CATALAN PATH STATISTICS HAVING THE NARAYANA
OR THE KREWERAS-POUPARD DISTRIBUTION
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ABSTRACT. Cet article étudiera le catalogage des statistiques sur les chemins de Dyck
satisfaisantes la distribution de Narayana et celles satisfaisantes la distribution symétrique
de Kreweras-Poupard. Ces deux distributions possedent plusieurs statistiques bien con-
nues. Cet article étendra la liste considerablément et démontrera comment ces statistiques
sont reliées par les bijections relativement simples.

This paper investigates cataloging the statistics on the Catalan lattice paths satisfying the
Narayana distribution and those satisfying the symmetric Kreweras-Poupard distribution.
For both these distributions, there are several known statistics. This paper extends the
lists considerably and shows how these statistics relate to one another by moderately
simple bijections.

1. INTRODUCTION

On Z? consider lattice paths having positively directed vertical and horizontal unit steps
with O denoting a vertical step and 1 denoting a horizontal step. For nonnegative integer
n, the set of Catalan paths, C(n), is the set of all lattice paths from (0,0) to (n,n) that
never run below the line y = z. Hence, [C(n)| is the n** Catalan number.

Here a lattice path statistic is either an integer-valued function or a vector-valued func-
tion with domain C(n). Our goal is to determine and catalog the statistics on C(n) that
have the Narayana distribution or the symmetric Kreweras-Poupard distribution of Section
4. We will define the Narayana distribution as

n—1\/n-1 n—1\/n-1
o= (7 (1) (23 (:2)
Hence, |C(0)] = N(0,0) = 1; |C(1)] = N(1,0) = 1; [C(2)] = N(2,0) + N(2,
N (4,2

IC(3)] = N(3,0)+NV(3,1)+N(3,2) = 14+3+1; |C(4)| = N(4,0)+N(4, 1)+
14+6+6+1; etc.

=1+1;

1)
)+N(4,3)

For P= P,P,...P,... P, € C(n), define the following statistics:

(1) EVENA(P) = |{h : Py, = 0} = the number of even ascents on P,

(2) VAL(P) = |{h : PyPys+1 = 10}| = the number of valleys on P,

(3) DOUBLEA(P) = |[{h : PyPyt+1 = 00}| = the number of double ascents on P,

(4) LONG(P) = l{h : PaPap1Prya = OOIH + l{h : PaPot1Pryr = 110}| = the number of
nonfinal maximal constant sequences on P.
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Our starting point is the following result initiated by Narayana [1, 3, 6, 9]:

Proposition 1. For fired n, the statistics - Evend. Val, Doubled, and Long - are dis-
tributed by N(n,k). E.g., |{P € C(n): EVENA(P) = k}| = N(n, k).

Remark 1. Val and Doubled have been viewed as essentially the same statistic since, for
any path in C(n), if k£ of the noninitial vertical steps are preceded by vertical steps then
n—k—1 are preceded by horizontal steps. Notice that N(n, k) is symmetric about (n—1)/2.

2. THE EVEN-ODD-EVEN-ODD CONDITION

We will consider path statistics, ©(P), P € C(n), that count specified local behavior
on all even-odd-even-odd positioned quadruples of steps of P. We will overline the even-
odd pairs of steps to emphasize the parity of their positions. For example, the path,
P =01001011 € C(4), may be written as 0 10 0I 01 1.

Equivalent to the consideration of catpaths with even-odd pairs emphasized is the study
of pairs of lattice paths that only intersect initially and terminally. There, diagonally
opposing steps are emphasized. Bijections between pairs of nonintersecting lattice paths
and catpaths are recorded in [8].

Defining path statistics by a “matrix code”: Let M be a 4 by 4 matrix with integer
entries. Here we index the rows and the columns of M by 00,01,10,11 in lieu of the usual
1,2,3,4. For P=P,...Py... P, € C(n), define M(P) to be a sum over selected entries

of M as follows:
IVI(P) = Z (A/I)P2hP2h+lr P42 Pnts-
1<h<n—2

Moreover, for ¢t € {0,1}, define My(P) = M(P) + x(P, = t), where x(A4) = 1 if A is true
and 0, otherwise.

That a statistic has a matrix code is equivalent to the even-odd-even-odd condition that,
given P € C(n), M(P) depends additively only on the following multiset of subpaths (i.e.,
a multiset of 4-words on {0,1}),

{PonPony1 Pony2 Ponis : 1 < h <n-3},

and does not depend on the relative positions of these subpaths on P or directly on the
length of P. Accounting for each second step, P,, is essentially needed for C(2). Once
t € {0,1} is fixed, the same summand x (P, = t) is retained for all n.

Example 1. Let

M = and M' =

o O
— O
oo o

1
0
0

OO O =
(e
OO
OO
OO OO

00 0

Here the entry (M')10, 01 = 1 is in the 10-row and the Ol-colum.nif ﬂ’ and thus M'(P)
can count all noninital odd-even positioned ascents occurring as 10 01 on a given path.
Moreover, M'(P) counts the noninitial odd-even ascents on a path P, while M(P) counts

o
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all even-odd ascents. The summand. x(P; = 0), will account for an initial odd-even ascent
on P. Hence, with D = W + M/,

— O N

2
0
1

O O =
OO —

DOUBLEA(P) = Do(P) =
000 0],

In particular, if P =000 01 00 01 11 10 01 11 1, then DOUBLEA(P) = Dy(P)
= (D)oo 01 + (D)o1 00 + (D)oo 01 + (D)o1 11+ (D)11 10+ (D)1o o1 + (D)o1 11 + xX(P; =0)
=24+0+24+0+0+1+0+1.

3. STATISTICS WITH THE NARAYANA DISTRIBUTION

Proposition 2. There are ezactly 56 path statistics, ©, satisfying the even-odd-even-odd
condition with the summand x(P; = 0) for which |{P € C(n) : ©(P) = k}| = N(n, k).

Proposition 3. There are ezactly 56 path statistics, ©, satisfying the even-odd-even-odd
condition with the summand x(P; = 1) for which |{P € C(n) : ©(P) = k}| = N(n, k)

A matrix code, M, is called Narayana code, if M, represents a statistic having the
Narayana distribution. For ¢ = 0, there are 66 Narayana codes; however, each of ten of
these represents a statistic that is represented by another matrix. For ¢t = 1, there are 91
Narayana codes; however, each of 35 of these represents a statistic that is represented by
another matrix.

The scheme used to prove Propostion 2: The first step: With computer aid, we can
routinely consider all 4 by 4 matrices that are plausible as Narayana codes (with the
x(P; = 0) summand) for C(n) for small values of n.

For n = 3, we observe that there are at most eight categories of matrices, M, that
are plausible under the Narayana distribution, (1,3,1). Here we used the fact that the
X (P2 = 0) summand implies M5(0 00 11 1) > 0, Mo(0 0T 0L 1) > 0, and Mo(0 0T 10 1) > 0.

Only six of the plausible categories are eventually realized as Narayana codes. They are

represented as follows:
- - - = = - 00 -
- ’ - ’ - ’ = ) == ’ -20 -
-lo -lo -lo -lo ~Jg o o
We continue checking in a similar manner using C(n), for n = 4..., until a set of plausible
matrices is completely determined. During our checking stability was apparently reached
at n =7, with 66 “candidate matrices” satisfying the Narayana distribution on U_, C(n).
The second step: As expected, we find that three of the candidates are the known
Narayana codes, namely those corresponding to the statistics, EVENA, DOUBLEA, and

LoONGs, of Proposition 1, which are represented as

low|
| =0
[ |
ool
[ |
[ |
=0l
ool
[ |
[T
loo|
[ ]
I =0
lor|

[ |

1100 2 31 i 0000
1100 0000 1010
E°=1100’D°‘1100’L°‘1100
110 0], 00 0 0], 2 11 0],
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We then show that anyv other candidate, say .V, is indeed a Narayana code by estab-
lishing a bijection, BIJ : C(n) — C(n), such that

My(B1I(P)) = My(P),
where M| has been shown previously to be a Narayana code. In general, when there is a

bijection, BIJ, for which My(BII(P)) = M(P), for all P € Un»oC(n), we will define, using
common graph theoretic notions, an edge between the vertices, M and M'. We will write:

M EY A,

Hence, we complete the proof by forming a connected graph with all the candidates as
vertices and with the bijections (defined in Section 6) producing the edges. A portion of
the graph appears in Figure 1.

Bijection 1. Interestingly, during the process of constructing the graph proving Proposi-
tion 2, two connected components developed. The only known way to “bridge” the two
components was to use the neat bijection recently found by Benchekroun and Moszkowski
[1]. It is denoted here as:

u:{P eC(n): LoNG(P) = k} — {P € C(n) : VAL(P) = k}.

4 is defined so that, for P € C(n), LONG(P) =k and 0 < h < k, if ((z,yn), (un, vs)) is the
coordinate designation for the last step of the h** nonfinal long sequence (i.e., long ascents
or nonfinal long descents) of P, then (zx + 1,yx) are the coordmates of the hib Valley of
©(P). See the location of  in Figure 1.

4. STATISTICS FOR THE SYMMETRIC KREWERAS-POUPARD DISTRIBUTION

Next consider bivariate statistics on £(n, k) = {P € C(n) : [{h : P, = 0}| = k}. Given
a pair of 4 by 4 matrices, M and M’, define M| M’ so that M|M'(P) = (M(P), M'(P)).

Let
ke = () () (0 - ) E)ED ()

Our reference point here is the symmetric variation of the Kreweras-Poupard theorem
[5, 4, 8], which states that the next proposition holds for each of the three pairs:

o7 = [3889 (93081 i = [29883508 33818388
Vi ge— A | Y o I_
J\/IH[ —[1100 oooo] ’ A[I.W —[ 1100 {0000 ] ’ *"[“’[ [ 0000 1100]-
110011010 100011110 0000 10000

Proposition 4. There are ezactly 35 bivariate statistics defined by matriz pairs, M|M’,
that satisfy

{P € E(n, k) : (t,7) = M|M'(P) }| = symKP(n—k—1,k,1,j).

Here M| M’ and M'| M are considered the same. While there are 61 W|.M’ pairs satisfying
the symmetric Kreweras-Poupard distribution on £(n, k), each of 26 of these represents a
bivariate statistic that is represented by another pair.
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1 1T0O0 1 100 1 010 1 110
1 100 EX3 |1 010 EXl |1 010 sLl (0 0 1 ¢
1 100 ~ |1 1 00 ~ 11 1 00 — |1 1 0090
110 0f, 110 0], 110 0], 110 o
EX2] EX2 [ ZAP ]
1 100 1 100 0001 1 111
1100 1 010 0 00 1/ Ipy |0 0 0 0
1 100 1 100 1 101 = 11 100
101 0J, 1 01 0f, 110 1j, 11000
REV | REV | B1
1100 1100 1101 2211
0100 0 00O 0 00 1] Ipy |0 00O
2100 2200 1101 ~ |1 100
110 0f, 110 0], 000 1, 000 0],
coM

0 00O 0010

1010 g (1110

1100 < (0010

2 11 0], 111 0],

Al
1100 2110 1 000
0 00O REV [1 010 IDy |1 011
1 201 ~ |1 100 < 11011
0101 0 00 0f, 000 1],

Figure 1: A portion of the graph of the Narayana codes with x(P; = 0).

As before, we can prove Proposition 4 using the scheme of finding candidates and bijective
verification. If BIy : £(n, k) — &£(n, k) is an arbitrary bijection satisfying M|M'(Bu3(P)) =
ﬂ[f\i’ (P), we will write M| M’ & V|30, A portion of the resulting graph in the proof of
Proposition 4 appears in Figure 2.
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Figure 2: Part of the graph of Kreweras-Poupard codes.

Remark 2. In this section we have limited our attention to bivariate statistics satisfying
the even-odd-even-odd condition and the sym K P distribution on £(n, k). There are other
bivariate statistics satisfying this condition and this distribution on some other subsets of
C(n) whose cardinality satisfies the Narayana distribution. However, it appears that, for
such other subsets, the bivariate statistics are much less abundant.

5. COMPLEMENTARY CODES

Now we forge a link between some of the Narayana codes with summand x(P; = 0) and
some with x(P, = 1). Define the complement of a matrix M, denoted by M¢, so that
(M¢);; = 1 — (M);; for all entries.

For any P € C(n),n > 0, and for any 4 by 4 matrix M, whose components belong to
{0,1}, observe that

[M(P)+x(Po=1)]+[M(P)+x(P.=0)]=n—-1

Since N(n, k) is symmetric about (n —1)/2 in k, it follows that, for any 0-1 matrix, M, Mo
is a Narayana statistical code if, and only if, M{ is a Narayana statistical code. We will
write “My LM M, for such a pair of equivalent statistical codes.

Since, by Proposition 1, the Narayana number counts catpaths with respect to valleys
and since

|{h : PahsaPanta = 10} U {h : Pppy1 Pongo = 10} + x(PL P2 P3 = 010) = [

~OorQOo

010
sl (),
11041

the matrix on the right, denoted by Vi, is a Narayana code. Locate V; and Dy in Figure 1.

Bijection 2. The following explicit bijection is both interesting and used for the Bijec-
tion 9: Let a : {P € C(n) : Val(P) = k} — {P € C(n) : DoubleA(P) = k} be
defined as follows: Each R = R;...Ry...Ryn € {P € C(n) : Val(P) = k} is de-
termined uniquely by the sequence of its valleys, (z1,y1)..-(Za:Yn)-..(Tk,yx), say. If
we consider the set complements, {z!,...z_,_,} = {1,...,n =1} — {z1,...2¢} and
(W Yooier} = {1,..,n=1} = {y1....ys}, then (y1,21) ... (Wh: Zh) - - - (Ynok1) Trok—1)
will be the valleys of a(R) = s152...52, € {P € C(n) : DoubleA(P) = k}.
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BEEREmE

6. SOME CATPATH BIJECTIONS.

We will now introduce some of the bijections from C(n) to C(n) that establish the edges
to prove the Propositions 2, 3, and 4. Figures 1 and 2 witness their effects.

Bijection 3. The reverse of a path is defined as REV : C(n) — C(n) : REV(P) = P’ so that
P, =1~ Psa_s. E.g. REV(010011) = 001101.

Lemma 1. For any P € C(n),
1 0

1
0
1 (P)+
0

o B o Y oo o
O = O
O -~ O —
oo oo
SRS
O a™@Q o
& o~ >

a
e
t

m

OO oo

0 0
1 0
0 0

0 0
Bijection 4. IDY : C(n) — C(n) denotes the identity map, i.e., IDY(P) = P.

The following shows that there are path statistics that have more than one representation
as a matrix code.

Lemma 2. For any P € C(n),

(P) =

0
1
@

O O OO
SO oo
oo ooOo

1

Proof. Since a given path will have the same number of 00’s as 11’s, it will have the same
number of 00’s as T1’s that do not belong to a 00 II quadruple.

Bijection 5. The ezchange of a boomerang, No. 1, EX1:C(n) — C(n), is a path isomor-
phism defined so each 01 or 10 that occurs immediately after any 00 is replaced by the
other step pair. E.g. EX1(0 00 10 10 01 11 1) =000 01 10 01 11 1.

EX2 is defined is same way with “I1” replacing “00.”

Bijection 6. EX3 : C(n) — C(n), is a path isomorphism defined as follows: Let Z7...Zo
be a maximal subpath of P such that 75 € {0I,10}. Let 77...75 denote its image under
EX3, also with 7i € {01,10}. Put J7 = 77. For 1 < h < m, put J437 = J& when Fpoy = 01
and Pry1 # Un, otherwise.

Bijection 7. The slides of 01 ’s with respect to ascent on a path results, essentially, when
the maximal (possibly empty) subpaths of 01’s on both sides of each 00 are interchanged.
More precisely, define SL1 : C(r) — C(n) so that each maximal subpath of P of the form
W1W,;Ws, where (1) W, and W3 are maximal and consists only of 01 step pairs and (2)
W, is nonempty and consists only of step pairs from {00, 01}, is replaced by W3W,W; on
SL1(P).

Bijection 8. ZAP : C(n) — C(n), is a path isomorphism defined so each quadruple T0 0T is
exchanged for 00 1T, and vice versa. E.g. ZAP(00100111) = 00101101.
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Bijection 9. For brevity. we will only informally define the useful bijection: 3 : &(n. k) —
E(n, k). We will view the “skeleton” of a path, P, as the reduced path consisting only of
the 00°s and 11's after all other even-odd step pairs have been removed from P. 3 will map
the skeleton of P into a new skeleton under « (from Definition 2) where a treats each 00 as
just a single ascent 0 and IT as just a single descent 1. Further, 8 will map each maximal
subpath in {0I, 10} located between two 00’s on P to a valley on the new skeleton, and
vice versa. Likewise, 3 will map each maximal subpath in {01, 10} located between two

As an example, o(01001011) = 00011011, by Definition 2. If each W4’s is a maximal
subpath on {01,10}, then

B( 0 W, 00 W, 1T W5 00 W, 00 W5 1T Ws 00 W> 11 Ws IT Wo 1)
=0 W, 00 W5 00 W; 00 W 11T W, IT W, 00 W, 11 W5 11 Wil

Proposition 5.

a b ¢ ‘ m n o

e fgd B |e fgd

1 7 k d — i 7 k d

m n o d0 a b ¢ do
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