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ENGLISH SUMMARY

Schubert polynomials, which had their origins in the cohomology of flag varieties, have
recently been the subject of much interest in algebraic combinatorics. This scrutiny has
led to an elucidation of many of their properties. A basic open problem is to give a
rule for multiplying two Schubert polynomials, that is, find an analog of the Littlewood-
Richardson rule for Schubert polynomials.

Our talk would discuss some recent work on this problem using ideas from algebraic
geometry, as well as some implications of this work for the combinatorics of the sym-
metric group. Specifically, we. will describe a geometric proof of an analog of Pieri's
rule for Schubert polynomials. This was stated by Lascoux and Schutzenberger in [13],
where an algebraic proof was suggested. Interpreting this formula geometrically exposes
a new and striking link to the Littlewood-Richardson rule for Schur polynomlals, and
indicates possible extensions of this result. While our approach uses ideas cind methods
from. algebraic geometry, we will present proofs involving little more than elementary
(albeit complicated) linear algebra.

RESUME

Les polynomes de Schubert, qui sent issus de la cohomologie des varietes de drapeaux,
out sucite depuis quelques temps un grand interet en combinatoire algebrique. Un
examen attentif a conduit a 1'elucidation de beaucoup de leurs proprietes. Un probleme
ouvert fondamental est de trouver une regle pour multiplier deux polynomes de Schubert,
autrement dit, un analogue de la regle de Littlewood-Richardson.

Notre expose discutera certains travaux recents sur ce probleme en faisant appel a des
idees provenant de la geometrie algebrique, et aussi certaines consequences de ces travaux
pour la combinatoire du groupe symetrique. Plus precisement, nous decrirous une preuve
geometrique d'un analogue de la regle de Pieri pour les polynomes de Schubert. Cette
regle a ete enoncee dans [13], ou une preuve algebrique etait suggeree. L interpretation
geometrique de cette formule met en evidence un lien nouveau et surprenant avec la
regle de Littlewood-Richardson, et indique des extensions possibles de ce resultat. Bien
que notre approche fasse appel a. des idees et des methodes de geometrie algebrique,
nous presenterons des preuves qui n'utiliseat guere que de I'algebre lineaire elementaire
(quoique compliquee).
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1. STRUCTURE CONSTANTS FOR SCHUBERT POLYNOMIALS

The Appendix contains a brief introduction to Schubert polvnomials. Let Sn be the
symmetnc group of permutations on the set {1^- . - '"} and 5'00 = ^=x. ,rl1e gr^p
of'permutaUons of the positive integers that fix all but finitely many integers. The
colfectTonofSchubert polynomials {©^ \w ^ S^} forms a basis for the polynomial ring
^ = Z[a;i, 2;2, . . . ]. A basic open question is the analog of the Littlewood-Richardson
rule: For u, u, w   5n, find integer constants c^ such that

(1) G^-Gy = S C'^<5W-
w Sr,

These structure constants are positive and are known only in certain special cases.
For example, if both u and v are Grassmannian permutations with descent k so that

6u and <S<, are symmetric polynomials in the variables a;i,... , Xk, then (1) reduces to
the classical Littlewood-Richardson rule.

An important case is when one of u or u is an adjacent transposition, tkk+i- This is
usually^tributed to Monk [17]. However, at the same time^CheyaUey estabUshed die

analogous formula for generalized flag varieties in an unpublished manuscript [6]. For

w   5oo, let ̂ (w) be the length of w. Monk's rule states:

(2) ©u;-©t^+i = Z©w.t^,
the sum over al\a^ k < b with £{wt^) = ^(w) +1. We use geometry to prove a similar
resuit, which is the'analog for Schubert polynomials of the classical Pien's rule. This
anaTog of Pieri's rule was announced by Lascoux and Schutzenberger in [13], where an
algebraic proof was suggested.

Permutations w are represented by the sequence (w(l), w(2),... ) of their values. For
positive integers fc, m, we define the permutations:

r[fc, m] = (1, 2,... , fc-l, fc+m, ̂  fc+1,... , ^+m-l, fc+m+1,...)
c[k, m} = (1, 2,... , Jfc-m, fc-m+2,... , &-!, fc-m+1, ^+2,...)

Let w, w'   5'oo. Write w -^^ w/ if there exist ai, &i,... , Qm, 6m such that
(a) a;^ JC < 6. for 1 ^ i ^m and w/ =w-faii>i ... *a^ im'
(b) ̂ (w(t)) = ^(w) + i, where w(o) = w and u;(I) = iy(t-l) . <a. 6,,
(c) w<l)(ai) < w<2'(a2) < .. . < w^(a^).

Equivalently, given any ai,... , b^ satisfying (a) and (b), &i,... , &m are distinct. Slmi-
larly, write w -^n1^ w/ if we have such ai, 6i,... , a^, &m where now

ŵ (ai)>w(2>(a2)>--->";(m)(am).
The range of summation in Monk's rule (2) generates a partial order <k on 5'n by

u; ̂ 7^a6^whenever a ^ A; <&and ̂ (wt, ;, ) = ^(u;) + 1. V^e call it the &-BnxA^ order

.i! 1
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A GEOMETRIC APPROACH TO THE COMBINATORICS OF SCHUBERT POLYNOMIALS

(fc-colored Ehresmanoedre in [14]). The data (ai, 6i),... , (am, bm) in the definitiori of
vj r[k'm} > w' describe a particular path from w to w' in the fc-Bruhat order.
Theorem 1. Let w e Soo and k, m be positive integers. Then we have

©,"'.(1) 6u, . 6. [fc,., ] = ^
r[k.m

w

(2) ©" . 6^.^] = S
''^.m[...l

w-w

6.
cfk. m]

This is in a different form than the original statement in [13]. Bergeron and Billey [2]
independently conjectured the above form.

This form exposes a link between multiplying Schubert polynomials and paths in
the Bruhat order. Such a link is not unexpected. The Littlewood-Richardson rule for
multiplying Schur functions may be expressed as a sum over certain paths in Young s
lattice of partitions. Lascoux and Schutzenberger [15] give a procedure for multiplying
Schiir polynomials based upon paths in the Bruhat order on 5'n. A connection between
paths in the Bnihat order and the intersection theory of Schubert varieties is described
iu [11]. We believe the eventual description of the structure constants c^, will be in
terms of paths of certain types in the Bruhat order on Sn-

We first establish the equivaleuce of the two formulas given in Theorem 1, then. prove
the first formula by reducing it to the classical Pieri's rule. Oiir approach illustrates an
unexpected link to the classical Pieri's rule, allowing the elucidation of more structure
constdnts. We conclude with a 'path counting formula' generalizing Theorem 1 where
6r[k, m] and ©c[k.m} are replaced by hook Schur polynomials.

We would like to thank Sara Billey who suggested these problems to us, Jean-Yves
Thibon for indicating to us the work of Lascoux and Schutzenberger, and Nantel Berg-
eron for mauy stimulating discussions about these results and possible extensions.

2. THE FLAG VARIETY

Let F(n) denote the variety of complete flags in C", that is

F(n) ={E. :EiCEiC---CEn=Cn\ dimE, = j}.
A fixed flag F. determines a cell decomposition of IF(n) due to Ehresmann [8], which
may be indexed by elements of 5'n. The cell determined by w   Sn is

{^| 3/1,... , /. with /,   ̂ +i-u,(i) - Fn-w(i) for 1 ^ ;$n and
Ej = span{/i,.. . , /, }, for 1 ^ j <: n},

which has codimension i{w). Its closure is the Schubert variety XviF..
The cohomology classes1 [Xu, F,\ of the Schubert vaj-ieties XwF. give an integral basis

for the cohomology ring of the flag variety [8]. Using Chera classes, Borel [5] gave

1 Strictly speaking, we mean the classes Poincare dual to the fundamental cycles in homology.
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an alternate description of this ring a5 Hn == Z[.ri,... , Xn}l'S, where >S" is the ideal
generated by the symmetric polynomials. These two descriptions were reconciled by
Demazure [7] and Berstein-Gelfand-Gelfand [3], who described representatives for the
cohomology classes of Schubert varieties. Later, Lascoux and Schutzenberger [13] gave
explicit polynomial representatives Gwi called Schubert polynomials.

We utilize a few algebraic facts about these cohomology rings. Let u'o be the longest
element of Sn, that is, Wo(j) = n+l-j. Then Xu,g^ = {F.}, so ©u,.g is the class of
a point. The Schubert polynomial basis is a Poincare dual basis; by this we m.ean If
^(w)+^(w/) =^(wo), then

©w ' ©w' =
©

0
WQ if w' = WQW

otherwise

There is also an involution induced by the map ©y/ i->. ©wou/wo-
We first observe that the two formulas in Theorem 1 are equivzilent. This follows

easily from the next lemma.

Lemnia 2.

(1) Let w, w' G Sn- Then w - > w' if and only if WQWWQ . ) WQ w' WQ.
(2) WQ r[k, m WQ = c[n - k, m\ ..

Using Poincare duality, formula (1) of Theorein 1 is equivalent to

<5w . QU IQW' . Gr[k, m\ =
if u;^^
otlierwise

Alternatively,

(3) /,. , =Jl
ur[k, m] ~ 1 0

r[k, m}
w

otherwise

To prove (3), fix w and w' in Sn. Note that r[fc, m] = tkk+i't-kk+i . . -tkk+m- Iterating
Monk's rule shows that ©r^.m] is a- summand of Gm^ with coefi&cient 1. Thus the
coefficient of G^i in the expansion of ©y, . Gm^^^ exceeds the coefficient of ©u/< in
©u . Gr[k, m]- The first coefficient is zero unless w ^k w/ and £{w') = ^(w) 4- m. Thus
c^'r[*, m] = 0 UIlleSS W ^k w' and ̂ (w/) = i(w) + m.

For the rest of this section, we will assume that w ^k w' and ^(u?/) = ^(w) + m. We
will also refer to the accompanying data: integers ai, 6i, 02,... , <Xm, 6m with a, ^ A; < 6,
where w/ = wta, bi . . . ta^bn, and i{wt^ i; . . . ta, i. ) = ^(tu) + i.

We establish (3) using the cohomology of Grassmann varieties. The association of a
flag E. to its A;-dimensional part gives a map TT from the flag variety to the Grzissmannicin
of ̂ -dimensioaal subspaces in C", G{k, n). This induces a ring homomorphism. TT* from
the cohomology of G(k. n) to that of the flag variety. Algebraically. TT' is induced by

*)
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the inclusion of symmetric polynomials in 2:1.... , Xk into the ring Z [-2:1,... , in]. There
is also a covariant pushforward map TT. induced via Poincare duality from the functorial
map on homology. While TT. is not a ring homomorphism, it does satisfy the followias
projection formula (see Example 8. 17 of [10]): For cohomology classes a on the
variety and /3 on G'(A;, n), we have:

(4) 7r. (a. 7T-/3)=7T. (^)., 3.
The cohomology ring of G{k, n) is isomorphic to a quotient of the ring of symmetric

polynomials m 3:1,... , z<: by the ideal generated by aU Schur polynomials s\ where the
partition X satisfies Ai > n - k. The class of a point is s^_k)k-i where (n-k)k is the
partition, with k parts each equal to n - k. For a partition A with Ai <; n - k and
\k+i = 0, let \c be the partition (n- k - \ki--- , n - k - Ai). Then s\ and d^c are
Poincare dual cohomology classes. Let m. be the partition (m, 0,... , 0). A key fact is
that TT'{Sr^) = Gr[k, m]- For partitions ^ and A, write A --+ ̂  if|A[ +m = |^| auid

P'1 >. ̂ l>. ^> .. . >. P'k ̂  ^k-

That is, if ̂  D A and the skew diagrajn p. \ is a skew row of length m.
The classical Pieri's rule states that for any partitions A and p. with |A| + m = j^j,

S\ . S^c . Sr,̂  = S(n-k)"
0

ifX-^fi
otherwise

I l>m) where

We use geometry to prove the following:

Lemma 3. Let w <k w be permutations in Sn. Suppose w = wt^b-i . .
ai ̂  k < 6,, and £(wtai bi . . . ta, b,} = ^(w) + i- Then

(1) There is a cohomology class 8 on G{k, n) such that TT. (Gw-Gwow') = S-s^k, where
d=^{j>k\ w(j) = w/(j)} =n - ^ - #{61, ..., &, }.

(2) If w r[k. m}
w', then there are partitions /i D A where. ̂ i/\ is a skew row of length

m w/iose jth row is equal to ̂ {i \ a; = j} and 7r. (6w . ©wow') = s\ . s^c.

In our talk, we wiU not present a proof of this Lemma. A proof involving a mixture
of combinatorics, linear algebra and geometry may be found in [18].

We deduce Theorem 1 from Lemma 3. Suppose w <. k w' and £{w') = ^(w) + m. We
use TT. to evaluate c^^^. Recall that c^^, m] ls defined by

<-wr[k,m]<owo = <5w . GWQW> . <5r[k, m]-

As ©u,g is the class of a point, 7T«(©u,a) == s^_^k. Apply T. to obtain

cwr[k. m}s(n-k)r = TT. {Q^ . G^^' . ©r[A,m]).
Since v''{sm) = ©r[fe,m], we apply the projection formula (4) to obtain

c^r[k, m]3(n-''}k = 7!'. (©w . ©UQ^') . 33--
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Since SmS^ = 0 unless d+m^n-k. we apply part (1) of Lemma 3 to see that

TT. {©u, . GWQUI') . Sr^_ = S . S^k . S^ = 0,

unless #{61,... , &"} = m, that is unless u; 'l"""J> u;/. Supposing u;
of Lemma 3 and the classical Pieri's rule shows that

r[k. m]
.». w/, part (2)

7T-(©u; . ©u/ow') . .Sm_ = S\-S^c-S^_ = 5(n_^)A,

as /^/A is a skew row of length m. This establishes Theorem 1.

3. CONNECTION TO PlERI'S RULE AND EXTENSIONS

The formulas in Theorem 1 are the anedogs of Pieri's rule for several reasons:

(1) The Schubert polynomial Gr[k, m] equals T'(s^).
(2) The structure constcLats in both are either 1 or 0.
(3) Theorem 1 is proven by reduction to Pieri s rule.

In [18], we show the geometry of the classical Pieri's rule and Theorem 1 to be nearly
identical. This is the unexpected link to Pieri's rule mentioned in §1.

The computation of 7r. (©iy . ©u,ow') in Lemma 3 allows us to determine more structure
constants. To ciny partition v with at most k parts, cissociate a permutation.

w(i/) = (vk + 1, l/fc-l +2, ... , t'2 +^- 1, ̂ 1 +^, ... ),

the remaining entries written in increasing order. Then TT'{s^) = ©w(i/)-

Theorem 4. Let w Q. Sn and k, m be integers. Suppose w ^k w/ and £(w') = ^(w) +
m. Let a-t, bi,... , am, &m 6e such that a, <^ k < 6, u-'/iere w = wtai^ . . . ta^i^ anc?
^w^4, ---ta, 6, ) =£{w)+i. Then

(1) Suppose w > w'. For any partition v, the structure constant c^^^ equals
the Littlewood-Richardson coefficient c^^, where f^/\ is a skew row of length m,
whose jth row has length fij - \j = #{? | a, = j}.

(2) Suppose w > w'. For any partition v, the structure constant c"^^^ equals
the Littlewood-Richardson coefficient c^y, where /X/A is a skew column of length
m, whose jth column has length -^-{i \ 6, = j}.

Proof: Using the involution ©u, i-^ ©wgwwoi it suffices to prove part (1). We use part
(2) of Lemma 3 to evaluate c^'^y Recall that G^) = TT'{s^. Then

cww(^s(n-k)k = T-(Cww(^®"o) = ".. (©w-©wau/'.
= 7T. (©u, . ©u-ow')

3\ . 3^.c . St,

= ^s(n-fe)*- F

©w(t-))
. 3^

.>,.
<1

fl
il

^1
Sl
a\
I?l
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s
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w

506

Ip"

i

;i



A GEOMETRIC APPROACH TO THE CO.MBINATORICS OF SCHUBERT POLYNOMIALS

In multiset notation for partitions, (p. 1(?-1)) is the hook shape partition whose first
row has length p and first column has length q. Define

h[k;p^q} = w(p, l(?-1)).
We use Theorem 1 to deduce the following formula for multiplication. of an arbitrary

Schubert polynomial ©u, by the hook symmetric fuiictiou Gh. [k;p. q] = 7r*('s(p, i(';-i)))-

Theorem 5. Let q <: k and k+p <:n be integers. Set m = p+q-1. For w   5'n,

6w . ©h[k;p,q} = I^©wt^^...(^^'
the sum over all ai, &i,... , a^, &m w?^ w<-^ = wta^ bi . . . ̂ amb^ where

(a) For \<, i<, m, vae have a, <, k < 6. and ̂ (w(l)) = -^(u.-) + ;".
(b) w(l)(ai) < ... < w^(ap) and w^(<Zp) > w^+l)(ap+i) > ... > u;^)(a^).

Alternatively, condition (6) for the summation may be replaced by

(b/) w(l)(ai) > ... > w^(a, ) ara<fu;^(a, ) < ... < w^m\a^.

Proof: Consider the formula involving Schur polynomials in variables ri,... , Xk:

Sp . -Si(, -i) == .S(p+^i(, -2)) + 3(p^(, -l)).

Expressing these as Schubert polynomials (applying TT*), we have:

Qr[k. p] . Qc[k, q--L] = Gh[k:p+l, q-l} + ®/>[A;p,gJ.

To establish the Theorem, fix m and use downward induction on either p or q, using
this formula and Theorem 1. |T

APPENDIX: SCHUBERT POLYNOMIALS

In [3, 7] cohomology classes of Schubert subvarieties of the flag manifold were obtained
from the class of a point using repeated correspoudences in Pl'-buiidles. Subsequently,
Lascoux and Schutzenberger [13] showed it was possible to find explicit polynomial
representatives. This has given rise to the present algebraic and combinatorial theory
of Schubert polynomials. We outline their construction, of Schubert polynomials; for a
more complete account see [16].

For each integer n > l, \et Rn= Z[a;i, ... , Xn}- The polynomial ring Rn is graded
by the total degree of a monomial. The symmetric group Sn acts on Rn by permuting
the variables. Let /   An and 3, = f. t+i be an. adjacent transposition. The polynomial
/ - 3if is .anti-symmetric m a;, and a?, 4. i, and so is divisible by .r, - Xi+i. Thus we define
the linear divided difference operator

^. =(^-^l)-l(l-5, ).
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This operator has degree -1. If / is symmetric in x, and ri -i. then Qi f is zero. Other-

wise, 9if is symmetric in x, and x^i. The divided differences satisfy

Qio9, = 0

Q^Q, = <9, o<?, if|?-j|^2
9i o Qi+i o Q, = Qi+\ o 3, o ^, 4-i

Thus, if a == (<2i,... , ap) is a reduced word for a permutation u;, then the composition
of divided differences <9a = Q^o ... o 9^ depends only upon u.' and not upon a. This
defines operators 9w for each w 6 5'n.

Let WQ be the longest permutation in Sn, that is wo(j) = n+l-j. For u;   5'n, define
the Schubert polynomial ©u< by

©u, =^-iwo(^r^r2 ---^n-i)'.
Recently other, more combinatorial descriptions have been discovered for the Schubert
polynomials [1, 4, 9]. In each of these a class of combinatorial objects is defined with a
rule for dssociating a monormal to each object. Given a permutation w, a finite set of
these combinatorial objects is constructed. Then it is proven that the Schubert polyno-
mial Gw is the sum of all monomials obtained from that set (counting multiplicities).
This is in the same spirit as the tableaux theoretic description of symmetric polynomials
given by Lciscoux ajid Schutzenberger [12].

The polynomial ©u, is homogeneous of degree ^(w), and is independent of which n
WCLS chosen, thus Gw is well defined for each u; 6 5'oo. Here Soo = U^i Sn, th.e group of
permutations of the positive integers which fix all but finitely many integers.

If w has a unique descent (j such that u/(j) > wQ'+l)) at ^, then w is said to
be Grassmannian with descent k zuid Gui is the Schur polynomial 3^(u, )(.Ci,... , .rfc).
Here A(w) is the partition (AI ^: ... ^ Afc) with. fc pajts where \k-j+i = u;0")-J- A
pennutation w S Sn is represented as the sequence (w(l), w(2),... ) of its values. A
partition A with at most k parts detennines a Grassmannian permutation w(\) with
descent at k:

u;(A)=(l+Afc, 2+A^i,... , A;+Ai,... ),

the remaining entries written m increasing order. If we define

r[k, m} = (1, 2,..., k-1, k+m, k, A:4-l,... , k+m-1, k+m+l,...)
c[k, m] = (1, 2,..., fc-m, A-m+2,... , &+1, fc-m+1, ^+2, ... ),

then r[fc, m] ajid c[k, m} are Grassmajiaian pennutations with descent at &, ajid we have
A(r[A;, m]) = (m, 0,... , 0) and X(c[k, m]) = (lm), a single column of length m.

The set {©y, | w   5'n} is an integral basis for the Z-module

Hn = Z{X[1--- X'^ | z, ^ n-j) C Z[.ci, . . . , -Cn],

^1

.®
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which is a complete transversal to the ideal S generated by the non-constant symmet-
ric functions. As Z-modules, Hn c^ Z [2:1,... , Xn}/S. Allowing n to increase shows
{Gui |w   5'^, }is an integral basis for R^ = Z[x-i, x^,... }. Given any formula involv-
ing finitely many Schubert polynormals (as in the statement of Theorem 1), there is a
positive integer n such that Hn, contains all the Schubert polynomials appearing in that
formula. Thus it is no loss of generality in proving formulas in the rings Z [2-1,. .. , Xn\jS.
This is the approach we take in §§1-3.
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