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Resume

Nous exprimons Ie nombre d'elements da groupe hyperoctaedral
Bn qui ont un ensemble de descentes donne, et dont 1'inverse a un en-
semble de descentes donne, comme Ie produit scalaire de deux representations
de Bn- On donne aussi Ie nombre d'elements de Bn, qi ii sont dans

une classe de conjugaison donnee et qui ont un ensemble de descentes
donne, a I'aidc d'un prodiiit scalaire de deux representations da groupe
hyperoctae<1 ral.

On a enfin, sous forme de series generatrices de fonctions sym^triques.
des analogues des formules dassiques qui donnent les s'erics g^neratrices
exponentielles des elements alternants des Bn.

Abstract

We express the number of elements of the hyperoctahedral group
Bn, which have descent set K and such that their inverses have descent
set J, as a scalar prcxiuct of two representations of Bn. We also give
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the number of elements ofJ3n, which have a prescribed descent set and
which are in a given conjugacy class of Bn by another scalar product
of representations of Bn.

We finally give, by generating series ofsymmetric functions, some
analogs of the classical formulas which express the exponential gener-
ating series of alternating elements in the Bn s.

1 Introduction

Enumerating permutations according to certain statistics, as descent set,
major index or cycle type is an old problem (see [1, 17] ). In [21], Solomon
defines, for each subset AT of {l,..., n - 1}, a representation ^A- of 5'n such
that the dimension of ̂ K is the number of permutations in 5'n with descent
set K. The characteristic symmetnc function of this representation appears
already in MacMahon's work [17] see also [13].

In [19] and [3] appear representations X\ of 5'n, indexed by the partitions
A of n, such that the number of permutations of cycle type \ is the dimension
ofXA.

Moreover, Foulkes [7] and Gessel [8] have proved that the number of
permutations <r in 5'n, with descent set K C {!,... ,n- 1} and such that the
descent set of <r-l is J C{l,..., n - 1}, is the scalar product < ^K^J >.
Gessel and Reutenauer have shown in [9] a related result giving the number
of permutations with descent set {!,... , n - 1}\K and with cycle type A as
the scalar product < ^, XA >.

The literature also furmshes extensions of the enumeration of certain

permutations to Coxeter groups (see [2, 21, 22]) or to wreath products (see
[5, 18]).

In this communication we extend previous results to the case of the hy-
peroctahedral group. Our main results are Theorems 4, 7, and 10; Theorem
2 is a technical result. The descent set of <r   Bn is the set

des{a) = {i\Q ^ i ^ n-1, <7(i) > <T(i + 1)},

if we consider Bn as the group of the permutations <r of {-n,..., -1, 0, 1,.. . n}
such that for all i  {0,... , n, } we have cr{-i) = -o-(Q. According to the ter-
minology of Foata and Schutzenberger [6], the descent set of <7-1 will be
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called the idown set of cr. Theorem 4 expresses this number as the scalar
product of two representations of Bn.

Theorem 7 gives, as a scalar product of two representations of Bn, the
number of elements of the hyperoctahedral group, which have a prescribed
descent set and which are in a given conjugacy class of Bn.

In the last section, we generalise to the hyperoctahedral group the notion
of Eiilerian symmetric functions, credited to Gessel by Desarmcnien [4, p.
283] and we state Theorem 10 which is an analog of a result of Springer [22,
p- 351-

The main tool for this purpose is a generalisation of the characteristic
function of Frobenius, defined by Geissinger [10], see also [11]. Essentially,
our characteristic function is an isomoq)hism between the Z-mo<iule gener-
ated by the irreducible characters of the hyperoctahedral groups and the ring
A(X) ® A(V), where A(X) is the ring of symmetric functions on X. This is
stated m Theorem 2, which is implicit in [16] and is an easy consequence of
Proposition 5. 1 in [23], see also [24].

2 Characteristic function

In the following, the elements of the hyperoctzihedral groups will be called
signed permutations. A signed permutation a- in Bn is determined by the
sequence <r(l)<7(2)... o-(n). The group Bn is the subgroup of S'{-n,..., -i, i,..., n}
of permutations which commute with u?o = (1, -1)... (", -").

It is well known, and easy to verify, that a signed permutation cr, viewed
as an element of 5'{-n,..., -i, i,..., n}, has two kinds of cycles:

(zi,..., a-jfe), (-a;i,..., -a;jb)
or (a;i, a'2 ... , 3-fc, -^i» -2?2i . . . »-^fc)-

We will say that a couple of cycles of the first kind is an even cycle of length
fc, and that a cycle of the second kind is an odd cycle of length k. The cycle
type ct{a) of a signed permutation (T is a couple (A; /i) of partitions where the
parts of A (resp. ^) are the lengths of the even cycles (resp. odd cycles) of
o-. If <T   Bn, one has |A| + |^| = n, where |A| = Ai +... + >k- The following
proposition gives a classical result (see [12]).

Proposition 1 Two signed permutations in Bn are in the same conjugacy
class if and only if they have the same cycle type.
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Let X and Y be infinite sets of variables, A(X) denotes the ring of sym-
metric functions on X with coefficients in Z. We define the scalar product
< -, -> on the ring A(X) ® A(V) by

< S^X) ® 5^(r), 5.v(X) 0 5^(V) >= ̂ '^4'.

where s\ denotes the Schur function associated to the partition A.
For any group Gf, we denote by R(G) the Z-module generated by the

irreducible characters of G. Let R be the direct sum of the R{Bn) for n > 0.
Then, with the following multiplication, fi has a ring structure. If /   R(Bm}
and ̂    R{Bn), then f x gis a. character of R{Bm) x R(Bn). We embed
Bm X Bn in -Bm+n and we define

/.^=tW^J/x^.

One can verify that R is a. commutative, associative and graded ring. If we
have /= E/n and^ = E^"' with A^» m ^(Bn)' we defme the scalar
product of / and g by

< /, 5 >= E < fn^9n >B"'
n>0

where < /n, ^n >Bn= ̂ . S<r Bn/"((T)^n(°"~ ).
For ajiy character / of Bn we define c/i(/) by

cA(/) = F5- E ^?(<7)(P^ (x) + P-x> (y)) . . . ̂  W ~ P^ (y^ . . . .
/nl » Sn

ct(<r)=(A;^)

Where pk(X) is the power-sum symmetric function on X.
The following result extends to Bn the theory of the characteristic map

(see [15]) and is an easy consequence of [23, proposition 5. 1], this is also a
restatement of [16, theorem (9. 10)].

Theorem 2 One can index the irreducible characters ^(>w) of the hyper-
octahedral groups by the couples (A, /x) of partitions such that ch{)c(>w}} =
s\{X) ® s^Y), so that ch is an isometric isomorphism.
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3 Signed perrautations with given descent set
and idown set

The group Bn, as a Coxeter group embedded in 5'{-n,..., -i, i,...n}, is generated
by{ro, ri,... rn-i)wherero = (1, -1) and r, = (i, i+l)(-i, -t-1) for every
1 ^t" ^n-1. Let In be the set {0,... , n - 1}; if K C 1^ we denote by WK
the subgroup of Bn generated by the rjk, k   K.

In the group algebra Q[Bn] of Bn over Q, we define, for all A' C /", the
two idempotents

(1)

(2)

^ = T^T S w'
'K\ W^WK

^ = T^l S £(w)u;'
'K\ W^WK

where e is the character of Bn such that £(r. ) = -1 for i   In. If A. C /", let
^K be the character afforded by the left ideal Q[Bn]^KT1ln\K- The following
proposition is due to Solomon [21].

Proposition 3 IfK is a subset of In we have:

i) For all g   5n, ̂ A-(^) = e(g)^in\K(g)-

ii) The number of signed permutations having descent set K is equal to
the dimension of^i^\K.

We prove the next result, which extends, to the case of the hyperoctahe-
draJ group, results of FouUces [7] and Gessel [8].

Theorein 4 Let K and J be subsets of In. Then the number of element. ? of
Bn having descent set K and idown set J is

< ^In\K^In\J >=< ̂ K, ^J > .

To prove this Theorem, we define some FK(X, Y) {K C /") which gener-
alise the quasisymmetric functions of Gessel (see [8]). If H C Bn we call
quasisymmetric generating function of II the series

^F^(^(X, Y).
irgn
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Let a;o, ti;i be the isometric automorphisms of A(X) ® A(V) defined by

a;o(3, (X) ® ̂ (V)) = 5.v(X)®5^(y)

a;i(^(X)®^(y)) = s^X)®s,. (Y)
II

where p, ' is the partition conjugate to the partition p. (see [15, p. 2]). A
sequence of technical lemmas gives us the following result.

Lemma 5 i) If the quasisymmetric generating function g ofTS. is sym-
metric in X and Y, then the number of elements of H which have
descent set K is < g^i(ch{i^rn\K)) > .

ii) If J C In and H = {<r   Bn\des(cr~1) = J} then the quasisymmetrzc
function of II is u}-i{ch{^^\j)}.

Theorem. 4 is an easy consequence of lemma 5.

4 Signed permutations with given cycle type
and descent set

Let A and A be two infinite alphabets, and B be the disjoint union of A and
A. Then Q < B > denotes the free associative (non commutative) Q-algebra
generated by B. The elements ofQ < B> are caUed polynomials, and the
set B" of the words on 5 is a basis ofQ < B >. V P and Q are polynomials
their Lie bracket is defined by

[P, Q}=PQ-QP.
The free Lie algebra £{B) is the smallest submodule of Q< B > containing
B and closed under Lie bracket; its elements zu-e called Lie polynomials.

A Lie polynomial P is said to be even {resp. odd) and homogeneous of
degree i, if it is a linear combination of words of length t" having an even
(n°3p. odd) number of letters in A.

The symmetric product of k polynomials Pi,.. ., P^ is defined by

(^1 ..., ^)=^Ekl -. (D ... p. w-

i-i

E^i

<r 5k
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For ziny couple of partitions (A, /x), we denote by U(\^) the subspace of Q <
B > linearly generated by the symmetric products {Pi,... , Pk, Qi, -. ., Qi)
with the two conditions

. Pi is an even Lie polynomial of degree A,-,

. Q, is ctn odd Lie polynomial of degree ^,.

The following proposition extends Lemma 8.22 in [20] and is a consequence
of the theorem of Poincare-Birkhoff-Witt.

Proposition 6
Q < B >= Q^U(^).

We now suppose that {!,..., n}C A and that {1,..., n}C A. From now
on, we wiU write <7(i) = J instead of <r(i) = -j. Let £Jn be the subspace of
Q < B > generated by the words w^ = cr(l) ... <r(n) for all <r   Bn- We
define the absolute value on {1,.. ., n, l,... , n} by

|i| = \i\ == i for all i   {1,..., "}.
There is a natural action of Bn onto Q < B >. By the change of basis in

Q< B> defined by i ^- l/2(t+i), T .-4- l/2(i -t), this gives another natural
action which we use in the sequel.

For this action the spaces En and U(^} are invariant. Hence they define
a representation of Bn on the space En n U(\^); let X(A, ^) be the character of
this representation.

If we write (Z?. = cA-loa;. ocA, for i = 1, 2, wehavethat a?, mapsirreducible
characters onto irreducible characters and the following result holds

Theorem 7 The number of signed permutations having cycle type (A, ^) and
descent set K C In is

< X(A, ^), Ul(^n\A-) >=< £X(^), U}Q{^K) > .
This Theorem extends Theorem 2. 1 in [9]. The proof of this result is based
on lemma 5 i) and on the following lemma.
Lemma 8 If (A, fJi) is a couple of partitions and if R is the set of signed

permutations having cycle type (A, ^), then the quasisymmetric generating
function ofTl is ch{X(\, p,)}.
To prove this lemma, we use a bijection between a basis of U(\^) and a subset
of multisets of Lyndon words (see [14, p. 67 and 77] and [20, p. 166]). We
also use the equality of the generating series of U(^) and ch(X(^)).
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5 Alternating signed permutatious and trigono-
metric syniinetric functions.

A rising alternating (resp. falling alternating) signed permutation cr is a
signed permutation having descent set K^ = {1, 3,... } C /n {resp. K^ =
{0, 2,...}C In).
Exainple The signed permutation o- = 3146725 is a rising alternating
element of Br and <r=1437625isa falling alternating element of 87.

It is well known that the exponential generating series of rising alteraant-
ing permutations is

(3) l42^.
cos a;

Let bn denotes the number of rising alternating signed permutations in Bn-
If one takes &o == 1, one then has, see [22, p. 35]

(4) &n sin x + cos x
k^x cos 2a;

For any set of variables X, if /in(X) is the coinplete symmetric function on
X, and Hx(t) = I2n>o ftn{X)tn; we define the symmetric cosinus and sinus,
as in [4] by

(5) COSx(t} =

(6) SINxW =

We then have the next lemma

HxW+H^-it)
2

HxW - Hx{-it}
2i

Leinma 9 One has the three following relations

i) COSxW + SINxW = Hx[it)Hx{-it)

ii) COSxuv{t) = COSx{t)COSy(t) - SINxWSINyW

«i; SINxuvW = COSxWSINyW + SINx{t)COSy{t).

Note that the classical trigonometric formulas foUow by the specializations
pi(X}t i-^- a, p\(Y)t ^ b and the other power-sums are mapped to zero. In

^1
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[4], Desanneaien gives a symmetric analog of the generating series in equation
of the form

l+SIN^t}_
COSx{t) .

The following Theorem extends (7) to the case of the hyperoctahedral groups
and gives symmetric analogs of (4).
Theorem 10

E/''(^., )t2"+l = ^WHX(-^csSw
n>0

H ^ srN^{t)
E^(^,. )^n+I = cos^yw
n>0

^, ch^y'-S3^
n>l

i+E'A(^)'2" = ^(. ()ff^-t)S%j-
n>l

To prove this result we use the following formula, due to Solomon [21]
^= £ (-i)lw^

KCJCIn

where the (f>j are certain representations of the group Bn. We also use the fact
that cA(^j) can be expressed as a product of complete symmetric functions
on X and XUV.
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