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Summary: We generalize Rota's theorem characterizing the Mobius functiou of
a geometric lattice in terms of subsets of atoms containing uo broken circuit and
give applications to the weak Bruhat order of a finite Coxeter group and the Tamari
lattices. We also give a direct proof of the fact that in the geometric case any total
order of the atoms cau be used. Simple involutions are used in. both proofs. Finally
we show how involutions can be used in similar situations, specifically in a special
case of Rota's Crosscut Theorem as well as in related proofs of Walker on Hall's
Theorem and Reiner on. characteristic and Poincare polynoinials.

Resume: Nous demontrons une generalisation du Theoreme de Rota qui car-
acterise la fonction Mobius d'un. treillis geometrique en termes des sousensembles
d'atomes qui contiennent aucun circuit casse (une base NBC). Nous donnons ap-
plications a 1 ordre Bruhat faible d'un groupe de Coxeter fini et au treillis Tamari.
Nous pouvons aussi donner une preuve directe du fait que, dans Ie cas geometrique,
Ie nombre de bases NBC est independent de 1'ordre total sur les atomes. Nous em-
ployons involutions simples en les deux demonstrations. A la fin nous remarquons
qu'on peut utiliser involutions pour demontrer un cas special du Theorem Crosscut
de Rota, Ie Theorem de Hall, et un resultat sur les polynomes caracteristiques et
de Poincare.

1 Rota's theorem and its generalization

One of the most beautiful and useful theorems in algebraic combmatorics is Rota's
theorem [14] characterizing the Mobius function of a geometric lattice in terms of
subsets of atoms which are NEC, i.e., contain, uo broken circuit. In this note we
will generalize Rota's theorem to any lattice satisfying a simple condition and give
applications to the weak Bruhat order of a Coxeter group and the Tamari lattices.
The proof of Rota's theorem is as. easy application of the simplest version of the
Involutioa. Principle of Garsia and Milne [6]. We also use an involution to show
directly that in the geometric case the number of NBC sets is the same for any
total ordering of the atoms. Finally we discuss a related proof for a special case
of Rota's Crosscut Theorem as well as proofs of Walker concerning the Mobius
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function as a reduced Euler characteristic and of Reiner connecting characteristic
and Poincare polynomials.

We first review Rota's original theorem. Let £ be a finite poset with minimal
element 0. The Mobius function of L is the function /j. : L -r Z(Z being the
integers) which is uniquely defined by

E ̂ W = ^ (1)
y^

where the right side is the Kronecker delta. In particular, if L is the lattice of
divisors of an integer then fi is the number-theoretic Mobius function.

Suppose that L is a. lattice and let A and V denote the meet (greatest lower
bound) and join (least upper bound) operations, respectively. Let A(L) be the set
of atoms of Z, l. e, all a 7^ 0 such that there isno x Q. L with 0 <.r < a. We say
that L is atomic if every a; GZi is a join of atoms.

Assume further that L is ranked with rank function /?, which means that for all
x G. L the quantity

p{x} = length of a maximal 0 to 3- chain

is well defined (independent of the chain). Such a lattice is semimodular if

p{x A y) + p{x V y) ^ /?(r) + p{y}

for al\ x, y £ L. It is easy to prove, using this inequality and induction, that if
B C A{L} then /?(VB) ̂  |5| where the vertical bars denote cardinality. So define
B to be independent \i p(y B) == \B\ and dependent otherwise. If B is indepeudent
then we say it is a base for x = V5. If C' is a miniinal (with respect to inclusion)
dependent set then we say that C' is a circuit. Now put a total order on A(L)
which we will denote < to distinguish it from the partial order ̂  m L. A circuit
C has corresponding broken circuit C = C \c where c is the smallest atom in C.
Finally, B C A(L) is NBC if it contains no broken circuit. Note that such a set
must be independent. Rota's theorem can now be stated.

Theorem 1. 1 (Rota) Let L be a geometric (i. e., atomic and semimodular) lat-
tice. Then for any total ordering of A{L) we have

fi(x) = {-l)p(x) (number of NBC bases of x). (2)

To generalize this result to lattices, we first need to redefine some terms since L
may no longer be ranked. Call B C A(L} independent if VB < V-B for any proper
subset B oi B. Thus if C is dependent then VC = VC for some C C C. Note
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Figure 1: An example lattice L

(:

that it follows directly from the definitions that a superset of a dependent set is
dependent, orequivaleutly that a subset of an independent set is independent. The
definitions of base, circuit and broken circuit can now be kept as before. If C is a
circuit, it will be convenient to adopt the notation (7 = C'\c for the corresponding
broken circuit. This done, our generalization is as follows.

Theorem 1. 2 £ef Z be a finite lattice. Let < be any total ordering of A(L) such
that for all broken circuits C = C\c we have

VC = VC.

Then for all x G. L we have
^)=E(-i)IBI

B

where the sum is over all NEC bases B of x.

(3)

Before presenting the proof, let us do an example. Consider the lattice L iu
Figure 1 with the atoms ordered a< b< c< d. The circuits of Z are {a, b, d},
{a, c, <f} and {be, d} with corresponding broken circuits {b, d} and {c, (f}. It is
easy to verify that these circuits satisfy the hypothesis of Theorem 1. 2. Also. the
element 3: = i has two NEC bases, namely {a, d} and {a, 6, c}. It follows that

^(i)==(-i)2+(-i)3=o

which is readily checked from the definition of the Mobius function.
Proof (ofTheorem 1. 2). Let

^^)=Z(-i)IBi.
B
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Then since (1) uniquely defines p., it suffices to show that Sy<j /i(,y) = SQ^. If j- = 6
then both sides of this equation are clearly equal to 1. So we assume that .c > 6
and show that

£^(y)=0. (4)
y^

Consider the set

S = [B : B is a. base for some y <: x}

with sign function
e(5)=(-l)IBI.

Clearly ^aes e(-^) Is the left side of (4), so to prove this identity it suffice to find
a sign-reversing involution on S.

Let ao be the smallest atom under x. Define a map i:S ->. S by

i(B} =BAao

where A is the symmetric difference operator. This is clearly a sign-reversing
involution as long as it is well-defined, i. e., as long as B NBC implies i{B) NEC.

There are now two cases. If i(B) = B\ao then i(£) is still NBC because it is
a subset of B. Otherwise let B := i{B} = B U ao and suppose B contains broken
circuit C'=C'\c. Ifao^C" then C C B contradicting B being NEC. If ao   C
then we must have

c < ao (5)

because of the way circuits are broken. But now, using the theorem's hypothesis,

c^ VC= VC ^ VB ^i.

Thus c > ao since ao is the least atom under x, contradicting (5). .
Note that when L is geometric, then all NBC bases of a given x e. L have the

same number of elements, namely p(x). Thus the right sides of (2) and (3) do
really coincide in this case. Furthermore, the hypothesis of Theorem 1. 2 explains
why ajiy ordering of A(L) works m Rota's Theorem: VC = VC for any C' obtained
by removing a single atom from the circuit C. On the other hand, we can give a
direct proof of the following result using involutions which we omit due to lack of
space.

Proposition 1.3 Let L be a geometric lattice and let 0\ and 0^ be two total
orderings of A{L). Then for all x G. L we have
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number of NBC bases of x in 0^ = number of NBC bases of x in 0^. (6)
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2 Applications

We now give two examples of lattices which are not geometric, but whose Mobius
functions can be computed using Theorem 1. 2. We first note a general result that
follows from. our main theorem..

Corollary 2. 1 Let L be a finite lattice such that A{L) is independent. Then the
Mobius values of L are all 0 or ±1. Specifically, if x ^ L then

(_1)IB| ,/ 3; = VB /or some B ^ ^(£),

Proof. If A(L) is independent then so is any B C A^L). Furthermore, there
are no circuits so any such B is NBC. Finally, independence of A^L) implies that
V5 7^ V5/ for any B ^ B'. The corollary now follows from Theorem 1. 2. .

We note that Corollary 2. 1 also follows easily from a special case of Rota's
Crosscut Theorem [14], proved by iuvolutions in Section . 3.

We now derive the Mobius function of the weak Bruhat order of a Coxeter

group which is a result of Bjomer [2j. (We do not consider the strong ordering
because it is not a lattice in general. ) Any terminology from the theory of Coxeter
groups not defined here can be found in Humphreys' book [10]. Let (W, S) be a
finite Coxeter system so that W is a finite Coxeter group and 5' is a set of simple
generators of W. The length of w 6 W, l{w), is the smallest / such that

U;=Si32---S( (7)

where 5, ^ S. If v, w G. W then we write v >. w if there isan 3   5' with v = ws

and /(v) = /(w)+l. (It is easy to see that /(u) = l(ws} = l(w)±l, cf. Lemma3. 3.)
Extending this relation by transitive closure, we obtain the weak Bruhat poset Pw
on W. Eqmvalently, this is the partial order obtained from the Cayley graph of
W with respect to S by directing edges away from the identity element.

The atoms of Pw are just the elements of 5'. The 1 of Pw is the element of
maximum length, WQ = V5'. IfJ C 5 is any proper subset, then these elements
generate a corresponding parabolic subgroup Wj which is a proper subgroup of
W. So none of the elements u;o(.J) = VJ is equal to WQ and so 5 = A{Wp) is
independent. Thus Corollary 2. 1 applies and we have proved the following result.

Proposition 2. 2 (Bjorner) Let {W, S) be a Coxeter system and let Pw be the
corresponding weak Bruhat order. Then for w 6 W we have

(-1)IJI i/ LU = wo(J') /or some J CS,
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(x^X-^XsX-i))) 1. 2. 3)

(Xi{(x2X3)x4))

({xi(x^X3))x4)

(1. 2. 2)

({X, X,){X3X, )) (1. 2,1 (1. 1, 3)

{{(XiX-2)X3)x4') (1J, 1)

(a) Parenthesized version (b) Left bracket version

Figure 2: The Tamari lattice T^

Bjorner actually derives the Mobius function, from any interval [v, w] in Pw. But
this follows easily from the preceding proposition since there is a poset isomorphism
[v, w]=[6, u-lw].

Next we consider the Tamari lattices [5, 7, 9]. Consider the set of all proper
parenthesizations of the word Xix^ ... Xn+i- It is well known that the number of

such is the Catalan number Cn = ^-(2n1)- Partially order this set by saying that
TT is covered by a- if

^=... {{AB}C}... and <7=... (A(BC))...

for some subwords A, B. C. This poset is the Tamari lattice Tn and T^ is illustrated
in Figure 2 (a).

A left bracket vector, (u^, ... , Un), is an integer vector satisfying the conditions

1. 1 <:Vi -^ i for all ;' and

2. if Si == {u,, v, + 1,..., i'} then for any pair 5',, Sj either one set contains the
other or Si n 5'^ = 0.

The number of left bracket vectors with n components is also Cn. In fact given any
parenthesized word T we have an associated left bracket vector u(T) = (ui,..., Un)
defined as follows. To calculate v;, staj-t at x, in ̂  and move to the left, counting
the number of .c's and the number of left parentheses you meet until these two
numbers are equal. Then v; = j where xj is the last x which is passed before
the numbers balance. It is not hard to show that this gives a bijection between
pareathesizations and left bracket vectors, thus inducing a partial order on the
latter. This version of T-^ is shown in Figure 2 (b).

We will need the following theorem which is proved (in a dual version) In [9].
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Theorem 2. 3 (Huang and Tamari) TheposetTn is a lattice. In fact. ifu(^) =
(t-i,. .. , Vn) and u(a-) = (u;i,..., u.\) then

v(7T\y a) = (max{ui, wi},..., max{un, u;n}). .

We can now calculate the Mobius function of the Tamari lattice. This calcula-
t on has been done before by a number of different people. J. M. Pallo [13] derived
the result by a method equivalent to ours. Paul Edelman [private communication]
demonstrated that the Mobius function is always ±1 by showing that the associ-
ated order complex has the homotopy type of a wedge of spheres. Finally Bjorner
and VVachs [3] used their theory of nonpure shellings to get Edelman's result.

Proposition 2. 4 Let TT 6 ^ Aaue vector v{^ = (ui,. .. , ^). TAen

^)=^ (-l)t ifv^{^i}foralli
0 else

where t is the number o/u; = ; ^ 1. In particular

v-W = (-i)n-1.

Proof. Note that Tn has n-1 atoms 02,... , <Zn where u(a, ) has u. == i and all
other uj = 1. From Theorem 2. 3 we see that the atom set is independent. Thus
Corollary 2. 1 applies and the given fonnulae follow easily. .

3 Crosscuts, Euler characteristics, and charac-
teristic polynoniials

We now present some proofs of related results usiug involutions. The following is
a special case of Rota's Crosscut Theorem [14].

Theorem 3. 1 (Rota) If L is a finite lattice and x  L then defir

a, (.r) = number of sets of i atoms whose join is x.

We have

fi(x) = ao -ai +02 -....

ne
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Proof. The proof follows the same lines as that of Theorem 1. 2. In this case the
set is

S= {A : AC A[L) and ^ A ^ x}
with sign function

e(A) = (-l)l-4!.
Given any fixed atom a ^ a; we define the involutioa

^(A)=AAa.

This is clearly well-defined and the proof follows. .

It would be interesting to find of a proof of the Crosscut Theorem in its full
generality using involutions. The stumbling block is that to apply this method one
would need to have a crosscut C such that for every a- 6 Z not covering 0 we have
C n [0, 3;] is a crosscut of that interval. But this coudition forces C to be the set
of atoms.

The Mobius function of any partially ordered set L can be viewed as a reduced
Euler characteristic. If x   L then a chain of length i in the open interval (0, x) is

c : a;o <.ri < ... < a;;

where Q <xj < x for all j. Let

Ci{x) = number of chains of length i in (6, x).

Note that if 2; > 0 then c_i(J) = 1 because of the empty chain. Walker [16,
Theorem 1. 6] notes that the following result, usually known as Philip Hall's The-
orem [8, 14], can be proved using involutions.

Theorem 3. 2 (Hall) If L is any partially ordered set with a 0 and x G L, then

^)= ifx=0,
else.-C-i(.c)+Co(2:)-Ci(z)+.

Proof. Again, the proof follows the lines of Theorem 1.2. Let

<? = {0} U {(c, y} : cis a. chain in (0, y), 0 < y ^x}

with sign function
e(0)=l and e(c, y) = (-l)1^

where /(c) is the length of the chain. The involution & is defined bv

OA(0, j:)

(8)

II
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and for (c, y)  J\ {0, (0, a-)} let

. fc. v)=<f(c\c/'c/) ify=r-
i^yS=\ (c<y, x) else.

where c/ is the largest element of c, and c < y is the chain formed by adjoining
y to c. The fact that this is a sigii-reversing involution can now be used to show
that the right side of (8) satisfies the same recursion as ̂ (z). a

If a geometric lattice comes from a hyperplane arrangement, even more can
be said about its Mobius function. Any terms in the following discussion which
are not defined can be found m the book of Oriik and Terao [11]. Let W be
a finite Euclidean reflection group acting on a vector space V. - Let Aw be the
corresponding hyperplane arrangemen.t with intersection lattice Lw, i.e, Lvy is the
set of all subspaces of V that can be obtained cis intersections of hyperplanes in
Aw ordered by reverse inclusion.

Define the absolute length o/w G W, l(w), to be the smallest I such that w can
be written as

w=tit'i---ti (9)

with the (, coming from the set of all reflections T C W. This differs from the
definition of ordinary length given in (7) in that one is not restricted to a set ,5' of
simple reflections. An expression, of the form (9) will be called absolutely reduced.
We wiU need the following result about absolute length.

Lemma 3. 3 Let W be a finite reflection group and consider w £ W. If t Q. W is
any reflection then

l(wt} = l{w} ± 1.

Proof. If w = <i^2- . . ̂ fc is SLD. absolutely reduced expression then wt == t-^-- . t^t
so that l(wt) <^ l{w] + 1. Now replacing u; by wt in the IcLst inequality yields
l{wt) ^ /(w) - 1. Finally, we caiinot have l{wt) = l{w) since det(wt) = -det(w)
and det(u) = (-1)/("> for any u^W.u

For any element w G. ̂ V let

VW ={veV : w(v)=v}.

It follows from an easy-to-prove resiilt of Carter [4] that if Vw = X for some
subspace X   Lw then \{w} = codim. Y. This makes the statement of the following
theorem unambiguous.
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Theorem 3. 4 Let W be a finite reflection group with corresponding intersection
lattice Lw. Then for any X ^: L\v u,'e have

ti{X~) = {-\}1 (number ofw 6 W with Vw = A'^.

where I == /(w) of some (any) w with Vw = X.

Proof. This proof was discovered by Victor Reiner [personal communication] using
the ideas in our proof of Theorem 1. 2. I thank him for letting me reproduce it
here.

Let }1{X) = (-l)'(number of w   W with V"' = X). Then we must show that

E ~^Y} = ^Y
Y<X

(10)

VX =0 =V then both sides of (10) are clearly 1. If .Y > 0 then consider the set

w'={wew : vw 3 x}

with sign function
e(w) = (-l)/(w).

Clearly the right side of (10) is given by E^^, e(w). But W is just the stabilizer
of X, aud so is a non-trivial reflection group in its own right. Let t be any fixed
reflection in W and define an involution i: W -> W by

i(w) = wt.

By Lemma 3. 3 this is sign-reversmg dnd so we are done. .
We should note that there is a direct coimectioa between absolutely reduced

expressions and NBC bases. Specifically, in [1] Barcelo, Goupil and Garsia show
that if Hi,..., Hm is an NBC base of Aw then the corresponding product of
reflectious rff, . . . TH^ is totally reduced aud this gives a bijection between NBC
bases and W.

We end by showing how Theorem 3. 4 relates the characteristic polynomial of
Lw to the Poincare polynomial of W. The characteristic polynomial of Lw is the
generating functiou for its Mobius function:

x(L^t)= ^ {^Wtdmx.
XsLw

The Poincare polynomial of W is the generating function for its elements by ab-
solute length:

7T(W, t)= ^ tl{w\
w^W
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Theorem 3. 5 Let \V he a finite reflection group in V. dim V = n. with corre-
sponding intersection, lattice L\v- Then

7r(^^)=(-()nY(£. w, -!/<).

Proof. Using Theorem 3.4 and the lemma of Carter cited previously, we have the
following series of equalities

[-t}n^Lw. -^/t} = ^ ^(.Y)(-Qcodim-Y
xeLw

V" ^'(w)
L^

w W

= 7T{W, t).S
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