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ENGLISH SUMMARY

Schubert polynomials, which had their origins in the cohomology of flag varieties, have
recently been the subject of much interest in algebraic combinatorics. This scrutiny has
led to an elucidation of many of their properties. A basic open problem is to give a
rule for multiplying two Schubert polynomials, that is, find an analog of the Littlewood-

- Richardson rule for Schubert polynomials.

Our talk would discuss some recent work on this problem using ideas from algebraic
geometry, as well as some implications of this work for the combinatorics of the sym-
metric group. Specifically, we will describe a geometric proof of an analog of Pieri’s
rule for Schubert polynomials. This was stated by Lascoux and Schiitzenberger in [13],
where an algebraic proof was suggested. Interpreting this formula geometrically exposes
a new and striking link to the Littlewood-Richardson rule for Schur polynomials, and
indicates possible extensions of this result. While our approach uses ideas and methods
from algebraic geometry, we will present proofs involving little more than elementary
(albeit complicated) linear algebra.

RESUME

Les polyndmes de Schubert, qui sont issus de la cohomologie des variétés de drapeaux,
ont sucité depuis quelques temps un grand intérét en combinatoire algébrique. Un
examen attentif a conduit a I’élucidation de beaucoup de leurs propriétés. Un probleme
ouvert fondamental est de trouver une regle pour multiplier deux polynémes de Schubert,
autrement dit, un analogue de la régle de Littlewood-Richardson.

Notre exposé discutera certains travaux récents sur ce probleme en faisant appel a des
idées provenant de la géométrie algébrique, et aussi certaines conséquences de ces travaux
pour la combinatoire du groupe symétrique. Plus précisément, nous décrirons une preuve
géométrique d’un analogue de la régle de Pieri pour les polyndmes de Schubert. Cette
régle a été énoncée dans [13], ot une preuve algébrique était suggérée. L’interpretation
géométrique de cette formule met en évidence un lien nouveau et surprenant avec la
régle de Littlewood-Richardson, et indique des extensions possibles de ce résultat. Bien
que notre approche fasse appel & des idées et des méthodes de géométrie algébrique,
nous présenterons des preuves qui n'utilisent guére que de l’algebre linéaire élémentaire
(quoique compliquée).
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1. STRUCTURE CONSTANTS FOR SCHUBERT POLYNOMIALS

The Appendix contains a brief introduction to Schubert polynomials. Let S, be the
symmetric group of permutations on the set {1,2....,n} and S = UL Sn, the group
of permutations of the positive integers that fix all but finitely many integers. The
collection of Schubert polynomials {&, |w € S} forms a basis for the polynomial ring
Reo = Z[z1,%3,...]. A basic open question is the analog of the Littlewood-Richardson

rule: For u,v,w € Sy, find integer constants cy, such that
(1) 6,6, = Y 6.
wESn
These structure constants are positive and are known only in certain special cases.
For example, if both u and v are Grassmannian permutations with descent & so that

S, and &, are symmetric polynomials in the variables zi,..., Tk, then (1) reduces to
the classical Littlewood-Richardson rule.

An important case is when one of u or v is an adjacent transposition, tgx41. This is
usually attributed to Monk [17]. However, at the same time Chevalley established the
analogous formula for generalized flag varieties in an unpublished manuscript [6]. For
w € Swo, let (w) be the length of w. Monk's rule states:

(2) Sy - Gfkk+x = Z Gty

the sum over all a < k < b with £(wt,) = £(w) + 1. We use geometry to prove a similar
result, which is the analog for Schubert polynomials of the classical Pieri’s rule. This
analog of Pieri’s rule was announced by Lascoux and Schiitzenberger in [13], where an
algebraic proof was suggested.

Permutations w are represented by the sequence (w(1),w(2),...) of their values. For
positive integers k, m, we define the permutations:
rle,m] = (1,2,...,k=1, k+m, k, k+1,...,k+m—=1, k+m+1,...)
ck,m] = (1,2,...,k-m, k=m+2,...,k+1, k—m+1, k+2,...)

e r(k, . .
Let w,w’ € S. Write w rlkml, o if there exist ai,b1,... ,@m,bm such that

(a.) a; <k<bforl < i< m and 1t == 1 r by by -~ ~ Lo Bis
(b) £(w®) = ¢(w) + i, where w(® = w and wt®) = wl=1 . ¢
(c) w(a;) < wP(ag) <--- < w™ (am).

Equivalently, given any ay,... ,bn satisfying (a) and (b), by,... ,bm are distinct. Simi-

. k,m .
larly, write w dkml, ' if we have such ai, by....,am,bn where now

aibiy

wM(ay) > wP(ag) > -+ > wl™ (am)-

The range of summation in Monk’s rule (2) generates a partial order <4 on S, by
w <j wty; whenever a < k < band {(wt,p) = {(w) + 1. We call it the k-Bruhat order
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(k-colored Ehresmanoédre in (14]). The data (a1.b1)....,(am, b.,) in the definition of
ml 7 describe a particular path from w to w’ in the k-Bruhat order.

Theorem 1. Let w € So, and k, m be positive integers. Then we have

(1) Gu Crppm) = 2. Gu.

rik.m]

e 'ul

(2) c5w . 6c{k.m] = Z 6w’-

cfk.m]
w——wW

This is in a different form than the original statement in [13]. Bergeron and Billey (2]
independently conjectured the above form.

This form exposes a link between multiplying Schubert polynomials and paths in
the Bruhat order. Such a link is not unexpected. The Littlewood-Richardson rule for
multiplying Schur functions may be expressed as a sum over certain paths in Young's
lattice of partitions. Lascoux and Schitzenberger [15] give a procedure for multiplying
Schur polynomials based upon paths in the Bruhat order on S,. A connection between
paths in the Bruhat order and the intersection theory of Schubert varieties is described
in [11]. We believe the eventual description of the structure comstants cy, will be in
terms of paths of certain types in the Bruhat order on S,.

We first establish the equivalence of the two formulas given in Theorem 1, then prove
the first formula by reducing it to the classical Pieri’s rule. Our approach illustrates an
unexpected link to the classical Pieri’s rule, allowing the elucidation of more structure
constants. We conclude with a ‘path counting formula’ generalizing Theorem 1 where
S,k.m] and S m] are replaced by hook Schur polynomials.

We would like to thank Sara Billey who suggested these problems to us, Jean-Yves
Thibon for indicating to us the work of Lascoux and Schiitzenberger, and Nantel Berg-
eron for many stimulating discussions about these results and possible extensions.

2. THE FLAG VARIETY
Let F(n) denote the variety of complete flags in C™, that is
F(n)={E.:E.CE;C---CE,=C"| dimE; = j}.

A fixed flag F determines a cell decomposition of F(n) due to Ehresmann [8], which
may be indexed by elements of S,. The cell determined by w € S, is

{E.|3 fi,..., fa With fi € Fry1-uw() — Fowiyfor1<i<n and
E; =span{fi,...,f;j}, for 1 < j < n},
which has codimension #(w). Its closure is the Schubert variety X, F..

The cohomology classes® [X,, F] of the Schubert varieties X, F, give an integral basis
for the cohomology ring of the flag variety [8]. Using Chern classes, Borel [5] gave

1Strictly speaking, we mean the classes Poincaré dual to the fundamental cycles in homology.
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an alternate description of this ring as Hn, = L2550 5 Balf S where S is the ideal
generated by the symmetric polynomials. These two descriptions were reconciled by
Demazure (7] and Berstein-Gelfand-Gelfand [3], who described representatives for the
cohomology classes of Schubert varieties. Later, Lascoux and Schiitzenberger (13] gave
explicit polynomial representatives S., called Schubert polynomials.

We utilize a few algebraic facts about these cohomology rings. Let wo be the longest
element of S,, that is, wo(j) = n+1—j. Then XuF = {E}, so &y, is the class of
a point. The Schubert polynomial basis is a Poincaré dual basis; by this we mean if
£(w) + £(w') = €(wo), then

Gy, ifw' =wow

Gu Guw = { 0 otherwise

There is also an involution induced by the map &, — & i

We first observe that the two formulas in Theorem 1 are equivalent. This follows
easily from the next lemma.

Lemma 2.
(1) Let w,w' € Sn. Then w B N if and only if wowwo —rEml e w! wo.

(2) worlk,m]we = cln — k,m].

Using Poincaré duality, formula (1) of Theorem 1 is equivalent to

i r{k,m] 7
Gw,eww,,gr == Gwo 1fw————»w .
° tem] { 0 otherwise
Alternatively,
‘ . rlk.m] P
3 o ~ 41 Hw——"w
3) i rifng { 0 otherwise

To prove (3), fix w and w’ in Sn. Note that r[k,m] = tkk+1 tek+z - - tiksm. Lterating

Monk’s rule shows that Syxm] 18 & summand of &f, with coefficient 1. Thus the
coefficient of &, in the expansion of &y - =y . exceeds the coefficient of &, in
Sy - Srfk,m)- The first coefficient is zero unless w < w’ and {(w’ ) = {(w) + m. Thus

/

Y ik,m) = 0 unless w < w' and {(w') = (w) + m.

For the rest of this section, we will assume that w <; w’ and {(w') = {(w) + m. We
will also refer to the accompanying data: integers a1, by, a2, ... @m,bm with a; <k < b;
where w' = wta, b, *** tambm a0 O whay b, * - tah;) = {(w) + 1.

We establish (3) using the cohomology of Grassmann varieties. The association of a
flag E. to its k-dimensional part gives a map ™ from the flag variety to the Grassmannian
of k-dimensional subspaces in C™*, G(k,n). This induces a ring homomorphism 7* from
the cohomology of G(k.n) to that of the flag variety. Algebraically, 7~ is induced by
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the inclusion of symmetric polynomials in z;.... , z; into the Png Zlwy, . o5 524, There
Is also a covariant pushforward map 7. induced via Poincaré duality from the functoria]
map on homology. While 7. is not a ring homomorphism, it does satisfy the following
projection formula (see Example 8.17 of [10]): For cohomology classes o on the flag
variety and 3 on G(k,n), we have:

(4) Tu(a-73) = 7.(a) - 5.
The cohomology ring of G(k,n) is isomorphic to a quotient of the ring of symmetric
polynomials in z,. .. , Tk by the ideal generated by all Schur polynomials s A Where the

partition A satisfies \; > n — k. The class of a point is S(n—k)k; Where (n—k)* is the
partition with & parts each equal to n — k. For a partition \ with At £n—Fkand
Ak+1 = 0, let \° be the partition (n — k — A, ... s —k — A1). Then s, and S)\e are
Poincaré dual cohomology classes. Let m be the partition (m,0,...,0). A key fact is
that 7°(sm) = S:(k,m)- For partitions y and A, write A =5 4 if [\ +m = || and

/112/\12,“22'“2,”/:2/\1:-

That is, if g D ) a.ﬁd the skew diagram K/ X is a skew row of length m.
The classical Pieri’s rule states that for any partitions A and # with [\ +m = |y,

. m
S\ Suc- 8y = S(n—k)x if A _) i
= 0 otherwise

We use geometry to prove the following:

Lemma 3. Let w <k W' be permutations in Sn. Suppose w' = Wiay b, **ta,s,., where
a; <k< b;, and [(wta1 By v ‘ta;b;) = L’(w) +t. Then
(1) Thereis a cohomology class & on G(k,n) such that To(Sy - Gugw) = -5, where
d=#{j>klw()=w(j)} =n —k—#{b1,... b, }.

(2) Ifw il w', then there are partitions B D A where u/) is a skew row of length
m whose j* row is equal to #{ila:i =5} and r.(6, - Suow') =3\ - 8,c.

In our talk, we will not present a proof of this Lemma. A proof involving a mixture
of combinatorics, linear algebra and geometry may be found in (18].

We deduce Theorem 1 from Lemma 3. Suppose w < w’ and Yw') = l(w) + m. We
use 7. to evaluate Cff’,'r[k,m]- Recall that c:,"r[k'm] is defined by

C:z,r[k,mlswo = Gy Gupu - G"U‘vml‘

As &, is the class of a point, 7.(6,,) = S(n—k)k- Apply 7. to obtain

CohmS i = Ta(G Gt - Gyt my).

Since 7*(s,) = S+ {k,m], We apply the projection formula (4) to obtain

CorfemS(niitt = Tu(Gy - Gopur) - 5.
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Since sp54+ = 0 unless d + m < n — k. we apply part (1) of Lemma 3 to see that

;T"(GW.GWQWI)'SE = 5'Sdk'3m. = 0’

unless #{b1,... ,bn} = m, that is unless w Tl Supposing w e, w’, part (2)

of Lemma 3 and the classical Pieri’s rule shows that
Ta(Gw * Gupw') - Sm = Sx:Sue " Sm = S(n-k)ks

as /X is a skew row of length m. This establishes Theorem 1.

3. CONNECTION TO PIERI’S RULE AND EXTENSIONS

The formulas in Theorem 1 are the analogs of Pieri’s rule for several reasons:
(1) The Schubert polynomial &,f,m equals 7™(sm)-

(2) The structure constants in both are either 1 or 0.

(3) Theorem 1 is proven by reduction to Pieri’s rule.

In [18], we show the geometry of the classical Pieri’s rule and Theorem 1 to be nearly
identical. This is the unexpected link to Pieri’s rule mentioned in §1.

The computation of T.(S,, - Syyw) in Lemma 3 allows us to determine more structure
constants. To any partition v with at most k parts, associate a permutation

wv) = (+1l, v +2, 0,2+ k=1, n+k ...),
the remaining entries written in increasing order. Then 7°(s,) = Gu(y)-

Theorem 4. Let w € S, and k,m be integers. Suppose w <; w' and {(w') = {(w) +
m. Let ai,by,...,am,bm be such that a; < k < b; where w' = wty s, -+ tas, and
U wiay by <« tagn;) = €(w) + 2. Then

rlk.m w5 3 ’
(1) Suppose w rlkml, . For any partition v, the structure constant cy ) equals

the Littlewood-Richardson coefficient ¢4 ,, where p/) is a skew row of length m,
whose j* row has length p; — \; = #{i|lai=7}.
(2) Suppose w eml . For any partition v, the structure constant cﬁj’w(u) equals

the Littlewood-Richardson coefficient c\,, where p/\ is a skew column of length
m, whose j* column has length #{i|b; =7}.
Proof: Using the involution &, — G wu,, it suffices to prove part (1). We use part
(2) of Lemma 3 to evaluate cZ’w(u). Recall that Sy() = 77(s,). Then

] 7

S(n-k)x = 'T-(Czw(u) 6’-"0) = 7""'(Gw *Guguw - 6w(u))
= Tul(Guy* Suguat) =8y
S\ Suc Sy

Cf(u S(n-k)k- F

Cz w(v)
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In multiset notation for partitions, (p.1(%~%)) is the hook shape partition whose first
row has length p and first column has length ¢. Define

h(k; p,q] = w(p,1U7Y).

We use Theorem 1 to deduce the following formula for multiplication of an arbitrary
Schubert polynomial &, by the hook symmetric function Gpx:,.q = 7 (5(p,104-1)))-

Theorem 5. Let ¢ < k and k+p < n be integers. Set m = p+q—1. For w € 5,
S Ghfkipg = Z 6’”%1 b1 tam bm !

the sum over all ay,by,... ,Gm,bn with w) = wt, byt tambm where

(a) For 1 <i < m, we have a; < k < b; and L(w?) = {(w) + 1.

(b) wW(ay) < -+ < w(a,) and wP(a,) > WP (as1) > -+ > w™(ay).
Alternatively, condition (b) for the summation may be replaced by

() wW(ay) > - > wV(a,) and w9V (a,) < - < w™(an).

Proof: Consider the formula involving Schur polynomials in variables z,,... , z4:
Sp * S1e-1) = S(p41,1-1) T S(p,10a-1))
Expressing these as Schubert polynomials (applying 7*), we have:
Srikpl - Sekg-1] = Ghikipr1,e-1] T+ Ghlkipgl-

To establish the Theorem, fix m and use downward induction on either p or ¢, using
this formula and Theorem 1. e

APPENDIX: SCHUBERT POLYNOMIALS

In 3, 7] cohomology classes of Schubert subvarieties of the flag manifold were obtained
from the class of a point using repeated correspondences in P!-bundles. Subsequently,
Lascoux and Schiitzenberger [13] showed it was possible to find explicit polynomial
representatives. This has given rise to the present algebraic and combinatorial theory
of Schubert polynomials. We outline their construction of Schubert polynomials; for a
more complete account see [16].

For each integer n > 1, let R, = Z[zy,...,Z,].- The polynomial ring R, is graded
by the total degree of a monomial. The symmetric group S, acts on R, by permuting
the variables. Let f € R, and s; = t;;+1 be an adjacent transposition. The polynomial
f —s; f is anti-symmetric in z; and z;41, and so is divisible by z; — z;+;. Thus we define
the linear divided difference operator

0; = (zi — ziz1) M1 = s:).
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This operator has degree —1. If f is symmetricin r; and Zis1- then O; f is zero. Other-
wise, 0;f is symmetric in z; and z,.,. The divided differences satisfy

0; 0 ai = 0
0;i0d; = 000 if |2 —Jj] =2
80085100 = 0i4100:00i1

Thus, if a = (a1,... ,ap) is 2 reduced word for a permutation w. then the composition
of divided differences 0, = s, 0 -++ 0 Oa, depends only upon w and not upon a. This
defines operators 8, for each w € S,.

Let wq be the longest permutation in Sa, that is wo(j) = n+1—j. For w € S, define
the Schubert polynomial &, by

-1_n-—2 -
Sy = Oy-tuy (:c’l‘ Eq -o-xn_l) )

Recently other, more combinatorial descriptions have been discovered for the Schubert
polynomials (1, 4, 9]. In each of these a class of combinatorial objects is defined with a
rule for associating a monomial to each object. Given a permutation w, a finite set of
these combinatorial objects is constructed. Then it is proven that the Schubert polyno-
mial &, is the sum of all monomials obtained from that set (counting multiplicities).
This is in the same spirit as the tableaux theoretic description of symmetric polynomials
given by Lascoux and Schitzenberger [12].

The polynomial &, is homogeneous of degree ¢(w), and is independent of which n
was chosen, thus &,, is well defined for each w € Soo. Here Seo = Uiz Shs the group of
permutations of the positive integers which fix all but finitely many integers.

If w has a unique descent (j such that w(j) > w(j+1)) at k, then w is said to
be Grassmannian with descent k and Gy is the Schur polynomial Sl T 50w n , Tk)-
Here A(w) is the partition (Ay 2 -+ 2 \¢) with k parts where Ae_jr1 = w(j)—j. A
permutation w € Sn is represented as the sequence (w(1),w(2),...) of its values. A
partition A with at most k parts determines a Grassmannian permutation w(A) with
descent at k:

w(A\) = (14, 2+ Ak-15 - - - Jk+A, L),
the remaining entries written in increasing order. If we define
rlk,m] = (1,2,...,k=1, k+m, k, k+1,... ,k+m=1, k+m+1,... )
ck,m] = (1,2,...,k-m, k=m+2, ... k+1, k=m+1, k+2,...),

then r[k,m] and c[k, m] are Grassmannian permutations with descent at k, and we have
A(r[k,m]) = (m,0,...,0) and A(c[k,m]) = (1™), a single column of length m.
The set {S, |w € Sa} is an integral basis for the Z-module

H, = Z{zi-- -zt |i; < n—j) C Zlzy,-.- yBals
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which is a complete transversal to the ideal S generated by the non-constant symmet-
ric functions. As Z-modules, H, ~ Z{z,,...,z,]/S. Allowing n to increase shows
{Gw|w € Sx} is an integral basis for Ry, = Z[zy,z2,...]. Given any formula involv-
ing finitely many Schubert polynomials (as in the statement of Theorem 1), there is a
positive integer n such that H, contains all the Schubert polynomials appearing in that
formula. Thus it is no loss of generality in proving formulas in the rings Z[zy, ... ,z,]/S.
This is the approach we take in §§1-3.
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