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Abstract

A polynomial in two variables is defined by Cn(x, t) = ^^ x{G^, x) . t^, where Tin
is the lattice of partitions of the set {1, 2,... , n}, G^ is a certain interval graph defined
in terms of the partition TT, ^(G^, x) is the chromatic polynomial of G^ and \TT\ is the
number of blocks in TT. It is shown that Cn(x, t) = E^o ̂  E?=o G)S(n, i)(x),, where
5(n, t) u <Ae Stirling number of the second kind and (x)i = x(x - 1).. . (x - i +1). As a
special case, C'n(-l, -t) = An(t), where An(t) is the n-th Eulerian polynomial. Moreover.
An(<) = S.n. gn^ OTT . tw, where a^ is the number of acyclic orientations of G^.

On definit un polynome en deux variables par Cn(x, t) = E^-gn^ x{G^, x) . t^, ou Hr
est Ie treillis des partitions de I'ensemble {l, 2,..., n}, G^ est un certain graphe defini
en termes de la partition TT, x(G^, x) est Ie polynome chromatique de G^ et ITTJ est Ie

nombre de blocs de TT. On montre que Cn{x, t) = E^o tf: E?=o C4)5(", i)(x)i ou S(n, i)
est Ie nombre de Stirling de deuxieme espece et (.c), = x(x - l)... (x -i + 1). En
particulier, Cn{-l, -t) = An(t), ou An(t) est Ie n-ieme polynome eulerien. De plus,
An(t) = ETSH^ OT . t^, ou a^ est Ie nombre d'orientations acy cliques de G^.

1 Introduction

The Eulerian polynomials An{t) (for n = 0, 1, 2,... ), which can be defined by

.
n+k _ _ An(f)

^"T'=^w^'
are ubiquitous in enumerative combinatorics and make frequent appearances in
other branches of mathematics as well. The best known interpretation of the coef-
ficients of An{t) is perhaps the one which says that the i-th coefficient counts the
number of permutations of [n] := {1, 2,.... n} with i - 1 descents, i.e. the number
of permutations 0103 . . -On such that a^ > Oj+i for exactly i - 1 values of j.

Another much studied statistic is the Stirling number of the second kiud, 5(n, k),
which counts the number of partitions of an n-element set into k blocks.

In this paper we forge a link between these two statistics by constructing a
bijection between the set of permutations with k descents and the set of pairs (?T, A^)
where TT is a partition of [n] into n-k blocks and A^ is an acyclic orientation of a

.
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certain graph G^ determined by TT. We thus get a polynomial ^ a^ . tll rl, where

TTGHn

a,r is the number of acyclic orientations of G^, \-K\ the number of blocks of TT and
Tin is the lattice of partitions of [n], and this polynomial equals An{t).

We then generalize this polynomial by replacing a^ by ^{G^, x), the chro-
matic polynomial of Gv The resulting polynomial, which we call Cn{x, t), satisfies
(7n(-l, -t) = An[t), which is shown using a theorem of Stanley [9] on the num-
ber of acyclic orientations of graphs. Cn{x, t) can be expressed in terms of Stirling

^ ,^ fn-z
numbers of the second kind, namely C'n(a;, *) =:^t ^ " ;. S(n, i)(x)i, where

fcr0 t^ \n -

{x)i is the falling factorial defined by (x)i = x(x - l){x -2) . . -{x - i+1).

Lastly, we refine Cn{x, t) by restricting it to partitions of a given type. The type
of a partition TT of [n] is the partition of the integer n whose parts are the sizes of
the blocks of TT. This polynomial, called C\(x), when evaluated at x = -1, gives
a refinement of the Eulerian numbers, but is itself refined by the previously known
statistic counting permutations by descent set. The descent set of a permutation

p == ai02 . . -an is -D(p) = {ij a, > ai+i}, i. e. the set of indices at which the descents
ofp occur. We show that C\(x) cau be expressed in terms of those partitions of
n which are refined by A, i.e. those partitions which can be obtained from A by
adding some of its parts.

2 The link between partitions and permutations

A partition TT of [n] (or any set) is a collection {Bi, B^,... , Bm} of nonempty subsets
of [n] such that Bi n Bj = 0 for all i ^ j and such that (Ji 5i = [n]. The Bi's are

called the blocks of TT and the size of B, is its number of elements. We call TT a

fc-partition if it has k blocks and write |TTJ for the number of blocks in TT. We will
frequently represent a partition by writing the elements of each block in decreasing
order and separating the blocks by dashes. For example, 531-2-94-876 is a partition
of [9] with four blocks.

Given a permutation p = a^a-2- . -an m the symmetric group Sn, we define its
descent blocks to be the maximal decreasing contiguous subwords of p. For example,
the descent blocks of 641573982 are 641, 5, 73 and 982, or 641-5-73-982 in our

partition notation.

Each descent block ofpe<?n of size k has k-l descents and, since there are no
descents between two descent blocks, the total number of descents in p, ri(p), equals
the sum of the block sizes minus the number of descent blocks, i. e. d(p) =n - -^.p,
where #p is the number of descent blocks in p.

..2
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Thus, every permutation p with k descents has n - k descent blocks and hence
defines an (n - A;)-partition of [d], but two different permutations can define the
same partition, such as 3241 and 4132, whose descent blocks are 32-41. However,
given a partition TT of [d}, it is easy to determine which permutations have descent
blocks corresponding to TT. Namely, if we write each block of TT in decreasing order,
then every ordering of these blocks such that no descent occurs between two blocks

gives a permutation whose descent blocks correspond to TT. As an example, given
the partition TT = 52-4-31, we get four different permutations, namely 31452, 31524,
45231 and 52314. The two remaining permutations arising from these blocks, 43152
and 52431, have descents between the original blocks and thus don't have descent
blocks corresponding to TT.

From now on, we assume that the elements of each block in a partition TT of [n]
are ordered decreasingly, and when we refer to a permutation in Sn obtained from an
ordering of the blocks of TT, we mean the permutation obtained by concatenating the
blocks of TT in the prescribed order. For example, 41, 2, 53 (in this order of the blocks)
gives the permutation 41253. Also, call an ordering of the blocks descent-free if no
descent occurs between blocks. For example, 21, 43 is a descent-free ordering of the
blocks 21-43, whereas 43,21 is not.

Let r(?r) denote the number of descent-free orderings of the blocks of a k-
partition TT of [n] (e. g. r(52-4-31) = 4). Then, since each of the r(7r) permutations
generated in this way has n- k = n-\TT\ descents, and since every permutation in
Sn with n - k descents is uniquely generated in this way, we see that

An(t)= ^rW. tn-W+\
T Hn

(1)

where Tin is the set of all partitions of [n]. By symmetry of An(t), we also have the
more appealing formula

An(t)= E^)-^'-
TSHn

(2)

Let TT   Hn bea fc-partition with blocks B^, B-2,... , Bk. Define an ordering
on the Bi by setting Bi < Bj if the largest element of B, is smaller than the least
element of Bj (equivalently, every element of 5» is smaller than each element of Bj).
This defines a partial ordering on the blocks of TT and it foUows that an. ordering of
the blocks B, gives rise to a permutation p with n- k descents if and only if the

blocks are ordered so that Bj is not followed by B, when B, < Bj, i.e. if and only
if the ordering of the blocks is descent-free.

This means, in the terminology of [12], Chapter 4, that r(-n-) is the number of
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Figure 1: The poset determined by the partition TT = 41-63-75-8-92 and the corre-

spending incomparability graph.

descent-free permutations (self-bijections) of the poset defined by the blocks of TT,
ordered as above. We will review this briefly now.

Let P be a poset on elements x^, x^,... , Xn and (f>:P -> P a. bijection. We refer

to <?!> as a permutation of P and say that <^> has a descent at i if ̂ (a;i+i) < 0(a;i),
where < is the ordering m P. The descent polynomial Dp(t) of P is the polynomial
whose k-tb coefficient is the number of permutations ^ with exactly k descents.
Let Gp be the incomparability graph of P, i.e. the graph whose vertices are the

elements of P and with edges (2;, y} for each pair of elements x, y e P such that x
and y are incomparable. Fig. 1 shows the poset Py corresponding to the partition
TT = 41-63-75-8-92 and the associated incomparability graph Gv

Finding the number of descent-free permutations of a poset P is not very easy
if P is large (more precisely, that amounts to computing the number of acyclic
orientations of Gp, as we shall soon see). However, the posets determined by
partitions have a certain property which allows us a better grip on computing the
number of their descent-free permutations.

It was shown, first in [6] and later, independently, in [2] (see also [3]), and, still
later and independently, in [12], that the descent polynomial of a poset P and the
chromatic polynomial x{Gp, k) of Gp carry the same infonnation. More precisely,
if Dp{t~) = do+rfi<+ .. . + rfn-it"-1 then

dn_lf + dn_2t2 + . . . +dof"
Y^x{Gp, k)tk=
fc>0 ~^t) n+1

. It follows from this (see, e.g., Prop. 1. 4. 2 in [10]) that do, the number ofpermu-
tations (f>: P ->. P with no descents, equals (-1)IGPI . x(Gp, -1), where \Gp\ is the
number of vertices in Gp (and hence the degree of^(G'p, n)). For any graph G, in
turn, (-1)IGI . x(Gp, -1) equals the number of acyclic orientations of G. This was
shown in [9], Corollary 1. 3, and a bijective proof for the special case when G is an
incomparability graph was given in [12].

y;
5,J
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If TT is a partition of [n], let G^ be the incomparability graph of the poset defined
(as above) by TT and let a^. be the number of acyclic orientations of G^. We can
then rewrite equations (1) and (2) to get the following:

Theorem 1 An{t) = ^ a^ . tn-^+l. Equivalently, An(t) = ^ a. . tw. g
VCQn ir6Hn

Corollary 2 Let Hk, be the rank (n - k)-subset o/Hn, i. e. the set of TT in Hn such
that ITTI = A;. T/ien

^ a^ = ^ a^.
^enS 7Tens+l-'c

As we mentioned before, it is easy to prove the symmetry of the Eulerian poly-
nomials when their coefficients are interpreted as counting permutations by num-
ber of descents. One bijection which accomplishes this is the "reversing" map
R : ai02 . . -On h-> anOn-l . . . ai. In the present context, however, why Corollary 2 is
true is not at all clear, because the lattice Un is not self-dual (and even that would
not suffice). It is possible, of course, to construct a bijectiou between the pairs
{(7r, Ar) I A- an acyclic orientation of G^} for TT   n^+l~<: respectively TT   H^
by translating" the above mentioned bijection of permutations into the partition
setup. This, however, will not result in a bijection which is "natural" with respect
to the structure of Hn. That is, two permutations arising from the same partition
TT G n^ will not necessarily be sent to permutations arising from the same partition
in H^+l-fc.

As it turns out, it is very easy to compute the chromatic polynomial of the
incomparability graph G^ associated to a partition TT of [n]. Let B^B^... Bk be
the blocks of TT and let a» and &, be the least aud the largest element, respectively,
of Bi, for each i. Then G^ is isomorphic to the interual graph defined by the
intervals (on the real line, say) [ai, &i], [03, ftz], ..., [a*:, &<:], that is, the graph whose
vertices are these intervals and where there is an edge between two vertices iff their
corresponding intervals have a nonempty intersection.

Lemma 3 Let G be an interval graph on intervals 7, = [ai, &i], labeled so that
a, <, Oj ifi<j. For each i, let p(i) denote the number of intervals Ij with j < i
and such that IiHlj ^0. Then the chromatic polynomial of G is given by

x(G, n)=n(n-p(t)). .
1=1
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The preceding lemma holds in a more general context than the one presented
here, namely for all chordal (triangulated) graphs (see page 34 in [8]).

Corollary 4 Let TT be a k-partition with blocks Bi, Bs,.. . , Bk (labelled as the cor-
responding intervals in Lemma 3), let P^ be the poset determined by TT and let p(z)
be the number of blocks Bj with j < i and such that B, and Bj are incomparable in

fc

P,. Then a, = H (p(z) + 1). .
t=l

We now define a polynomial Cn{x, t) in two variables, which is an obvious gen-
eralization of the polynomial Z^gn^ o,^ . tw in Theorem 1.

Definition 5 Let Hn and Gv be as before. The n-th chromatic partition polyno-

mial is Cn{x, t) = ^ x(G^, x)-t^.
ITgHn

Corollary 6 C'n(-l, -t) = An(t), where An(t) is the n-th Eulerian polynomial. .

The polynomial Cn(x, t) can be expressed in a particularly nice way. Let (2:);
denote the falling factorial defined by (x)i = x(x-l) . . -{x-i+1), where (x)o = 1.
By definition, the chromatic polynomial of a graph G, when expanded in the basis
{(2;), }, >o, has as its coefficient to (z), the number of ways of partitioning the vertices
of G into i stable sets. A set of vertices is stable if no two of its vertices are adjacent.

Recall that H^ is the set of partitions of [n] with k blocks.

Theorem 7 Cn(x, t) =^tk^
k=0 i=0

n -z

, n- k.
S{n, i)(x)i.

The theorem can be proved by induction. However, after learning of our con-

jecture to this effect, Richard Stanley [11] found a bijective proof which we sketch
here.

Let G^ be as usual. To avoid confusion, we call a partitiou of the vertices of G^

(i. e. of the blocks of the partition TT) into i stable sets an i-separation of TT. We
need to show that each partition r   H^, forO^z ^ fc, gives rise to (^) distinct
i-separations of partitions in H^, and that each such z-separation of each TT G H^
arises uniquely in this way.

Given r 6 H^, write the elements of each block of r in ascending order. There
aien-i places between adjacent elements in blocks of r. Pick k-i of these places.

a
i
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This can be done in (^ = (^) ways and gives a partition TT   H^ if we break
up each block of r at the places picked. The desired z-separation of TT is obtained
by letting two blocks of TT belong to the same (stable) set iff they were contained
in the same block of r. As an example, letn=9, k =7, -i= 3, T = 8431-72-Q65
and-supposewe pick the following four Places within blocks of T, indicated by bars^
8|4|31-7j2-9|65. Then TT = 8-4-31-7-2-9-65 and the desired 3-separation of 7r-i"s
{13, 4, 8}, {2, 7}, {56, 9}.

Corollary 8 An(t) = E ̂ E (-l)'-i(n-I) -z'-S{n, i}.
k=0 i^O \n -

Thus, the Eulerian number A{n, K), which is the k-th coefficient of An(t} satisfies

A(n, t)=S;(-l)t-(::;).... S(n,.). .
Corollary 8 is equivalent to Theorem E in section 6. 5 in [4]. In fact, CoroUary 6

could be proved directly from Theorem 7, using this relationship between Stirling
numbers and Eulerian numbers. It seems, however, that such a proof would raise the
question answered by the bijective proof presented here. A more reasonable desire
would be to see a direct bijective proof of Theorem 1, using a bijection between the
set of permutations of [n] on one hand and the set of pairs (?r, A), where A^ is an
acyclic orientation of G^, on the other. We now sketch such a bijection.

A source in a directed graph is a vertex v noue of whose incident edges points
into v. In particular, an isolated vertex is a source. It is easy to see that m any
acyclic orientation of a finite graph there must be at least one source. Let TT be
a partition of [n] with blocks B^, B^,... , Bk and suppose we are given an acyclic
orientation A^ of G^. Observe that two sources in a directed graph cannot be
adjacent. Thus, if TT is a partition, and B, and Bj are two sources in an acyclic
orientation of G^, theu every element of B, must be smaller than each element of
Bj (i. e. Bi < Bj in P^), or vice versa. We now construct a permutation p of [n],
with descent blocks B^B^,... , Bk, from A^ as follows: Let B, be that source of
G^ whose elements are smallest. Theu the permutation p begins with the elements
of B,, ordered decreasingly. Now remove B. and all its incident edges from G^.
Let Bj be the source with the least elements in the resulting graph. Append the
elements of Bj, iu decreasing order, to those of B. already placed. Continue in this
way until there is nothing left of the graph. This gives a descent-free ordering of
the blocks B^Bi,.. ., Bk. Conversely, given a permutation p with descent blocks
BI. BS, ... , Bfc, in this order, let TT be the partition with blocks B^B-^,... , Bk and
construct an acyclic orientation of G^ by orienting edges from B, to Bj if i < j.
For an example, see Figure 2.
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Figure 2: An acyclic orientation of G^, for TT = 41-52-3-6-97-8, which corresponds
to the permutation 523416897.

Remark 9 The above bijection can be modified to apply to an arbitrary poset P,
thus giving a new bijective proof (simpler than that in [12], mentioned above) of
the fact that the number of descent-free permutations of P equals the number of
acyclic orientations of Gp. Namely, label the elements of P with [n\ in a natural
way, i. e. so that i < j mP implies i < j as integers. Given an acyclic orientation of
Gp, let the first letter of the corresponding permutation be the least label among
all sources in Gp, remove that source and repeat the process as above. Conversely,
given a descent-free permutation p of P, orient the edges of Gp from i to j if i
precedes j in p.

^

3 A refinement of Cn(x, t)

We will now refine the polynomial Cn(x, t) by restricting it to partitions of a given
type. The type of a partition TT with blocks Bi, B-i,... , Bk is type(?r) = A =
(Ai, A2r . . > ^k), where A, == #Bi. By couvention, we label the B, so that Ai ^ AZ ^
.. . <: \k- The length of A, denoted £{\), is the number of parts of A, i. e. £(\) = k.
Thus, type(Tr) is a partition of the integer n. As an example, if TT = 531-762-4-8-9
then A= (1, 1, 1, 3, 3).

To minimize the confusion in what follows, we will always let TT and r denote

partitions of the set [n] but A and p, will denote partitions of the integer n.

Let In be the poset of partitions of n, ordered by refinement, i.e. if X, p, G In
then \ < p, [{ p, can be obtained from A by adding some of the parts of A together.
For example, (1, 1, 2, 3, 3) ̂  (1, 2, 3, 4) ̂  (1, 4, 5) ̂  (3, 7).

We wish to compute C\(x~) := EX(GT, ^), where the sum is over all TT of type

A. Evaluating this polynomial at a; = -1 will yield a refinement of the Eulerian
numbers A(n, fc), because we have (-l)fc ^ C'A(-I) = i^ aw = A(n, k). On the

t(\)=k iren^

other hand, (-l)kC\(-l} is refined by the known statistic recording the distri-
bution of permutations in <?n by descent set. The descent set of a permutation
p = a^a-2 . . -an is D(p) =={z | a, > 01+1}, i. e. the set of indices at which the descents

.*9
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of p occur. This statistic, first discovered by MacMahon [7], and then rediscovered
several times, involves binomial determinants (see [5]). To see that {-l')kC\{-l)
is refined by the descent set statistic, observe that it equals the number of per-
mutations whose descent blocks constitute a partition of [n] of type A, whereas all
permutations with a given descent set give rise to partitions of the same type, since
the descent set determines the sizes of the descent blocks.

The lattice of partitions of [n], which we denote by IIn, is ordered by setting
TT < rifr is refined by TT, that is, if each block of TT is contained in some block of r.

As an example, 1-52-63-4 < 1-542-63 ̂  541-632. Let TT be a partition with blocks
B^, B-2,... , Bk and type (vr) = A. An i-separation of TT defines a unique partition
r ^ TT by letting Bi, UB^U---U B,^ be a single block in r if [Bi^B^,..., B^}
is one of the stable sets of the t-separation in question (see the proof of Theorem
7). In order to give a nice expression for C\(x) we need to understand how many
t-separations of partitions of a given type arise from r.

Define /(A, 11} to be the number of ways of obtaining a partition TV of type A
from a partitiou r of type p, in the way described in the proof of Theorem 7, i. e. by
picking some of the places between elements of blocks of r and breaking up each
block at the places picked (recall that the elements of each block are always written
in decreasing order). As an example, the block 76421 can be split into 76-4-21 and
7-642-1 (to name a few), but not 621-74.

Then the same proof as for Theorem 7 yields the following result, where #(/i)
is the number of partitions of type p. (which has a well known expression).

Theorem 10 C,{x) = ^ /(A, ̂  . #{^ . {x}^). .
p.^\

Setting A=(l, l,..., l) yields the following well-known identity:

Corollary 11 ^ 5(n, A:)^)^ = 3:".
A=0

Theorem 10 can be used to express Euler numbers (not to be confused with the
Eulerian numbers A(n, fc)) in terms of the number of partitions of certain types.
The Euler number En is defined as the number of alternating pennutatioas in Sn,

i.e. permutations 01. 02 .. . dn such that ai >a2 <as > .... A result of Andre [1]
states that the exponential generating function of the Euler numbers is given by
En>o^n^n/"' = tSLQX+SGCX. FOF 71 odd, they satisfy En = (-l)("+l)/2An(-l).
For even n, An(-l) = 0, explaining why the formula only holds for odd n.
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Corollary 12 Let c^ be the number of partitions of [2n] into k blocks of even sizes.
Then

^ = E (-i)n-fc. A;! . c^.
fc=l

Proof: All the descent blocks of an alternating permutation in <S2n have size 2, so
such a permutation arises from a partition TT of type A = (2, 2,.. ., 2). Conversely,
any permutation arising from a partition of type (2, 2,..., 2) is alternating. Ifr>:7T,
where type(Tr) = (2, 2,... , 2), then every block of r has even size. Also, given a
block in such a r, it can be split into linearly ordered blocks of size 2 in only one
way, i. e. /(A, /^) = 1, where fi = type(r). The number of permutations arising from
TT is given by (-l)n^(G^, -1), so, letting A = (2, 2,..., 2), we get

^2n =(-!)" E X(G.
type(7r)=A

l)=(-l)nE/(A^)-#(^)-(-l)^)=
p.>\

(-1)" EI . ̂  . (-1)' . ̂ ! = E (-1)"-A . A;!. c^.
Jk=l ik=l

It has been pointed out to the author by Ira Gessel how this result can be
obtained from generating functions.

Obviously, one could generalize Corollary 12 by replacing c^ with the correspond-
ing number of partitions of [dn] into k blocks of sizes divisible by d, in which case the
Euler number E-^n would be replaced by a generalized Euler number EJ^ counting
the number of permutations of [dn} with descents at positions d, 2d, 3d,.. ., (n- l)d.
A straightforward combinatorial proof can be given of Corollary 12 (and its gener-
alization), by consideriug how permutations with the desired descent set arise from
partitions of the appropriate type. It has also been pointed out to the author by
Ira Gessel how this result can be obtained from generating functions.

The following formula for the Euler numbers £'2n-i, curiously similar to Corol-
lary 12, has been found by Sheila Sundaram [14]. Her result stems from homological
properties of the lattice Un, studied in [13], and is likewise generalized to partitions
of [dn} vs. permutations of [dn - 1].

n

Proposition 13 (Sundaram [14]) ̂ n-i = $] (-l)"-fc . (A;- 1)!. c^. .
k=l

The combinatorial proof mentioned after Corollary 12 can be modified slightly
to also cover this case.
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