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ABSTRACT. We give explicit formulas for the Kazhdan-Lusztig P- and A-polynomials for
permutations related to incomplete flags ̂ i,n-i.

RESUME. Noiis donnons des formules explicites pour les P- et A-polynomes de Kazhdan-
Lusztig pour les permutations rattache a drapeaux incomplets.

1. INTRODUCTION

In [KL1] Kazhdan and Lusztig have associated with each Coxeter group W a. family of so-
called P-polynomials indexed by pairs of elements of W. These polynoinials are determined
by the geometry of the corresponding Schubert varieties and play an importzint role in
representation theory. Explicit calculation of P-polynomials turned out to be a very hard
problem, even for the case W = Sn- The most advanced result in this direction is a simple
combinatorial algorithm for calculation, of P-polynomials for Grassmann permutations (see
[LS]). Several other particzilE LT cases are considered in [Br].

Another family of polynomials defined in [KL1], so called JZ-polynomiaIs, often helps to
calculate P-polynomials (see [KL1, De, Br]). These polynomials also have a transparent
geometrical interpretation (see [SSV1, Cu]). Their explicit calculation is, m general, a
simpler problem than that for P-polynoinials; nevertheless, one encounters here rather
complicated combinatorial problems ([De, SSV2]).

In this note we give explicit formiilas for P- and JZ-polynomials for two classes of per-
mutations related to incomplete flags consisting of a line and a hyperplane. This case is
not covered by residts of [Ze], since the con-esponding Schuberfc varieties do not admit
small resolutions of singularities.

Let us denote by -F. i,...,. » 
the variety of all flags of type V1 C Vi2 C ... C V11' C C".

For brevity, the variety -Fi, 2,..., n of complete flags is denoted by Fn. There exists a natural
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bundle Fn ->. ^ii,..., it that just drops redundant subspaces. Evidently, the fiber of this
bundle is diffeomorphic to F^ x ^-.. x F,n+l-ifc . Each complete flag defines a
decomposition of F^ i,, into Schubert cells. This decomposltion is consistent with our
bundle, i. e. the inverse image of a Schubert cell in F^,..., ii, is the union of some Schubert
cells in Fn. It is easy to see that the index set of this union is aji interval in the Bruhat
order on Sn. Thus, with each F, ^ ^ we associate two sets of permutations, namely, the
maximal and the minimal elements of the corresponding intervals. These sets are denoted
M^,..., i, and M. i,..., »,, respectively.

We are interested in the variety F-i n-i', each point of this variety is a flag consisting
of a line and a hyperplane. Below we provide explicit expressions for the polynomials
Pi y(q) in the cases y   A^i, n-i, a; arbitrary and y £ Aii, n-i> 3: arbitrary. Besides, we
present explicit expressions for the polynomials Rxy{q) in the cases x, y G. M. in-1 and
2-, y eMi, n-r

2. RESULTS

It is easy to see that perinutationsinA^i n-i are of the form (n-l, n-2,... , 1,... , n,... , 3, 2'l
while those in Ati n_i of the form (2, 3,... , 1,... , n,... , n-2, n-l). Recall that Px, y{q) =
?3:-i y-i(g) (see [Dy]) Eind Rj:,y{q) = Rj:-i,y-i{q). Therefore, it is possible to state all the

residts in terms of inverse perrautations, which seems to us more convenient.

Theorem 1. Let y = (?', n, n - 1,..., l, j), a; = (a;i,... ,. z;n). Then
(i) Px, y{q) = 1 for any xifi< j;
(")

1 if j ^ xi or i ^ Xn,

P^yW =\^^ ^-, otherwise.

Theorem 2. Let y = (t, 1, 2,... , n, 7"), a; = (a;i,... , a:n). Then Px,y(q) = (1 +?)r, where
r is the xiumber of solutions of the following equation and two iiiequaJities in z:

E
p=l

a;p=
^+1)

j+l^z^i-2.

Theoreni 3. Let a; == (t, n, n - 1,... , l, j), y = (fc, n, n - 1,... , 1, ^). Then:
1. Ifk+j<n+lorl+i>n+l, then Rx,y{q) = 0.
2. Let l+i^n+l^k+j. Denote by Sj, fc the segment [n + 1 - j, fc], and by S^i tAe

segment [l, n+l - i}.
(i) IfEj. fcHS;,, =0, tAea

^,, (g) = (g - 1)(^-)-(^').

(ii) If Sj, fc n E(,, 7^ 0 and at 2east one of Sj, jfc and Z;, : degenerates to a point, tiies

^,. (g)=(g-i)lfc+t-n-ll+"+J-n-11-1.
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(iii) If?j, k H S/,, ^ 0 and both S^, A: and S;,, are nondegenerate, then R^,y(q) =
(q-l)a{q2 -q+l)b, where

a=\k+z-n-l\+\l+j -n-l\-l,

b=^{(k+j)-{l+i)-\k+z-n-l\-\l^j-n- 1|) - 1.

Observe that Theorem 3 allows to calculate JP-polynomials for x = (z, 1, 2,... , n, j),
2, = (fc, l, 2,... , n, 1), since by Lernma 2. 1(iv) of [KLl] one has

Rx,yW = -^("+l-fc, n, n-l,..., l, n+l-0, (n+l-i, n, n-l,..., l, n+l-j)(?)-

3. SKETCHES OF PROOFS

Theorem 1. It is easy to see that the natural projection TT: Fn -> 1'i.n-i has a smooth
fiber diffeomorphic to -Fn-2. Let o- be a Schubert cycle in ̂ i, n-i, and 8 = 7T-l(c7). Then
the stalk of the IH sheaf on ̂  at an arbitrary point x is isomorphic to the stalk of the IH
sheaf on o- at the point 7T(a;). Therefore, by [KL2], in order to find P-polynomials we have
to calculate the local intersection homology for Schubert cycles in 1'i.n-i. Each Schubert
cycle in this variety is either a smooth manifold or an even-dimensional cone. Such a cone
may be considered as a suspension of the spherization of the tangent bundle to an odd
dimensioned sphere. The iutersection homology of this object caji be computed easily using
formiila (3. 3) from [KL2].

Tbeorem 2. Below we describe geometrical cycles that yield nontrivial IH classes. Let
y = (t, l,..., n, j)~1 G Ali^_i; the corresponding Schubert cycle Vy = {y e Fn} is defined
by the following relations:

^C/t, ^2D/l, ^3D/2,...,
dim(^+1 n f+l) ̂  j, dim(^+2 n ^+2) ̂  j + 1,..., dim(^i n /') = z,...,.

We consider an arbitrary point ̂  6 Vy. Letj'+l ^mi < m2 < ... < m, ^?-2 beallthe
indices such that ̂ ma = /ma, a = 1,... , 5. We fix aset of 1-dimensional spaces TI, ... , r,,
Ta»  .fm% ra ̂  /ma-l- Let l^^i <... < ^ ^5; denote by ̂ ;i,..., ;, the subvariety in Vy
de&aed by the conditions

A... /. ={tP^Vy:r^ C/m'°, a =!,..., &}, codimc^... ;, = &.

These subvarieties form a basis for the stalk of the IH sheaf at 9.

Tbeorem 3. The proof follows from the general combinatorial procediire of finding
^-polynomials described in [SSV2].
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