any irreducible representation V of C{n, N).
Its vectors are the eigenvectors for the subalgebra X{n, N) in C(n, N) generated
by all the central elements in the members of the above chain.

For the group G = GL{N, C} the centralizer C'(n, ^V) is generated by the per-
mutational "action of the symmetric group S{n) in U9n. The action of 5(n) on the
vectors of the canonical basis in V was described for the first time by A. Young [Y].
G. Murphy [Mp] rederived the formulas from [Y] by using the properties of the
subalgebraX(n, N).

Let us now suppose that G is the orthogonal group 0{N, C). To describe the cor-
responding centra'Uzer algebra C{n, N) expUcitly, R. Brauer [Br] introduced^certain
complex associative algebra B{n, N) along with a homomorphism onto C{n, N).
This homomorphism is mjective if and only if N ^ n. There is also a chain of
subalgebras

B{l, N)cB{2, N)c... cB{n, N).

The group algebra C[5(n)] is contained in B(n, N) as a subalgebra. The structure
of the algebra B(n, N) was investigated by P. Hanlon and D. Wales; see [HW] and
reference therein. In the present note we wiU also work with B{n, N) and regard
V as a representation of the latter algebra.

For N^ n an expUcit description of the action of the algebra B{n, N)_on the
vectors of'the canomcal basis in V was given by J. Murakami m [Mk]. ffis de-
scription was based on the results of [JMO]. In this note for any ̂  we give a new
description of this action based entirely on the properties ofthesubalgebraX(n, N)
m C'(n, JV). We present our method as a sequence of propositions and theorems
but omit their proofs. AU the proofs shaU be given m a more detailed pubUcation.
The case G = Sp{N, C) is quite similar and shall be also considered elsewhere.

In Section 2 we introduce a remarkable famUy of pairwise conunuting elements
x^,..., Xn of the algebra B{n, N). For every n the element Xn+i belongs to the
centraUzer of the subalgebra B(n, N) in B(n + 1, N). The elements x^..., Xnaie
the'analogues of the pairwise commuting elements of C [5 (n)J^ which were used in
[Ju,Mu]. "Their images in C'(n, N) belong to the subalgebra X(n, N). The vectors
of the canomcal basis in V are eigenvectors of the elements xi,..., Xn and we
evaluate the respective eigenvalues; see Theorem 2. 6.

"There is a natural projection map B{n+l, N} -» B(n, N) commuting with
both left and right multipUcation by the elements from B{n, N); this map has been
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ah-eady used by H. Wenzl in [W]. The images of powers of the element Xn+i with
respect to this map are certain central elements of the algebra B{n, N). We evaluate
the eigenvalues of these central elements in every irreducible representation V; see
Theorem 3. 8.

The algebra B{n, N) comes with a family of generators Si,..., Sn_i; Si,..., Sn-i.
The elements 5i,..., Sn-i are the standard generators of the symmetric group 5(n). ~
Moreover, the quotient of the algebra B(n, N) with respect to the ideal generated
bysi,..., Sn_i is isomorphic to C[5'(n)]. We point out certain relations between the
elements x^,... , Xn and the generators of B{n, N); see Proposition 2. 3. By using
Proposition 2. 3 and Theorems 2. 6, 3. 8 we describe the action of these generators on
the vectors of the canonical basis in every representation V. For the representations
which factorize through C[5'(n)] our formulas coincide with those from [Y].

In Section 4 we use the results of Sections 2 and 3 as a motivation to introduce

a new algebra. This algebra is an analogue of the degenerate affme Hecke algebra
He(n) from [Cl, C2] and [D]. We will denote the new algebra by We(n, N) and
call it the affine degenerate Wenzl algebra. The algebra He(n) ia a quotient of
We(n, N); see Corollary 4. 9. For each m = 0, 1, 2,... the algebra We{n, N) admits
a homomorphism to the centralizer of the subalgebra B{m, N) in B(m+n, N). The
kernels of all these homomorphisms have the zero intersection; see Theorem 4. 7.
We use these homomorphisms to construct a linear basis in the algebra We(n, N);
see Theorem 4. 6. The irreducible finite-dimensional representations of the algebra
We{n, N) will be considered elsewhere.

I should like to thank D. E. Evans, A. 0. Morris, G. I. Olshanski and A. M. Vershik
for numerous discussions. I should also like to thajik aU my colleagues at the Iiistitut
Gaspard Monge, Universite Marne-la-Vallee for their generous hospitality.

1. BRAUER CENTRALIZER ALGEBRA

Let n be a positive integer and TV be an arbitrary complex parameter. Denote by
G(n) be the set of all graphs with 2n vertices and n edges such that each vertex
is mcident with an edge. We will enumerate the vertices by 1,... , n, 1,... , n. In
other words, G(n) consists of all partitions of the set {1,... , n, 1,... , n} into pau-s.
We will define the Brauer algebra B{n, N) as SLD. associative algebra over C with
the basic elements 6(7), 7 e ^(n).

To describe the product 6(7) 6(7 ) in B(n, N) consider the graph obtained by
identifying the vertices l,..., n of 7 with the vertices 1,... , n of 7 respectively.
Let q be the quantity of loops m this graph. Remove all the loops and replace
the remaiiimg connected components by single edges, retaining the niimbers of the
terminal vertices. Denote by 707 the resultmg graph, then by definition

(1. 1) b{-f)b^')=Nq-b^^').

Evidently, the dimension of B(n, N) is equal to 1 -3-5-.. .. (2n - 1). The algebra
B(n, N) contains the group algebra of the symmetric group 5(n); one can identify
an element s of 5(n) with &(7) where the edges of 7 are {s(l), 1},..., {s(n), n}.

A-a edge of the form {k, k} wiU be called vertical. We will regard B(n -1, N) as
a subalgebra of B(n, N) with the basic elements 6(7) where 7 contains the vertical
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edge {n, n}. Along with a transposition (k, I] in S{n) we will consider the element
(fc, Q == b(7) of B(n, ̂ V) where the only non-vertical edges of -7 are {k, 1} and {A;, ̂ }.

We will sometimes write Sk and Sk instead of (fc, fc + 1) and {k, k +1) respec-
tively. The elements 5i,..., Sn-i; si, ..., Sn-i generate the algebra B(n, N). One
can directly verify the following relations for these elements:

(1. 2) 3J = 1; S^==NSk; 5fcSfe =5fcSfc = Sfc;
(1. 3) Sk Sk+i Sk = Sk+i Sk Sk+i; Sk Sfc+i Sk =Sk; Sk+l Sk Sfc+l = Sfc+i;

(1. 4) Sk Sk+i Sk = Sfc+i Sfc; 5fc4-i Sfc Sfc+i = Jfc+i Sfc;

(1. 5) SkS{==siSk, SkSi=siSk, SkSi=siSk, \k-l\>l.

Proposition 1. 1. The relations (1. 2) to (1. 5) are defining relations for B(n, N).

For the proof of this proposition see [BW, Section 5]. Now suppose that N is a,
positive iateger. Consider the n-th tensor power of the representation U = C of
the orthogonal group G = 0{N, C). Let u(l),..., u{N) be the standard orthogonal
basis m U\ denote by u(zi... in) the vector u(z'i) ®...® u{in) in [/®n. Consider the
centraUzer algebra C(n, N) = Endc(U®n).
Proposition 1.2. a) There is a homomorphism B(n, N) -r C(n, N) where the
action of (fc, 1} and {k, I) in Utsn for k < I is defined by

(1. 6) (fc, I) . u(?i ... ik... ii... in)= u{ii ... ii. .. ik ... in),
N

{k, l)-u{ii... ik... ii... in') =S{ikii)-^ u{i^.. . i.. .i.. .in).
1=1

b) This homomorphism is surjective for any positive integer N.
c) This homomorphism is injective if and only if N ^ n.

The algebra C'(n, N) is semisimple by its definition; the irreducible representations
of C{n, N) are parametrized [Wy, Theorem 5. 7. F] by the Young diagrams with at
most N boxes in the first two columns and with n - 2r boxes altogether where
r = 0, 1,..., [n/2j. Denote the set of aU such diagrams by 0{n, N). Let V(A, n) be
the representation of C(n, N) corresponding to a diagram A   0(n, N). The next
proposition is contained in [L, Theorem I]; see also [Ki, Section 3].

Proposition 1.3. The restriction ofV(\, n) onto C{n - l, N) decomposes into
the direct sum © V(/^, ra - 1) w/ier-e /A ranges over all the diagrams p, e 0{n-l, N)

^

obtained from X by removing or adding a box.

Corollary 1. 4. Each irreducible representation ofC{n-l, N) appears at most once
in the restriction onto C(n - 1, N) of an irreducible representation of C(n, N).

2. JUCYS-MURPHY ELEMENTS FOR B(n, N)

By definition for any complex parameter N we have the chain of subalgebras

(2. 1) B(l, N)cB(2, N)c... cB(n, N).

S-l
II
3%sa
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In this section we will introduce a remarkable family of pairwise commuting ele-
ments in B(n, N) corresponding to this chain; cf. [Ju, Mu]. For every k = 1,... ,n
consider the element of B(fc, N)

(2. 2)
^

^=ily±+^(A;, Z)-(ij).
(=1

Lemma 2. 1. The element Xk commutes with all the elements of B(k - 1, N}.

Corollary 2. 2. The elements 2:1,... , Xn of B{n, N) pairwise commute.

Proposition 2. 3. The following relations hold in the algebra B(n, N):

(2. 3)
(2. 4)
(2. 5)

SkXi=xiSk, SkXi=X[Sk; l^k, k+l;

Sk Xk - Xk+1 Sk = Sk - 1, Sk Xk+1 -XkSk = 1 - Sk;

Sk{xk + Xk+i) = 0, {xk + Xk+i)sk = 0.

Corollary 2. 4. The elements x{+.. . +x\ with t = 1, 3,... are central in B(n, N).

It follows from the definition (1. 1) that for any b   B(k, N) there is a unique
element b' e B(k -1, N) such that

(2. 6) Skbsk=b'Sk;

cf. [W, Proposition 2. 2]. Moreover, the map b v-^ b' evidently commutes with the
left and right multiplication by elements from the subalgebra B(fc-l, N) C B(k, N).
In particiilar, due to Lemma 2. 1 we have

(2. 7) Sk x[ Sk = Z(^) Sk ; z= 0, 1, 2,...

where z^ = N and z^\ z^\... are central elements of the algebra B(k - 1, N).
In Section 4 we wiU provide explicit formulas for these elements; see Corollary 4.3
and the subsequent remark. Here we wUl point out only some relations that the
defimtion (2. 7) unplies.

Lemina 2. 5. We have the relations

(2.8) -2^) =^-1)+E (-1)J2^)^-1); . =1, 3,... .
J=l

Consider the generating series

Zk{u)=^z^)u-t e B(n, N)[[u-1}}.
i^o

From the relations (2. 3) to (2. 7) we obtain that

(2. 9) Zk(u) = Zfc(-u) + Zk{u) Zk{-u)/u - (Zfc(u) + Zfc(-u))/2u.
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Therefore for the series Qk{u) determined by the equality

(2. 10) Qfc(u). (u+l/2)=Zfc(u)+u-l/2

we obtain the relation Qk{u) Qk{-u) = 1.
FYom now on until the end of Section 3 we wiU assume that the parameter N is

a positive integer. We will then have the chain of semisimple algebras

(2. 11) C(l, N) C C(2, N) C ... C C(n, N).

Consider the subalgebra X(n, N) in C(n, ̂ V) generated by aU the central elements
oYc(l, N), C(2, N)~,..., C{n, N). It foUows from CoroUary 1.4 that the subalgebra
X{n, N) is maxunal commutative.

There is a canonical basis in every representation space V(A, n) of C'(n, N) cor-
responding to the chain (2. 11); it consists of the eigenvectors of the subalgebra
X{n, N}. The basic vectors are parametrized by the sequences

A = (A(l),..., A(n))   0(1, AT) x ... x 0(n, ̂ )

where A(n) = A and each two neighbouring terms of the sequence cLffer by exactly
onebox. v Denote by £(A, n) the set of all such sequences. Let v(A) be the basic
vector in V(A, n) corresponding to a sequence A  £(A, n). Up to ascalar multipUer,
it is uniquely determined by the foUowing condition: v(A)   V{A{k), k} m the
restriction of V{\, n) onto C(k, TV) for any A; = l,..., n - 1.

We wiU regard V (A, n) as a representation of the algebra B(n, N) also. In the
next section we wiU 'use the elements Xi,..., XnC B(n, N) to describe the action
^f the generators si,..., 5n-i ;si,..., s^i of B(n, N) on the vector ̂ A)  j(A, n).
It foUowsfrom CoroUary 1.4 and Lemma 2. 1 that the images m C(n, N) of the
elements x^,..., Xn belong to the subalgebra X(n, N). Denote by Xk(A.) the eigen-
value of ̂ corresponding to the vector v(A). For any A   r(A, n) we wiU define
A(0) as the empty partition. If a box of the diagram A occurs m the row i and the
column j then the difference j-iis caUed the content of this box.
Theorem 2. 6. Suppose that the diagrams A(A: - 1) and A(fc) differ by the box
occuring in the row i and the column j. Then

(2. 12 ) ^(A)=±(^-+j-z
where the upper sign in ± corresponds to the case A(fc) D A(fc - 1) while the lower
sign corresponds to A(A:) C A(fc - 1).
Corollary 2. 7. Suppose that N is odd or N ^2n-l. Then:

a) the images in C7(n, N} of the elements 2;i ... ,a;n generate t/ie algebra x(n^N)'
b) the images in C(n, N) of the elements x\+... +x^ with i = 1, 3,... generate

the centre of the algebra C(n, N).

Foj. ̂ y = 2, 4,... , 2n - 2 the statements a) and b) of CoroUary 2. 7 are no longer
vaUd. However, the elements 3:1,... ,a;n wiU suffice to describe the action in V(A^n)
oiTthe generators 5i,..., Sn-i; si,..., Sn-, of B(n, ̂V) for any positive integer N.

-q-

.*
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3. YOUNG ORTOGONAL FORM FOR C(n, N)

It this section we wiU make explicit the matrb; elements Sfc(A, A/), Sfe(A, A/) of the
generators Sk, Sk   B(n, N) in the canonical basis of the representation V(A, n):

Sk-vW= ^ 5, (A, A')u(A/),
A'6£(A, n)

Sk-vW= ^ ^(A, A/)^(A/).
A'6£(A,n)

Note that each of the vectors -u(A)   V{\, n) here is defined up to a scalar multiplier.
Before specifymg these miiltipliers we will determine the diagonal matrbc elements
5fc(A, A), Sfc(A, A) along with all the products Sfc (A, A') Sfc(A/, A), SA:(A, A/) 5fc(A/, A).

Let an index A;   {1,... , n- 1} and a sequence A 6 C{\^ n) be fixed. Denote by
V(A, k) the subspace in V(A, n) spanned by the vectors u(A/) such that A/(Z) = A(^)
for any Z -^ k. The action of Sk and Sk m I^(A, n) preserves this subspace.

Proposition 3. 1. Suppose that A(fc - 1) 7^ A(fc + 1). T/ie?z Sk . -u(A) = 0.

Proposition 3. 2. Suppose that K{k - 1) 7^ A(^ + 1). T/ien 3;jc(A) 7^ 2;fe+i(A) an^
5fc(A, A)=(^+i(A)-^(A))-1.
Observe that if A(A; - 1) 7^ A(fc + 1) then the space V(A, k) has the dimension at
most two. Therefore due to the relation 5J = 1 we get

CoroUary 3.3. Suppose that A(fc-1) ^ A(A;+1) anrf v(A/)   V(A, fc) wri/i A 7^ A/.
Then s, (A, A/) Sfc(A/, A) = 1 - (^+i(A) -^(A))~2.
Two Young diagranis are associated if the siun of the lengths of their first cohimns
equals N while the lengths of theu- other colxmms respecively coinside. In paticular,
for an even N a diagram is self-associated if its first column consists of N/1 boxes.

Lemma 3. 4. For any .u(A/) e V(A, A;) we /lave 2;fc(A) 4-3;A;(A ) 7^ 0 un/e^s ^V is odd
and A/ = A where the diagrams A{k - 1), A(A;) are associated.

Let us now consider the case A(fc- 1) = A(A;+1). Due to Theorem 2. 6 we then have
2;fc(A/) +2;fe+i(A/) = 0 for any u(A/) e V(A, A;). The next two lemmas are contained
m[RW, Theorem2. 4(b)].

Lerama 3. 5. Suppose that A(k - 1) = A(fc + 1). Then

dtaU(&W, N)^
''^~ dlmU{A{k+l), N)~

Lenuna 3. 6. Suppose that A.(k - 1) = A(fc + 1). Then the image of the action of
Sfc in the subspace Vr(A, k) is one-dimensional.

CoroUary 3. 7. Suppose that A(fc - 1) = A(/c + 1) and v(A') 6 V{A, k). Then
Sfc(A, A') Sfc(A/, A) = Sfc(A, A) Sfc(A/, A/).

Thete are well known explicit formulas for the dimension of the irreducible repre-
sentation [/(A, N) of the orthogonal group G; see for instance [EK, Section 3]. Due
to Lemma 3. 5 these formulas already provide certain expressions for the matrbc
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element 5fc(A, A). In this section we will employ the relations (2. 4) and (2. 7) to
determine s^(A, A) independently of any explicit formulas for dimL/'(A, Ar).

Suppose that A(A; - 1) = A(/c + 1) = ^. Let Z be the quantity of pairwise distinct
rows (or coliunns) in the diagram p.. Then one can obtain I + 1 diagrams by adding
a box to p, and I diagrams by removing a box from p.. Let ci,..., c;+i and d^,... , di
be the contents of these boxes respectively. Denote by &i,..., &2;+i the numbers

(N-l)/2+Ci,..., (iV-l)/2+c^, -OV-l)/2-rii,..., -OV-l)/2-d;

taken in an arbitrary order; then

(3. 1) &i +... + &2;+i = (^V - 1)/2 +ci +... + c;+i -rfi -... -d( = (^V- 1)/2.

Denote by z^ (/u) the eigenvalue of the central element ^   B(k-\, N) defined
by (2. 7) in the representation V(^, k -1). Consider the formal power series in u

2(+1
U+ f)j

-1

Q^, u)=^^)u-i=Y[ ^
i^Q J=l " "-'

the coefficients q\ {p), q^{/j, ),... aie the symmetric Schur q-functions infci,..., &2;+i-

Theorera 3. 8. For every z = 1, 2,... we have the equality

4 (^=^4. i(At)+g. (^)/2.

Corollary 3. 9. Suppose that A(fc - 1) = A(fc + 1) = ^ arac? fc^ a-A;(A) = 6. TAen

Sfc(A, A) = ^

(26+l)n^ ^^-1/2;
bj^b

-n^-=-l/2-
Proposition 3. 10. Suppose that A(fc - 1) = A(fc + 1) and v{A')   V(A, /c). T/ien

(3. 2) 5fc(A, A') = (ife(A, A/) -<5(A, A/)) (.r, (A) +.c, (A/))-1
unless N is odd and A/ = A where the diagrams A(fc), A(A; - 1) are associated. In
the latter case SA;(A, A) = 1.

Now let the index k run through the set {!,... , n - 1} while the sequences A, A
run through the set r(A, n). If v(A') ^ V(A, k) then 3fc(A, A/) = 5fc(A, A/) = 0.

Suppose that v(A/)   V(A, fc). As we have already mentioned, the vectors
.u(A), i;(A/)   V(A, n) are defined up to scalar multipliers. Up to the choice of
these multipliers Proposition 3. 1 and Corollaries 3. 7, 3. 9 describe the matrix ele-
ment ifc(A, A/) while Propositions 3. 2, 3. 10 and Corollary 3. 3 describe the matrbc
element SA;(A, A/). The following theorem completes the description of these matrix
eleiaents.

Theorem 3. 11. Suppose that r(A/) 6 V(A, k) and A -^ A . T/ien one can assume:

(3.3) Sfe(A, A/)=Sfc(A/, A)>0 z/A(A-1) ^ A(fe+1),
(3. 4) Jfc(A, A/)=Sfc(A/, A)>0 ^ A(fc - 1) = A(A:+1).
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4. DEGENERATE AFFINE WENZL ALGEBRA

In this section we will be again assuming that N is an arbitrary complex number.
We will now use the results of Section 2 as a motivation to introduce a new object.
This is the complex associative algebra generated by the algebra B{n, N) along
with the pairwise commuting elements y\, - .. , Vn and. central elements wi, ws, ...
subjected to the following relations. We impose the relations

(4. 1)
(4. 2)
(4. 3)

skyi=yisk, skyi:=yisk; l^k, k+l;

Sk Vk - Vk+1 Sk=Sk-\, Sk Vk+1 -VkSk =~L-Sk;

Sk(Vk+yk+l) = 0 , {yk+Vk+l) Sk = 0 .

Moreover, we impose the relations

r

y:r

(4. 4) si y[ si = w, si ; t=l, 2,....

We will view this algebra as an analogue of the degenerate affine Hecke algebra
He(n) considered m [C1, C2] and [D]; see Corollary 4. 9 below. We will denote
the above introduced algebra by We(n, N) and call it the degenerate affine Wenzl
algebra in honour of H. Wenzl who has used the maps

B{k, N)->B(k-l, N): b^b'; k = 1, 2,... , n-1

defined by (2.6) to prove that the algebra B(n, N) is senusimple when N is not an
integer.

It is convenient to put WQ == N. The equality (4. 4) is then valid for t = 0 also.
The assignements

yk ̂  Xk, Wi .
(')

define a homomorphism

(4. 5) TT: We(n, N)^B{n, N)

identical on B{n, N) by the relations (2. 3) to (2. 5) and (2. 7). The relations (4. 1)
to (4. 4) imply that

t

(4. 6) -2 w, = w._i + ^ (-1)J w._, w^-i; t= 1, 3, ....
.?=!

In particular, we have Wi = N{N - 1)/2. Morover, the following proposition holds.

Proposition 4. 1. The elements y\ + ... +ytn 
with z = 1, 3,... are central in the

algebra We{n, N).

We have the ascending chain of algebras We{l, N) C We(2, N) C ... by defiiiition.
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Proposition 4. 2. For each k =1, 2, ... we have the equalities

(4. 7) 5fc^.Sfc=w^)Sfc; 2=0, 1, 2,...

where w^ is a central element of the algebra We{k - 1, N). The generating series

WhW=^w^)u-1
satisfy

(4. 8)

t$0

Wfc+i(u)+u-l/2 _ (u+2/fc)2-! {u-ykY
Wk{u)+u-\/1~ {u-ykY-\ (u+z/fc)2-

Consider the series Zk(u} and Qfe(u) defined by (2. 9) and (2. 10) respectively. Since
xi == (N - 1)/2 we have

QM = U+(N-^ .
Furthermore,

u-(N - 1)/2 '

7T : Wk{u) ^ Zk{u)

for every A; = 1, 2, ... by (4. 7). Thus we obtain the following corollary to Proposi-
tion 4.2.

Corollary 4.3. For every ̂  = 1, 2, ... we have

fc-l

QM = fu"
(u+xi)2-! {u-xi)'tu+(Ar-l)/2

u-(N- 1)/2 ^ (u - xi)2 -1 (u+ xi)2 '

When N is & positive integer this statement can be also derived from Corollary
2.4 and Theorems 2. 6 , 3.8 due to the next observation. Consider a Young diagram
p. with m boxes and I painvise distinct rows. Let ci,..., ci+\ and di,... , d; be
respectively the contents of the boxes that can be added to or removed from p.. Let
ei,.. ., em be the contents of the boxes of p.. Then for any h eC and i~^- 0

(+1 I m

^(h+ CjY ~^(h+ djY =hk+^{h+ej+ l)t - 2{h + ej. )t +(h+ ej - l)t.
J=l J=l J=l

la the remaing part of this section will construct a linear basis in the algebra
We(n, N). Let us equip the algebra We(n, N) with an ascendmg filtration by
defining the degrees of its generators in the following way:

deg Sk = deg Sk = 0, deg yjk = 1, deg w(i) = 0.

Denote by Uk the image of the element yk   We(n, N) in the corresponding graded
algebra gr We{n, N). la the latter algebra by the relations (4. 1) to (4. 3) we have

(4. 9) sukS-l =u,(k), s   5(n).
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These relations along with (4. 1) and (4. 3) imply that

(4. 10)
(4. 11)

{k, l) Um= Um {k, l) , m^k, l;

(A;, /)-(ufc+u;)=0, {uk+ui)-(k, l)=0; k^l.

Rirthermore, due to the relations (4. 4) and (4. 9) we have

(4. 12) (A:, Q u^ (fc, 0 =0; z= 1, 2,... ; A:/L

By definition, the elements 6(7) where 7 runs through the set of graphs G{n),
constitute a linear basis in the algebra B(n, Ar). Any edge of a graph 7   ^(n) of
the form {k, l} or {k, l} will be called horizontal. If k < I then the vertex k or k
will be called the left end of the horizontdl edge {k, 1} or {fc, / } respectively. The
vertex I or I wUl be then caUed the right end.

The number of horizoutal edges in a graph 7   G{n) is even. If this number is 2r,
the element b('j)   B{n, N) has the form of the product (A;i, ̂ i) .. . {kr, lr) . s where
s e 5(n) and aU A;i, ^i,... , A;r, ̂  are pairwise distinct. The elements 6(7) where the
graph 7 has 2r liorizontal edges or more, span a two-sided ideal in B(n, N).

Leinnia 4. 4. Let u be a monomial inui,... , Un . For any two graphs 7, 7/ 6 G(n)
we have the equality in the algebra gr We(n, N)

(4. 13) 6(7) u 6(7/) = £ . u/ 6(7) 6(7/) u//

where e £ {1, 0, -!} and u', u" are certain monomials inu\,... , Un .

Consider any graph 7 £ ^(n) with exactly 2r horizontal edges. Let

ki,..., kr, k[,... k'^ and l^,.. ., lr , 7^,.. .^

be all the left ends and the right ends of the horizontal edges respectively.

Lenuna 4.5. For any two monomials u and u' m HI, ... , Un we have the equality
in the algebra gr We (n, N)

u 6(7) u' =e- u[l. .. u^ &(7) u^ ... u^n

where £   {1, 0, -1} and

(4. 14) k^{h,..., lr} =^ ik=Q; Jk^O ^ ke{l[,..., l'r}.

Any product in the algebra We (n, N) of the form

(4. 15) yf ... ̂ - &(7) ̂  ... ̂ " . w?2 w^...

will be caUed a regular monomial if the exponents i^,... , in and ji,... , jn satisfy
the conditions (4. 14). The two theorems below are the main results of this section.
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Theorem 4. 6. All the regular monomials (4. 15) constitute a basis in We{n, N).

By the relations (2. 3) to (2. 5) and (2. 7) for every m = 0, 1, 2, ... the assignements

Sk ^ Sm+fc, Sk ̂  Sm+fc, Vk 1-^ ^m+fc, ^ -m+1

define a homomorphism

TT^ : We{n, N) -^ B(m +n, N).

In. particular, the homomorphism TTQ coincides with (4. 5). Furthermore, by Lerama
2. 1 the image of the homomorphism. -n-m commutes with the subalgebra B(rn, N) in
B[m+n, N).

Theorem 4. 7. The kernels o/7To, 7Ti, 7T2, ... have the zero intersection.

Due to Lemmas 4. 4, 4. 5 and to the equalities (4. 6) every element of the algebra
We{n, N) can be expressed as a linear combination of regular monomials. Thus
both Theorems 4. 6 and 4. 7 follow from the next proposition; cf. [0, Lemma 2. 1. 11].

Proposition 4. 8. Given a finite set jr of regular monomials in We{n, N) there
exists m 6 {0, 1, 2,... } such that the images in B{m+ n, N) of all the monomials
from J: with respect to the homomorphism ir-rn are linearly independent.

We will now compare the algebra We[n, N) with the degenerate affine Hecke algebra
He(n) from [Cl, C2] and [D]. The latter algebra is generated by the group algebra
C[S{n)} and the pairwise commuting elements vi,... , Un subjected to the relations

Sfc .U; = I/; SA: , l^k, k+l;

SkVk-Vk+T. Sk==-1, SkVk+l-VkSk =1.

By the relations (4. 1) to (4. 4) we have the following corollary to Theorem 4. 6.

Corollary 4. 9. For any /2>/4i . . . £ C the assignements Sk *-^ Sk, Sk ̂ -r 0, yk ̂ -" Vk
and

Wi^/i, 2=2, 4,...

determine a homomorphism of the algebra We(n, N) onto He(n).

The subalgebra in He{n) generated by the elements v^,... , Vn is maximal commu-
tative. The centre of the algebra He{n} consists of all symmetric polynomials in
v\,... , Vn- For the proofa of these two statements see [C2 , Section 1]. The next
corollary provides analogues of these statements for the algebra We(n, N).

Corollary 4. 10. The subalgebra in We{n, N) generated by the elements yi,.. . , Vn
and wi, W2, ... is maximal commutative. The elements y[+- . -+yzn 

wzth i = 1, 3,...

and Wi with i = 2, 4,... generate the centre of the algebra We (n, N).

hi

sft
sS

^

I
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