Cycle type and descent set in the hyperoctahedral groups

Stéphane Poirier*
Université du Québec à Montréal
LACIM
Case Postale 8888, Succursale Centre-Ville Montréal (Québec) Canada, H3C 3P8. email: poirier@mipsmath.math.uqam.ca

March 6, 1995

Résumé

Nous exprimons le nombre d'éléments du groupe hyperoctaédral B_{n} qui ont un ensemble de descentes donné, et dont l'inverse a un ensemble de descentes donné, comme le produit scalaire de deux représentations de B_{n}. On donne aussi le nombre d'éléments de B_{n}, qui sont dans une classe de conjugaison donnée et qui ont un ensemble de descentes donné, à l'aide d'un produit scalaire de deux représentations du groupe hyperoctaédral.

On a enfin, sous forme de séries génératrices de fonctions symétriques. des analogues des formules classiques qui donnent les s'eries génératrices exponentielles des éléments alternants des B_{n}.

Abstract

We express the number of elements of the hyperoctahedral group B_{n}, which have descent set K and such that their inverses have descent set J, as a scalar product of two representations of B_{n}. We also give

[^0]the number of elements of B_{n}, which have a prescribed descent set and which are in a given conjugacy class of B_{n} by another scalar product of representations of B_{n}.

We finally give, by generating series of symmetric functions, some analogs of the classical formulas which express the exponential generating series of alternating elements in the B_{n} 's.

1 Introduction

Enumerating permutations according to certain statistics, as descent set, major index or cycle type is an old problem (see [1, 17]). In [21], Solomon defines, for each subset K of $\{1, \ldots, n-1\}$, a representation ψ_{K} of S_{n} such that the dimension of ψ_{K} is the number of permutations in S_{n} with descent set K. The characteristic symmetric function of this representation appears already in MacMahon's work [17] see also [13].

In [19] and [3] appear representations X_{λ} of S_{n}, indexed by the partitions λ of n, such that the number of permutations of cycle type λ is the dimension of X_{λ}.

Moreover, Foulkes [7] and Gessel [8] have proved that the number of permutations σ in S_{n}, with descent set $K \subseteq\{1, \ldots, n-1\}$ and such that the descent set of σ^{-1} is $J \subseteq\{1, \ldots, n-1\}$, is the scalar product $\left\langle\psi_{K}, \psi_{J}\right\rangle$. Gessel and Reutenauer have shown in [9] a related result giving the number of permutations with descent set $\{1, \ldots, n-1\} \backslash K$ and with cycle type λ as the scalar product $\left\langle\psi_{K}, X_{\lambda}\right\rangle$.

The literature also furnishes extensions of the enumeration of certain permutations to Coxeter groups (see [2, 21, 22]) or to wreath products (see [5, 18]).

In this communication we extend previous results to the case of the hyperoctahedral group. Our main results are Theorems 4, 7, and 10; Theorem 2 is a technical result. The descent set of $\sigma \in B_{n}$ is the set

$$
\operatorname{des}(\sigma)=\{i \mid 0 \leq i \leq n-1, \sigma(i)>\sigma(i+1)\}
$$

if we consider B_{n} as the group of the permutations σ of $\{-n, \ldots,-1,0,1, \ldots n\}$ such that for all $i \in\{0, \ldots, n$,$\} we have \sigma(-i)=-\sigma(i)$. According to the terminology of Foata and Schützenberger [6], the descent set of σ^{-1} will be
called the idown set of σ. Theorem 4 expresses this number as the scalar product of two representations of B_{n}.

Theorem 7 gives, as a scalar product of two representations of B_{n}, the number of elements of the hyperoctahedral group, which have a prescribed descent set and which are in a given conjugacy class of B_{n}.

In the last section, we generalise to the hyperoctahedral group the notion of Eulerian symmetric functions, credited to Gessel by Désarménien [4, p. 283] and we state Theorem 10 which is an analog of a result of Springer [22, p. 35].

The main tool for this purpose is a generalisation of the characteristic function of Frobenius, defined by Geissinger [10], see also [11]. Essentially, our characteristic function is an isomorphism between the \mathbf{Z}-module generated by the irreducible characters of the hyperoctahedral groups and the ring $\Lambda(X) \otimes \Lambda(Y)$, where $\Lambda(X)$ is the ring of symmetric functions on X. This is stated in Theorem 2, which is implicit in [16] and is an easy consequence of Proposition 5.1 in [23], see also [24].

2 Characteristic function

In the following, the elements of the hyperoctahedral groups will be called signed permutations. A signed permutation σ in B_{n} is determined by the sequence $\sigma(1) \sigma(2) \ldots \sigma(n)$. The group B_{n} is the subgroup of $S_{\{-n, \ldots,-1,1, \ldots, n\}}$ of permutations which commute with $w_{0}=(1,-1) \ldots(n,-n)$.

It is well known, and easy to verify, that a signed permutation σ, viewed as an element of $S_{\{-n, \ldots,-1,1, \ldots, n\}}$, has two kinds of cycles:

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{k}\right),\left(-x_{1}, \ldots,-x_{k}\right) \\
\text { or } \quad & \left(x_{1}, x_{2}, \ldots, x_{k},-x_{1},-x_{2}, \ldots,-x_{k}\right) .
\end{aligned}
$$

We will say that a couple of cycles of the first kind is an even cycle of length k, and that a cycle of the second kind is an odd cycle of length k. The cycle type ct (σ) of a signed permutation σ is a couple $(\lambda ; \mu)$ of partitions where the parts of λ (resp. μ) are the lengths of the even cycles (resp. odd cycles) of σ. If $\sigma \in B_{n}$, one has $|\lambda|+|\mu|=n$, where $|\lambda|=\lambda_{1}+\ldots+\lambda_{k}$. The following proposition gives a classical result (see [12]).
Proposition 1 Two signed permutations in B_{n} are in the same conjugacy class if and only if they have the same cycle type.

Let X and Y be infinite sets of variables, $\Lambda(X)$ denotes the ring of symmetric functions on X with cœfficients in \mathbf{Z}. We define the scalar product $<-,->$ on the ring $\Lambda(X) \otimes \Lambda(Y)$ by

$$
<s_{\lambda}(X) \otimes s_{\mu}(Y), s_{\lambda^{\prime}}(X) \otimes s_{\mu^{\prime}}(Y)>=\delta_{\lambda \lambda^{\prime}} \delta_{\mu \mu^{\prime}}
$$

where s_{λ} denotes the Schur function associated to the partition λ.
For any group G, we denote by $R(G)$ the Z-module generated by the irreducible characters of G. Let R be the direct sum of the $R\left(B_{n}\right)$ for $n \geq 0$. Then, with the following multiplication, R has a ring structure. If $f \in R\left(B_{m}\right)$ and $g \in R\left(B_{n}\right)$, then $f \times g$ is a character of $R\left(B_{m}\right) \times R\left(B_{n}\right)$. We embed $B_{m} \times B_{n}$ in B_{m+n} and we define

$$
f . g=i n d_{B_{m} \times B_{n}}^{B_{m+n}}(f \times g) .
$$

One can verify that R is a commutative, associative and graded ring. If we have $f=\sum f_{n}$ and $g=\sum g_{n}$, with f_{n}, g_{n} in $R\left(B_{n}\right)$, we define the scalar product of f and g by

$$
<f, g>=\sum_{n \geq 0}<f_{n}, g_{n}>_{B_{n}}
$$

where $<f_{n}, g_{n}>_{B_{n}}=\frac{1}{n!2^{n}} \sum_{\sigma \in B_{n}} f_{n}(\sigma) g_{n}\left(\sigma^{-1}\right)$.
For any character f of B_{n} we define $c h(f)$ by

$$
\operatorname{ch}(f)=\frac{1}{\left|B_{n}\right|} \sum_{\substack{\sigma \in B_{n} \\ \operatorname{ct}(\sigma)=(\lambda ; \mu)}} f(\sigma)\left(p_{\lambda_{1}}(X)+p_{\lambda_{1}}(Y)\right) \ldots\left(p_{\mu_{1}}(X)-p_{\mu_{1}}(Y)\right) \ldots
$$

Where $p_{k}(X)$ is the power-sum symmetric function on X.
The following result extends to B_{n} the theory of the characteristic map (see [15]) and is an easy consequence of [23, proposition 5.1], this is also a restatement of [16, theorem (9.10)].

Theorem 2 One can index the irreducible characters $\chi^{(\lambda ; \mu)}$ of the hyperoctahedral groups by the couples (λ, μ) of partitions such that $\operatorname{ch}\left(\chi^{(\lambda ; \mu)}\right)=$ $s_{\lambda}(X) \otimes s_{\mu}(Y)$, so that ch is an isometric isomorphism.

3 Signed permutations with given descent set and idown set

The group B_{n}, as a Coxeter group embedded in $S_{\{-n, \ldots,-1,1, \ldots n\}}$, is generated by $\left\{r_{0}, r_{1}, \ldots r_{n-1}\right\}$ where $r_{0}=(1,-1)$ and $r_{i}=(i, i+1)(-i,-i-1)$ for every $1 \leq i \leq n-1$. Let I_{n} be the set $\{0, \ldots, n-1\}$; if $K \subseteq I_{n}$ we denote by W_{K} the subgroup of B_{n} generated by the $r_{k}, k \in K$.

In the group algebra $\mathrm{Q}\left[B_{n}\right]$ of B_{n} over \mathbf{Q}, we define, for all $K \subseteq I_{n}$, the two idempotents

$$
\begin{align*}
\xi_{K} & =\frac{1}{\left|W_{K}\right|} \sum_{w \in W_{K}} w \tag{1}\\
\eta_{K} & =\frac{1}{\left|W_{K}\right|} \sum_{w \in W_{K}} \varepsilon(w) w \tag{2}
\end{align*}
$$

where ε is the character of B_{n} such that $\varepsilon\left(r_{i}\right)=-1$ for $i \in I_{n}$. If $K \subseteq I_{n}$, let ψ_{K} be the character afforded by the left ideal $\mathrm{Q}\left[B_{n}\right] \xi_{K} \eta_{I_{n} \backslash K}$. The following proposition is due to Solomon [21].

Proposition 3 If K is a subset of I_{n} we have:
i) For all $g \in B_{n}, \psi_{K}(g)=\varepsilon(g) \psi_{I_{n} \backslash K}(g)$.
ii) The number of signed permutations having descent set K is equal to the dimension of $\psi_{I_{n} \backslash K}$.

We prove the next result, which extends, to the case of the hyperoctahedral group, results of Foulkes [7] and Gessel [8].

Theorem 4 Let K and J be subsets of I_{n}. Then the number of elements of B_{n} having descent set K and idown set J is

$$
<\psi_{I_{n} \backslash K}, \psi_{I_{n} \backslash J}>=<\psi_{K}, \psi_{J}>
$$

To prove this Theorem, we define some $F_{K}(X, Y)\left(K \subseteq I_{n}\right)$ which generalise the quasisymmetric functions of Gessel (see [8]). If $\Pi \subseteq B_{n}$ we call quasisymmetric generating function of Π the series

$$
\sum_{\pi \in \Pi} F_{\operatorname{des}(\pi)}(X, Y)
$$

Let ω_{0}, ω_{1} be the isometric automorphisms of $\Lambda(X) \otimes \Lambda(Y)$ defined by

$$
\begin{aligned}
& \omega_{0}\left(s_{\lambda}(X) \otimes s_{\mu}(Y)\right)=s_{\lambda^{\prime}}(X) \otimes s_{\mu}(Y) \\
& \omega_{1}\left(s_{\lambda}(X) \otimes s_{\mu}(Y)\right)=s_{\lambda}(X) \otimes s_{\mu^{\prime}}(Y)
\end{aligned}
$$

where μ^{\prime} is the partition conjugate to the partition μ (see [15, p.2]). A sequence of technical lemmas gives us the following result.
Lemma 5 i) If the quasisymmetric generating function g of Π is symmetric in X and Y, then the number of elements of Π which have descent set K is $\left\langle g, \omega_{1}\left(\operatorname{ch}\left(\psi_{I_{n} \backslash K}\right)\right)\right\rangle$.
ii) If $J \subseteq I_{n}$ and $\Pi=\left\{\sigma \in B_{n} \mid \operatorname{des}\left(\sigma^{-1}\right)=J\right\}$ then the quasisymmetric function of Π is $\omega_{1}\left(\operatorname{ch}\left(\psi_{I_{n} \backslash J}\right)\right)$.

Theorem 4 is an easy consequence of lemma 5.

4 Signed permutations with given cycle type and descent set

Let A and \bar{A} be two infinite alphabets, and B be the disjoint union of A and \bar{A}. Then \mathbf{Q} denotes the free associative (non commutative) Q -algebra generated by B. The elements of $\mathrm{Q}\langle B\rangle$ are called polynomials, and the set B^{m} of the words on B is a basis of $\mathbf{Q}\langle B\rangle$. If P and Q are polynomials their Lie bracket is defined by

$$
[P, Q]=P Q-Q P
$$

The free Lie algebra $\mathcal{L}(B)$ is the smallest submodule of Q containing B and closed under Lie bracket; its elements are called Lie polynomials.

A Lie polynomial P is said to be even (resp. odd) and homogeneous of degree i, if it is a linear combination of words of length i having an even (resp. odd) number of letters in \bar{A}.

The symmetric product of k polynomials P_{1}, \ldots, P_{k} is defined by

$$
\left(P_{1}, \ldots, P_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} P_{\sigma(1)} \ldots P_{\sigma(k)}
$$

For any couple of partitions (λ, μ), we denote by $U_{(\lambda, \mu)}$ the subspace of $\mathrm{Q}<$ $B>$ linearly generated by the symmetric products $\left(P_{1}, \ldots, P_{k}, Q_{1}, \ldots, Q_{l}\right)$ with the two conditions

- P_{i} is an even Lie polynomial of degree λ_{i},
- Q_{i} is an odd Lie polynomial of degree μ_{i}.

The following proposition extends Lemma 8.22 in [20] and is a consequence of the theorem of Poincaré-Birkhoff-Witt.

Proposition 6

$$
\mathbf{Q}=\oplus_{\lambda, \mu} U_{(\lambda, \mu)} .
$$

We now suppose that $\{1, \ldots, n\} \subset A$ and that $\{\overline{1}, \ldots, \bar{n}\} \subset \bar{A}$. From now on, we will write $\sigma(i)=\bar{j}$ instead of $\sigma(i)=-j$. Let E_{n} be the subspace of Q generated by the words $w_{\sigma}=\sigma(1) \ldots \sigma(n)$ for all $\sigma \in B_{n}$. We define the absolute value on $\{1, \ldots, n, \overline{1}, \ldots, \bar{n}\}$ by

$$
|\dot{i}|=|\bar{i}|=i \text { for all } i \in\{1, \ldots, n\} .
$$

There is a natural action of B_{n} onto $\left.\mathbb{Q}<B\right\rangle$. By the change of basis in Q defined by $i \mapsto 1 / 2(i+\bar{z}), \bar{z} \mapsto 1 / 2(i-\bar{z})$, this gives another natural action which we use in the sequel.

For this action the spaces E_{n} and $U_{(\lambda, \mu)}$ are invariant. Hence they define a representation of B_{n} on the space $E_{n} \cap U_{(\lambda, \mu)}$; let $X_{(\lambda, \mu)}$ be the character of this representation.

If we write $\tilde{\omega}_{i}=c h^{-1} \circ \omega_{i} \circ c h$, for $i=1,2$, we have that $\tilde{\omega}_{i}$ maps irreducible characters onto irreducible characters and the following result holds
Theorem 7 The number of signed permutations having cycle type (λ, μ) and descent set $K \subseteq I_{n}$ is

$$
<X_{(\lambda, \mu)}, \tilde{\omega}_{1}\left(\psi_{I_{n} \backslash K}\right)>=<\varepsilon X_{(\lambda, \mu)}, \tilde{\omega}_{0}\left(\psi_{K}\right)>
$$

This Theorem extends Theorem 2.1 in [9]. The proof of this result is based on lemma 5 i) and on the following lemma.
Lemma 8 If (λ, μ) is a couple of partitions and if Π is the set of signed permutations having cycle type (λ, μ), then the quasisymmetric generating function of Π is $\operatorname{ch}\left(X_{(\lambda, \mu)}\right)$.
To prove this lemma, we use a bijection between a basis of $U_{(\lambda, \mu)}$ and a subset of multisets of Lyndon words (see [14, p. 67 and 77] and [20, p. 166]). We also use the equality of the generating series of $U_{(\lambda, \mu)}$ and $\operatorname{ch}\left(X_{(\lambda, \mu)}\right)$.

5 Alternating signed permutations and trigonometric symmetric functions.

A rising alternating (resp. falling alternating) signed permutation σ is a signed permutation having descent set $K_{n}^{r}=\{1,3, \ldots\} \subset I_{n}$ (resp. $K_{n}^{f}=$ $\{0,2, \ldots\} \subset I_{n}$).
Example The signed permutation $\sigma=314 \overline{6} 7 \overline{2} 5$ is a rising alternating element of B_{7} and $\sigma=\overline{1} 437 \overline{6} \overline{2} \overline{5}$ is a falling alternating element of B_{7}.

It is well known that the exponential generating series of rising alternanting permutations is

$$
\begin{equation*}
\frac{1+\sin x}{\cos x} \tag{3}
\end{equation*}
$$

Let b_{n} denotes the number of rising alternating signed permutations in B_{n}. If one takes $b_{0}=1$, one then has, see [22, p. 35]

$$
\begin{equation*}
\sum_{n \geq 0} \frac{b_{n}}{n!} x^{n}=\frac{\sin x+\cos x}{\cos 2 x} \tag{4}
\end{equation*}
$$

For any set of variables X, if $h_{n}(X)$ is the complete symmetric function on X, and $H_{X}(t)=\sum_{n \geq 0} h_{n}(X) t^{n}$; we define the symmetric cosinus and sinus, as in [4] by

$$
\begin{align*}
\operatorname{COS}_{X}(t) & =\frac{H_{X}(i t)+H_{X}(-i t)}{2} \tag{5}\\
\operatorname{SIN}_{X}(t) & =\frac{H_{X}(i t)-H_{X}(-i t)}{2 i} \tag{6}
\end{align*}
$$

We then have the next lemma
Lemma 9 One has the three following relations
i) $\operatorname{COS}_{X}(t)^{2}+S I N_{X}(t)^{2}=H_{X}(i t) H_{X}(-i t)$
ii) $\operatorname{COS}_{X \cup Y}(t)=\operatorname{COS}_{X}(t) \operatorname{COS}_{Y}(t)-S I N_{X}(t) S I N_{Y}(t)$
iii) $S I N_{X \cup Y}(t)=C O S_{X}(t) S I N_{Y}(t)+S I N_{X}(t) C O S_{Y}(t)$.

Note that the classical trigonometric formulas follow by the specializations $p_{1}(X) t \mapsto a, p_{1}(Y) t \mapsto b$ and the other power-sums are mapped to zero. In
[4], Désarménien gives a symmetric analog of the generating series in equation (3) of the form

$$
\begin{equation*}
\frac{1+S I N_{X}(t)}{\operatorname{COS}_{X}(t)} \tag{7}
\end{equation*}
$$

The following Theorem extends (7) to the case of the hyperoctahedral groups and gives symmetric analogs of (4).

Theorem 10

$$
\begin{aligned}
\sum_{n \geq 0} \operatorname{ch}\left(\psi_{K_{2 n+1}^{r}}\right) t^{2 n+1} & =H_{X}(i t) H_{X}(-i t) \frac{S I N_{Y}(t)}{\operatorname{COS_{X\cup Y}(t)}} \\
\sum_{n \geq 0} \operatorname{ch}\left(\psi_{K_{2 n+1}^{f}}\right) t^{2 n+1} & =\frac{S I N_{X}(t)}{\operatorname{COS}_{X \cup Y}(t)} \\
1+\sum_{n \geq 1} \operatorname{ch}\left(\psi_{K_{2 n}^{r}}\right) t^{2 n} & =\frac{\operatorname{COS_{X}(t)}}{\operatorname{COS_{X\cup Y}(t)}} \\
1+\sum_{n \geq 1} \operatorname{ch}\left(\psi_{K_{2 n}^{f}}\right) t^{2 n} & =H_{X}(i t) H_{X}(-i t) \frac{\operatorname{COS_{Y}(t)}}{\operatorname{COS_{X\cup Y}(t)}}
\end{aligned}
$$

To prove this result we use the following formula, due to Solomon [21]

$$
\psi_{K}=\sum_{K \subseteq J \subseteq I_{n}}(-1)^{|J \backslash K|} \phi_{J}
$$

where the ϕ_{J} are certain representations of the group B_{n}. We also use the fact that $\operatorname{ch}\left(\phi_{J}\right)$ can be expressed as a product of complete symmetric functions on X and $X \cup Y$.

References

[1] André D. (1881). Sur les permutations alternées, Journal de mathématiques pures et appliquées, 7, 161-184.
[2] Arnold V.I. (1992). Springer numbers and morsification spaces, Journal of algebraic geometry, 1, 2, 197-214.
[3] Bergeron, F., Bergeron, N. and Garsia A. M. (1988). Idempotents for the free Lie algebra and q-enumeration. In invariant theory and tableaux (ed D. Stanton), p.166-190. IMA Volumes in Mathematics and its Applications, V. 19. Springer, Berlin.
[4] Désarménien J. (1983). Fonctions symétriques associées à des suites classiques de nombres, Annales scientifiques de l'École Normale supérieure, 16,271-304.
[5] Ehrenborg R., Readdy M. (1994). Sheffer posets and r-signed permutations, preprint.
[6] Foata D. and Schützenberger M.-P. (1978). Major index and inversion number of permutations, Mathematische Nachrichten, 83, 143-159.
[7] Foulkes H.O. (1976). Enumeration of permutations with prescribed up-down and inversion sequences, Discrete Math.,15, 235-252.
[8] Gessel I. (1984). Multipartite P-partitions and inner product of skew Schur functions. Contemporary Mathematics, 34, 289-301.
[9] Gessel I. and Reutenauer C. (1993). Counting permutations with given cycle structure and descent set. Journal of combinatorial theory, A,64, 2.
[10] Geissinger L. (1977). Hopf algebras of symmetric functions and class functions, in Combinatoire et représentation du groupe symétrique, Lecture notes in Math., Springer-Verlag, 579, 168-181.
[11] Geissinger L. and Kinch D. (1978). Representations of the hyperoctahedral groups, Journal of algebra, 53, 1-20.
[12] Kerber A. (1971). Representations of Permutation Groups I. Springer Lecture Notes in Mathematics, Vol. 240. Springer-Verlag, Berlin.
[13] Littlewood D. E. (1950). The theory of group characters and matrix representations of groups. 2nd ed, Clarendon Press, Oxford.
[14] Lothaire M. (1983). Combinatorics on words. Encyclopedia of Mathematics, Vol. 17. Addison-Wesley, Reading, MA.
[15] Macdonald I.G. (1979). Symmetric functions and Hall ploynomial. Oxford University Press.
[16] Macdonald I.G. (1980). Polynomial functors and wreath products. Journal of pure and applied algebra, 18, 173-204.
[17] MacMahon P.A. (1915-1916). Combinatory Analysis, Cambridge: reprinted Chelsea, New-York, 1960.
[18] Reiner V. (1993). Signed permutations statistics and cycle type, European Journal of Combinatorics, 14, 569-579.
[19] Reutenauer C. (1986). Theorem of Poincaré-Birkhoff-Witt, logarithm and representations of the symmetric group whose order are the Stirling numbers. In Combinatoire Énumérative, Proceedings, Montréal, (1985), (ed G. Labelle et P.Leroux). Lecture notes in mathematics, Springer, Berlin, Vol. 1234, 216-284.
[20] Reutenauer C. (1993). Free Lie algebras. Oxford science publications.
[21] Solomon L. (1968). A decomposition of the group algebra of a finite Coxeter group. Journal of algebra 9, 220-239.
[22] Springer T. A. (1971). Remarks on a combinatorial problem, Nieuw Archiev voor Wiskunde (1), 19, 30-36.
[23] Stembridge J. (1992). The projective representations of the hyperoctahedral group, Journal of Algebra,145, 396-453.
[24] Zelevinski A. V. (1981). Representations of finite classical groups. Springer Lecture Notes in Mathematics, Vol. 869. Springer-Verlag, Berlin.

[^0]: *Supported by ISM (Montréal).

