Cycle type and descent set in the hyperoctahedral groups

Stéphane Poirier* Université du Québec à Montréal LACIM

Case Postale 8888, Succursale Centre-Ville Montréal (Québec) Canada, H3C 3P8. email: poirier@mipsmath.math.uqam.ca

March 6, 1995

Résumé

Nous exprimons le nombre d'éléments du groupe hyperoctaédral B_n qui ont un ensemble de descentes donné, et dont l'inverse a un ensemble de descentes donné, comme le produit scalaire de deux représentations de B_n . On donne aussi le nombre d'éléments de B_n , qui sont dans une classe de conjugaison donnée et qui ont un ensemble de descentes donné, à l'aide d'un produit scalaire de deux représentations du groupe hyperoctaédral.

On a enfin, sous forme de séries génératrices de fonctions symétriques. des analogues des formules classiques qui donnent les s'eries génératrices exponentielles des éléments alternants des B_n .

Abstract

We express the number of elements of the hyperoctahedral group B_n , which have descent set K and such that their inverses have descent set J, as a scalar product of two representations of B_n . We also give

*Supported by ISM (Montréal).

the number of elements of B_n , which have a prescribed descent set and which are in a given conjugacy class of B_n by another scalar product of representations of B_n .

We finally give, by generating series of symmetric functions, some analogs of the classical formulas which express the exponential generating series of alternating elements in the B_n 's.

1 Introduction

Enumerating permutations according to certain statistics, as descent set, major index or cycle type is an old problem (see [1, 17]). In [21], Solomon defines, for each subset K of $\{1, \ldots, n-1\}$, a representation ψ_K of S_n such that the dimension of ψ_K is the number of permutations in S_n with descent set K. The characteristic symmetric function of this representation appears already in MacMahon's work [17] see also [13].

In [19] and [3] appear representations X_{λ} of S_n , indexed by the partitions λ of n, such that the number of permutations of cycle type λ is the dimension of X_{λ} .

Moreover, Foulkes [7] and Gessel [8] have proved that the number of permutations σ in S_n , with descent set $K \subseteq \{1, \ldots, n-1\}$ and such that the descent set of σ^{-1} is $J \subseteq \{1, \ldots, n-1\}$, is the scalar product $\langle \psi_K, \psi_J \rangle$. Gessel and Reutenauer have shown in [9] a related result giving the number of permutations with descent set $\{1, \ldots, n-1\}\setminus K$ and with cycle type λ as the scalar product $\langle \psi_K, \chi_\lambda \rangle$.

The literature also furnishes extensions of the enumeration of certain permutations to Coxeter groups (see [2, 21, 22]) or to wreath products (see [5, 18]).

In this communication we extend previous results to the case of the hyperoctahedral group. Our main results are Theorems 4, 7, and 10; Theorem 2 is a technical result. The descent set of $\sigma \in B_n$ is the set

$$des(\sigma) = \{i | 0 \le i \le n-1, \sigma(i) > \sigma(i+1)\},\$$

if we consider B_n as the group of the permutations σ of $\{-n, \ldots, -1, 0, 1, \ldots, n\}$ such that for all $i \in \{0, \ldots, n,\}$ we have $\sigma(-i) = -\sigma(i)$. According to the terminology of Foata and Schützenberger [6], the descent set of σ^{-1} will be called the *idown set* of σ . Theorem 4 expresses this number as the scalar product of two representations of B_n .

Theorem 7 gives, as a scalar product of two representations of B_n , the number of elements of the hyperoctahedral group, which have a prescribed descent set and which are in a given conjugacy class of B_n .

In the last section, we generalise to the hyperoctahedral group the notion of Eulerian symmetric functions, credited to Gessel by Désarménien [4, p. 283] and we state Theorem 10 which is an analog of a result of Springer [22, p. 35].

The main tool for this purpose is a generalisation of the characteristic function of Frobenius, defined by Geissinger [10], see also [11]. Essentially, our characteristic function is an isomorphism between the Z-module generated by the irreducible characters of the hyperoctahedral groups and the ring $\Lambda(X) \otimes \Lambda(Y)$, where $\Lambda(X)$ is the ring of symmetric functions on X. This is stated in Theorem 2, which is implicit in [16] and is an easy consequence of Proposition 5.1 in [23], see also [24].

2 Characteristic function

In the following, the elements of the hyperoctahedral groups will be called signed permutations. A signed permutation σ in B_n is determined by the sequence $\sigma(1)\sigma(2)\ldots\sigma(n)$. The group B_n is the subgroup of $S_{\{-n,\ldots,-1,1,\ldots,n\}}$ of permutations which commute with $w_0 = (1,-1)\ldots(n,-n)$.

It is well known, and easy to verify, that a signed permutation σ , viewed as an element of $S_{\{-n,\dots,-1,1,\dots,n\}}$, has two kinds of cycles:

$$(x_1, \ldots, x_k), \quad (-x_1, \ldots, -x_k)$$

or $(x_1, x_2, \ldots, x_k, -x_1, -x_2, \ldots, -x_k).$

We will say that a couple of cycles of the first kind is an even cycle of length k, and that a cycle of the second kind is an odd cycle of length k. The cycle type $ct(\sigma)$ of a signed permutation σ is a couple $(\lambda; \mu)$ of partitions where the parts of λ (resp. μ) are the lengths of the even cycles (resp. odd cycles) of σ . If $\sigma \in B_n$, one has $|\lambda| + |\mu| = n$, where $|\lambda| = \lambda_1 + \ldots + \lambda_k$. The following proposition gives a classical result (see [12]).

Proposition 1 Two signed permutations in B_n are in the same conjugacy class if and only if they have the same cycle type.

Let X and Y be infinite sets of variables, $\Lambda(X)$ denotes the ring of symmetric functions on X with coefficients in Z. We define the scalar product < -, - > on the ring $\Lambda(X) \otimes \Lambda(Y)$ by

$$< s_{\lambda}(X) \otimes s_{\mu}(Y), s_{\lambda'}(X) \otimes s_{\mu'}(Y) >= \delta_{\lambda\lambda'}\delta_{\mu\mu'},$$

where s_{λ} denotes the Schur function associated to the partition λ .

For any group G, we denote by R(G) the Z-module generated by the irreducible characters of G. Let R be the direct sum of the $R(B_n)$ for $n \ge 0$. Then, with the following multiplication, R has a ring structure. If $f \in R(B_m)$ and $g \in R(B_n)$, then $f \times g$ is a character of $R(B_m) \times R(B_n)$. We embed $B_m \times B_n$ in B_{m+n} and we define

$$f.g = ind_{B_m \times B_n}^{B_{m+n}}(f \times g).$$

One can verify that R is a commutative, associative and graded ring. If we have $f = \sum f_n$ and $g = \sum g_n$, with f_n, g_n in $R(B_n)$, we define the scalar product of f and g by

$$< f,g >= \sum_{n\geq 0} < f_n, g_n >_{B_n},$$

where $\langle f_n, g_n \rangle_{B_n} = \frac{1}{n!2^n} \sum_{\sigma \in B_n} f_n(\sigma) g_n(\sigma^{-1})$. For any character f of B_n we define ch(f) by

$$ch(f) = \frac{1}{|B_n|} \sum_{\substack{\sigma \in B_n \\ ct(\sigma) = (\lambda; \mu)}} f(\sigma)(p_{\lambda_1}(X) + p_{\lambda_1}(Y)) \dots (p_{\mu_1}(X) - p_{\mu_1}(Y)) \dots$$

Where $p_k(X)$ is the power-sum symmetric function on X.

The following result extends to B_n the theory of the characteristic map (see [15]) and is an easy consequence of [23, proposition 5.1], this is also a restatement of [16, theorem (9.10)].

Theorem 2 One can index the irreducible characters $\chi^{(\lambda;\mu)}$ of the hyperoctahedral groups by the couples (λ,μ) of partitions such that $ch(\chi^{(\lambda;\mu)}) = s_{\lambda}(X) \otimes s_{\mu}(Y)$, so that ch is an isometric isomorphism.

3 Signed permutations with given descent set and idown set

The group B_n , as a Coxeter group embedded in $S_{\{-n,\ldots,-1,1,\ldots,n\}}$, is generated by $\{r_0, r_1, \ldots r_{n-1}\}$ where $r_0 = (1, -1)$ and $r_i = (i, i+1)(-i, -i-1)$ for every $1 \le i \le n-1$. Let I_n be the set $\{0, \ldots, n-1\}$; if $K \subseteq I_n$ we denote by W_K the subgroup of B_n generated by the $r_k, k \in K$.

In the group algebra $\mathbb{Q}[B_n]$ of B_n over \mathbb{Q} , we define, for all $K \subseteq I_n$, the two idempotents

(1)
$$\xi_K = \frac{1}{|W_K|} \sum_{w \in W_K} w,$$

 $\eta_K = \frac{1}{|W_K|} \sum_{w \in W_K} \varepsilon(w) w,$

where ε is the character of B_n such that $\varepsilon(r_i) = -1$ for $i \in I_n$. If $K \subseteq I_n$, let ψ_K be the character afforded by the left ideal $\mathbb{Q}[B_n]\xi_K\eta_{I_n\setminus K}$. The following proposition is due to Solomon [21].

Proposition 3 If K is a subset of I_n we have:

i) For all $g \in B_n$, $\psi_K(g) = \varepsilon(g)\psi_{I_n \setminus K}(g)$.

ii) The number of signed permutations having descent set K is equal to the dimension of $\psi_{I_n\setminus K}$.

We prove the next result, which extends, to the case of the hyperoctahedral group, results of Foulkes [7] and Gessel [8].

Theorem 4 Let K and J be subsets of I_n . Then the number of elements of B_n having descent set K and idown set J is

$$\langle \psi_{I_n\setminus K}, \psi_{I_n\setminus J} \rangle = \langle \psi_K, \psi_J \rangle.$$

To prove this Theorem, we define some $F_K(X,Y)$ $(K \subseteq I_n)$ which generalise the quasisymmetric functions of Gessel (see [8]). If $\Pi \subseteq B_n$ we call quasisymmetric generating function of Π the series

$$\sum_{\pi\in\Pi}F_{des(\pi)}(X,Y).$$

Let ω_0, ω_1 be the isometric automorphisms of $\Lambda(X) \otimes \Lambda(Y)$ defined by

 $\omega_0(s_\lambda(X)\otimes s_\mu(Y)) = s_{\lambda'}(X)\otimes s_\mu(Y)$

$$\omega_1(s_\lambda(X) \otimes s_\mu(Y)) = s_\lambda(X) \otimes s_{\mu'}(Y)$$

where μ' is the partition conjugate to the partition μ (see [15, p.2]). A sequence of technical lemmas gives us the following result.

- **Lemma 5** i) If the quasisymmetric generating function g of Π is symmetric in X and Y, then the number of elements of Π which have descent set K is $\langle g, \omega_1(ch(\psi_{I_n\setminus K})) \rangle$.
 - ii) If $J \subseteq I_n$ and $\Pi = \{\sigma \in B_n | des(\sigma^{-1}) = J\}$ then the quasisymmetric function of Π is $\omega_1(ch(\psi_{I_n \setminus J}))$.

Theorem 4 is an easy consequence of lemma 5.

4 Signed permutations with given cycle type and descent set

Let A and \overline{A} be two infinite alphabets, and B be the disjoint union of A and \overline{A} . Then $\mathbf{Q} < B >$ denotes the free associative (non commutative) Q-algebra generated by B. The elements of $\mathbf{Q} < B >$ are called *polynomials*, and the set B^* of the words on B is a basis of $\mathbf{Q} < B >$. If P and Q are polynomials their Lie bracket is defined by

$$[P,Q] = PQ - QP.$$

The free Lie algebra $\mathcal{L}(B)$ is the smallest submodule of $\mathbf{Q} < B >$ containing B and closed under Lie bracket; its elements are called Lie polynomials.

A Lie polynomial P is said to be even (resp. odd) and homogeneous of degree i, if it is a linear combination of words of length i having an even (resp. odd) number of letters in \overline{A} .

The symmetric product of k polynomials P_1, \ldots, P_k is defined by

$$(P_1,\ldots,P_k)=\frac{1}{k!}\sum_{\sigma\in S_k}P_{\sigma(1)}\ldots P_{\sigma(k)}.$$

For any couple of partitions (λ, μ) , we denote by $U_{(\lambda,\mu)}$ the subspace of $\mathbf{Q} < B >$ linearly generated by the symmetric products $(P_1, \ldots, P_k, Q_1, \ldots, Q_l)$ with the two conditions

- P_i is an even Lie polynomial of degree λ_i ,
- Q_i is an odd Lie polynomial of degree μ_i .

The following proposition extends Lemma 8.22 in [20] and is a consequence of the theorem of Poincaré-Birkhoff-Witt.

Proposition 6

$$\mathbf{Q} < B > = \oplus_{\lambda,\mu} U_{(\lambda,\mu)}.$$

We now suppose that $\{1, \ldots, n\} \subset A$ and that $\{\overline{1}, \ldots, \overline{n}\} \subset \overline{A}$. From now on, we will write $\sigma(i) = \overline{j}$ instead of $\sigma(i) = -j$. Let E_n be the subspace of $\mathbb{Q} < B$ > generated by the words $w_{\sigma} = \sigma(1) \ldots \sigma(n)$ for all $\sigma \in B_n$. We define the *absolute value* on $\{1, \ldots, n, \overline{1}, \ldots, \overline{n}\}$ by

$$|i| = |\overline{i}| = i$$
 for all $i \in \{1, \dots, n\}$.

There is a natural action of B_n onto $\mathbb{Q} < B >$. By the change of basis in $\mathbb{Q} < B >$ defined by $i \mapsto 1/2(i+\overline{i}), \overline{i} \mapsto 1/2(i-\overline{i})$, this gives another natural action which we use in the sequel.

For this action the spaces E_n and $U_{(\lambda,\mu)}$ are invariant. Hence they define a representation of B_n on the space $E_n \cap U_{(\lambda,\mu)}$; let $X_{(\lambda,\mu)}$ be the character of this representation.

If we write $\tilde{\omega}_i = ch^{-1} \circ \omega_i \circ ch$, for i = 1, 2, we have that $\tilde{\omega}_i$ maps irreducible characters onto irreducible characters and the following result holds

Theorem 7 The number of signed permutations having cycle type (λ, μ) and descent set $K \subseteq I_n$ is

 $< X_{(\lambda,\mu)}, \tilde{\omega}_1(\psi_{I_n\setminus K}) > = < \varepsilon X_{(\lambda,\mu)}, \tilde{\omega}_0(\psi_K) > .$

This Theorem extends Theorem 2.1 in [9]. The proof of this result is based on lemma 5 i) and on the following lemma.

Lemma 8 If (λ, μ) is a couple of partitions and if Π is the set of signed permutations having cycle type (λ, μ) , then the quasisymmetric generating function of Π is $ch(X_{(\lambda,\mu)})$.

To prove this lemma, we use a bijection between a basis of $U_{(\lambda,\mu)}$ and a subset of multisets of Lyndon words (see [14, p. 67 and 77] and [20, p. 166]). We also use the equality of the generating series of $U_{(\lambda,\mu)}$ and $ch(X_{(\lambda,\mu)})$.

5 Alternating signed permutations and trigonometric symmetric functions.

A rising alternating (resp. falling alternating) signed permutation σ is a signed permutation having descent set $K_n^r = \{1, 3, \ldots\} \subset I_n$ (resp. $K_n^f = \{0, 2, \ldots\} \subset I_n$).

Example The signed permutation $\sigma = 314\bar{6}7\bar{2}5$ is a rising alternating element of B_7 and $\sigma = \bar{1}437\bar{6}\bar{2}\bar{5}$ is a falling alternating element of B_7 .

It is well known that the exponential generating series of rising alternanting permutations is

$$\frac{1+\sin x}{\cos x}$$

Let b_n denotes the number of rising alternating signed permutations in B_n . If one takes $b_0 = 1$, one then has, see [22, p. 35]

(4)
$$\sum_{n\geq 0}\frac{b_n}{n!}x^n = \frac{\sin x + \cos x}{\cos 2x}.$$

For any set of variables X, if $h_n(X)$ is the complete symmetric function on X, and $H_X(t) = \sum_{n\geq 0} h_n(X)t^n$; we define the symmetric cosinus and sinus, as in [4] by

(5)
$$COS_X(t) = \frac{H_X(it) + H_X(-it)}{2}$$

(6)
$$SIN_X(t) = \frac{H_X(it) - H_X(-it)}{2i}$$

We then have the next lemma

Lemma 9 One has the three following relations

i)
$$COS_X(t)^2 + SIN_X(t)^2 = H_X(it)H_X(-it)$$

ii) $COS_{X\cup Y}(t) = COS_X(t)COS_Y(t) - SIN_X(t)SIN_Y(t)$
iii) $SIN_{X\cup Y}(t) = COS_X(t)SIN_Y(t) + SIN_X(t)COS_Y(t).$

Note that the classical trigonometric formulas follow by the specializations $p_1(X)t \mapsto a, p_1(Y)t \mapsto b$ and the other power-sums are mapped to zero. In

[4], Désarménien gives a symmetric analog of the generating series in equation (3) of the form

(7) $\frac{1+SIN_X(t)}{COS_X(t)}.$

The following Theorem extends (7) to the case of the hyperoctahedral groups and gives symmetric analogs of (4).

--- /.1

Theorem 10

$$\sum_{n \ge 0} ch(\psi_{K_{2n+1}^{r}})t^{2n+1} = H_X(it)H_X(-it)\frac{SIN_Y(t)}{COS_{X\cup Y}(t)}$$

$$\sum_{n \ge 0} ch(\psi_{K_{2n+1}^{f}})t^{2n+1} = \frac{SIN_X(t)}{COS_{X\cup Y}(t)}$$

$$1 + \sum_{n \ge 1} ch(\psi_{K_{2n}^{r}})t^{2n} = \frac{COS_X(t)}{COS_{X\cup Y}(t)}$$

$$1 + \sum_{n \ge 1} ch(\psi_{K_{2n}^{f}})t^{2n} = H_X(it)H_X(-it)\frac{COS_Y(t)}{COS_{X\cup Y}(t)}.$$

To prove this result we use the following formula, due to Solomon [21]

$$\psi_K = \sum_{K \subseteq J \subseteq I_n} (-1)^{|J \setminus K|} \phi_J$$

where the ϕ_J are certain representations of the group B_n . We also use the fact that $ch(\phi_J)$ can be expressed as a product of complete symmetric functions on X and $X \cup Y$.

References

- [1] André D. (1881). Sur les permutations alternées, Journal de mathématiques pures et appliquées, 7, 161-184.
- [2] Arnold V.I. (1992). Springer numbers and morsification spaces, Journal of algebraic geometry, 1, 2, 197-214.
- [3] Bergeron, F., Bergeron, N. and Garsia A. M. (1988). Idempotents for the free Lie algebra and q-enumeration. In *invariant theory and tableaux* (ed D. Stanton), p.166-190. IMA Volumes in Mathematics and its Applications, V. 19. Springer, Berlin.

- [4] Désarménien J. (1983). Fonctions symétriques associées à des suites classiques de nombres, Annales scientifiques de l'École Normale supérieure, 16,271-304.
- [5] Ehrenborg R., Readdy M. (1994). Sheffer posets and r-signed permutations, preprint.
- [6] Foata D. and Schützenberger M.-P. (1978). Major index and inversion number of permutations, *Mathematische Nachrichten*, 83, 143-159.
- [7] Foulkes H.O. (1976). Enumeration of permutations with prescribed up-down and inversion sequences, *Discrete Math.*, 15, 235-252.
- [8] Gessel I. (1984). Multipartite P-partitions and inner product of skew Schur functions. *Contemporary Mathematics*, 34, 289-301.
- [9] Gessel I. and Reutenauer C. (1993). Counting permutations with given cycle structure and descent set. Journal of combinatorial theory, A,64, 2.
- [10] Geissinger L. (1977). Hopf algebras of symmetric functions and class functions, in Combinatoire et représentation du groupe symétrique, Lecture notes in Math., Springer-Verlag, 579, 168-181.
- [11] Geissinger L. and Kinch D. (1978). Representations of the hyperoctahedral groups, *Journal of algebra*, 53, 1-20.
- [12] Kerber A. (1971). Representations of Permutation Groups I. Springer Lecture Notes in Mathematics, Vol. 240. Springer-Verlag, Berlin.
- [13] Littlewood D. E. (1950). The theory of group characters and matrix representations of groups. 2nd ed, Clarendon Press, Oxford.
- [14] Lothaire M. (1983). Combinatorics on words. Encyclopedia of Mathematics, Vol. 17. Addison-Wesley, Reading, MA.
- [15] Macdonald I.G. (1979). Symmetric functions and Hall ploynomial. Oxford University Press.
- [16] Macdonald I.G. (1980). Polynomial functors and wreath products. Journal of pure and applied algebra, 18, 173-204.

- [17] MacMahon P.A. (1915-1916). Combinatory Analysis, Cambridge: reprinted Chelsea, New-York, 1960.
- [18] Reiner V. (1993). Signed permutations statistics and cycle type, European Journal of Combinatorics, 14, 569-579.
- [19] Reutenauer C. (1986). Theorem of Poincaré-Birkhoff-Witt, logarithm and representations of the symmetric group whose order are the Stirling numbers. In *Combinatoire Énumérative*, Proceedings, Montréal, (1985), (ed G. Labelle et P.Leroux). Lecture notes in mathematics, Springer, Berlin, Vol. 1234, 216-284.
- [20] Reutenauer C. (1993). Free Lie algebras. Oxford science publications.
- [21] Solomon L. (1968). A decomposition of the group algebra of a finite Coxeter group. Journal of algebra 9, 220-239.
- [22] Springer T. A. (1971). Remarks on a combinatorial problem, Nieuw Archiev voor Wiskunde (1), 19, 30-36.
- [23] Stembridge J. (1992). The projective representations of the hyperoctahedral group, Journal of Algebra, 145, 396-453.
- [24] Zelevinski A. V. (1981). Representations of finite classical groups. Springer Lecture Notes in Mathematics, Vol. 869. Springer-Verlag, Berlin.