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ABSTRACT. Get article etudiera Ie catalogage des statistiques sur les chemins de Dyck
satisfaisantes la distribution de Narayana et celles satisfaisajites la distribution symetrique
de Kreweras-Poupard. Ces deux distributions possedent plusieurs statistiques biea con-
nues. Cet article etendra la liste considerablement et demontrera comment ces statistiques
sont reliees par les bijections relativement simples.

This paper investigates cataloging the statistics on the Catalan lattice paths satisfying the
Ndrayana distribution and those satisfying the symmetric Kreweras-Poupard distribution.
For both these distributions, there are several known statistics. This paper extends the
lists considerably and shows how these statistics relate to one another by moderately
simple bijections.

1. INTRODUCTION

On Z2 consider lattice paths having positively directed vertical and horizontal unit steps
with 0 denotmg a vertical step and 1 denoting a horizontal step. For nouaegative integer
n, the set of Catalan paths, C(n), is the set of all lattice paths from (0, 0) to (n, n) that
never run below the line y =x. Hence, [C(n)| is the nth Catalan number.

Here a lattice path statistic is either an integer-valued function or a vector-valued fiinc-
tion with domain C(n). Our goal is to determine and catalog the statistics on C(n) that
have the Narayana distribution or the symmetric Kreweras-Poupard distribution of Section
4. We will define the Narayana distribution as

N{n, k)=
fn -l\fn- 1^ 'n - 1\ (n - 1^

, k-l]\k+l^

Hence, |C(0)| = ^(0, 0) = 1; |C(1)| = N(1, 0) = 1; |C(2)| = ^V(2, 0) + 1V(2, 1) =1+1;
|C(3)| = N{3, 0)+.V(3, 1)+A-(3, 2) = 1+3+1; [C(4)| = N(4, 0)+JV(4, 1)+.V(4, 2)+.V(4, 3) =
14-6+6+1; etc.

For P = Pi?2 ... P/i . . . ?2n 6 C(n), define the foUowing statistics:
(1) EVENA(P) =\{h: ?2/i = 0}| = the number of even ascents on P,
(2) VAL(P) =\{h: PhPh+i = 10} | = the number of vaUeys on P,
(3) DOUBLEA(P) =\{h: P/iP/, +1 = 00} I = the number of double ascents on P,
(4) LONG(P) = \{h : P^+iPh+2 = 001}| + \{h : P^P^P^ = 110}] = the number of

uonfinal maximal constant sequences on P.
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Our starting point is the following result initiated by Narayana [1, 3, 6, 9]:

Proposition 1. For fixed n, the statistics - EuenA. Vol. DoubleA, and Long - are dis-
tributed by N(n, k). E. g., \{P   C(n) : EVENA(P) = k}\ = A'(n, k).

Remark 1. Val and DoubleA have been viewed cis essentially the same statistic since, for
any path in C(n), if k of the noninitial vertical steps are preceded by vertical steps then
n-k-1 are preceded by horizontal steps. Notice that Ar(n, k) is symmetric about (n-l)/2.

2. THE EVEN-ODD-EVEN-ODD CONDITION

We will consider path statistics, 6(P), P   C(n), that count specified local behavior
on all even-odd-even-odd positioned quadruples of steps of P. We will overline the even-
odd pairs of steps to emphasize the parity of their positions. For example, the path,
p = 01001011 e c(4), may be written as 0 l^OTOl 1.

Equivalent to the consideration of catpaths with. even-odd pairs emphasized is the study
of pairs of lattice paths that only intersect initially and terminally. There, diagonally
opposing steps are emphasized. Bijections between pairs of nonintersecting lattice paths
and catpaths are recorded in [8].

Defining path statistics by a "matrix code": Let M bea4 by 4 matrix with integer
entries. Here we index the rows dnd the columns of M by 00, 01, 10, 11 in lieu of the usual
1, 2, 3, 4. For P = Pi ... P/,... P^n   C(ra), define M{P) to be a sum over selected entries
of M as follows:

M{P)= ^ Wpz^^, P^^PWS-
K/l<n-2

Moreover, for t   {0, 1}, define M((P) = M(P) + ^(P^ = t), where ̂ (A) = 1 ifA is true
and 0, otherwise.

That a statistic has a matrix code is equivalent to the even-odd-even-odd condition that,
given P   C(n), M(P) depends additively only on the follo\ving multiset of subpaths (i. e.,
a multiset of 4-words on {0, 1}),

{^-P2A+1^+2^2A+3 -. l^k^n-3},
and does not depend on the relative positions of these subpaths on P or directly on the
length of P. Accounting for each second step, J°2, is essentially needed for C(2). Once
t   {0, 1} is fixed, the same summand ^(Pz = *) is retained for aU n.

Example 1. Let

M=

'1111
0000
0000
0000

and Mf =

.

I 1 0 0'
0000
1100
0000.

Here the entry (M')io, 01 = 1 is in the 10-row and the Ol-colnmnof ;V/' and thus M'{P)
can count all aoninital odd-even positioned ascents occurring as 10 01 on a given path.
Moreover, M (P) counts the noainitial odd-even ascents on a path P, while M{P) counts

;*;).
'^.s
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all even-odd ascents. The summand. \(P^ = 0), will account for an initial odd-even ascent
on P. Hence, with D = M + M',

DOUBLEA(P) = Do(P) =

.

2 2 1
0 0 0
1 1 0
000

w-

In particular, if P =0 00 01 00 01 11 10 01 11 1, then DOUBLEA(P) = Do{P)
= Woo 01 + (£>)oi oo + [D)oo 01 + (-D)oi 11 + (-D)ii 10 + (-D)lO 01 + (£>)oi 11 +X{P2 = 0)
=2+0+2+04-0+1+0+1.

3. STATISTICS WITH THE NARAYANA DISTRIBUTION

Proposition 2. There are exactly 56 path statistics, Q, satisfying the even-odd-even-odd
condition with the summand \{P^ = 0) for which \{P   C[n) : Q(P) = k}\ = N{n, k}.
Proposition 3. There are exactly 56 path statistics, Q, satisfying the even-odd-even-odd
condition with the summand ̂ {Pz = 1) for which \{P 6 C(n) : 6(P) = A}| = N(n, k)

A matrix code, A/(, is called Narayana code, if A/( represents a statistic having the
Narayana distribution. For <= 0, there are 66 Narayana codes; however, each of ten of
these represents a statistic that is represented by another matrix. For < = 1, there are 91
Narayana codes; however, each of 35 of these represents a statistic that is represented by
another matrix.

The scheme used to prove Propostion 2: The first step: With. computer aid, we can
routinely consider all 4 by 4 matrices that are plausible as Narayana codes (with the
^(?2 = 0) summand) for C(n) for small values of n.

For n = 3, we observe that there are at most eight categories of matrices, MQ, that
are plausible under the Narayana distribution, (1, 3, 1). Here we used the fact that the
X(P2 = 0) summand implies Mo(0 OOTI 1) > 0, Mo(0 OTOl 1) > 0, and Afo(0 OTlO 1) > 0.

Only six of the plausible categories are eventually realized as Narayana codes. They are
represented ds follows:

- - 0
01-
0 1 -

- - 0
1 0 -
10-

0

0 1 -
10-

We continue checking in a similar manner using C(n), for ra = 4..., until a set of plausible
matrices is completely determined. During our checking stability was apparently reached
at n = 7, with 66 "czuididate matrices'1 satisfying the Narayana distribution on |j^=o^(")-

The second step: As expected, we find that three of the candidates are the known
Narayana codes, namely those corresponding to the statistics, EVENA, DOUBLEA, and
LONGS, of Proposition 1, which are represented as

£'o=

0

0

0

0

Po=

.

2 2 1
000
1 1 0
000

£o=

0

1

0

1
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n

We then show that any other candidate, say .V/o, is indeed a Narayana code by estab-
lishing a bijection, BIJ : C(ra) -+ C(n), such that

^o(BU(P)) = M, {P},

where M'Q has been shown previously to be a Narayana code. In general, when there is a
bljection, BIJ, for which .V/o(BU(P)) = -V/o(p)' for a11 -p S Un^oC(n). we will define, using
common graph theoretic notions, an edge between the vertices, M and M'. We will write:

BIJ
M M'.

Hence, we complete the proof by forming a connected graph with all the candidates as
vertices and with the bijections (defined in Section 6) producing the edges. A portion of
the graph appears in Figure 1.

Bijection 1. Interestingly, during the process of constructing the graph proving Proposi-
tion 2, two connected components developed. The only known way to "bridge the two
components was to use the neat bijection recently found by Benchekroun and Moszkowski
[1]. It is denoted here as:

^ : {P   C(n) : LONG(P) =&}-. {?  C(n) : VAL(P) = k}.

^ is defined so that, for P   C(ra), LONG(P) = fc and 0 < /i^ A, if ((3;/t, y/>), (u/i, v/i)) is the
coordinate designation for the last step of the htlt nonfinal long sequence (i. e., long ascents
or nonfinal long descents) of P, then (a;/i +1, 2,^) are the coordinates of the hth valley of
/x(P). See the location of /z in Figure 1.

4. STATISTICS FOR THE SYMMETRIC KREWERAS-POUPARD DISTRIBUTION

Next consider bivariate statistics on £{n, k} = {P e C(n) : \{h : P^h. = 0}] = k}. Given
a pair of 4 by 4 matrices, M and M', define M\M' so that M\M\P] = {M{P), M'(P)).

Let
fb\ fa\ fb\ (a +l\fb- l^ fa -l\fb+ 1^

symKP{a, b, i, j) =
'a'

.
U \i} \J} \J} \i+^} \i - v) \3 - ^ \. l + ^

Our reference point here is the symmetric vzu-iation of the Kreweras-Poupard theorem
[5, 4, 8], which states that the next proposition holds for each of the three pairs:

ooooiooooi ^. = ro ooo
v/ - loooo ]i oip] , V| v/ = I 1 00 9

i I 55 looool ' ."'.'I-1'1 - I I i oo
i ioo lioi oJ LI o o o

0000
0010
0000
I I 1 0

r/ _ | 00 0 0
xw ]. w - | oo 66

1111

0000

1100
0000
1100
0000

Proposition 4. There are exactly 35 bivariate statistics defined by matrix pairs, M\M',
that satisfy

\{P   £{n, k) : (ij) = M\M'{P) }\ = symKP{n -k- l, ^, z, j).

Here M\M' and M'\M are considered the same. While there are 61 M\M' pairs satisfying
the symmetric Krewerzis-Poupard distribution on ̂ (n, fc), each of 26 of these represents a
bivariate statistic that is represented by another pair.
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.
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'1 1 0 01
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2 1 1 01
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1100
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LI 1 0 1
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0001
1101
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'0 0 1 01
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1 0 1 1|
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0 0 0 l|

SLl

IDY
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'1110'
|0 0 1 0
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.

1 1 0 Ol

ZAP I

'i i 1 n
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,
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'2 2 1 11
0 0 0 Ol
1 1 0 0|
0 0 0 Ol

Figure I: A portion of the graph of the Narayana codes with ̂ (?2 = 0).

As before, we can prove Proposition -I: using the scheme of finding candidates and bijective
verification. If BIJ : £{n, k) -^ S{n. k) ̂ an arbitrary bijection satisfying M\Mf{BU~{P)) =
M\M'(P), we will write M\M' ^ M\M}. A portion of the resiilting graph in the proof of
Proposition 4 appears in Figure 2.
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M\. \r
1100
U 0 0 0
I I 0 0
0000

10101
1010
0000
0 0 0 OJ

0000
0000
0101
0101

REV I

0000
0011
0000
0011

SIl 1000
1000
1100
0000

I 1 I 0
0010
0000
0000

1000
1000
1100
0000

IDYl

0000
0011
0001
0001

M\M'

Figure 2: Part of the graph of Kreweras-Poupard codes.

Remark 2. In this section we have limited our attention to bivariate statistics satisfying
the even-odd-even-odd condition and the symKP distribution on ^(n, A;). There are other
bivariate statistics satisfying this condition and this distribution on some other subsets of
C(n) whose cardinality satisfies the Narayana distribution. However, it appears that, for
such other subsets, the bivariate statistics are much less abundant.

n

5. COMPLEMENTARY CODES

Now we forge a link between some of the Narayana codes with summand ̂ (^2 = 0) and
some with \{P2 = 1). Define the complement of a matrix M, denoted by Mc, so that
(Mc)ij = 1 - Wij for all entries.

For any P 6 C(n), n > 0, and for any 4 by 4 matrix M, whose components belong to
{0, 1}, observe that

[M\P] + x[P2 = 1)] + [M{P} + X(?2 = 0)] = n - 1.

Since JV(n, k) is symmetric about (n -1)/2 iu k, it follows that, for any 0-1 matrix, M, My
is a Narayana statistical code if, and only if, M^ is a Narayana statistical code. We will
write "Aff ̂ =^ ̂ Vo" for such a pair of equivalent statistical codes.

Since, by Proposition 1, the Narayana number counts catpaths with respect to valleys
and since

\{k : P2WP2W =10} U {/I : P2h+lP2W = 10}[ + X(P^P2P3 = 010) = [J J |] (-P).
the matrix on the right, denoted by Vi, is a Narayana code. Locate Vi and Do m Figure 1.

Bijection 2. The following explicit bljection is both interesting and used for the Bijec-
tion 9: Let a : {P G C(n) : Val(P) =&}->{?  C(n) : DoubleA(P) = k} be
defined as follows: Each R = R^... R^.. -R-in   {P   C(n) : Val(P) = &} is de-
tennined uniquely by the sequence of its valleys, (a;i, yi)... (z/i. y/i)... (a;fc, yA;), say. If

we consider the set complements, [x[,.. . x'^_,, _i} = {1,... , ra-l} - {x-i,... Xk} and
{y'i. ---y'n-k-i} = {1,... , "-!}-{^.... i/fc}, then(y[, x[)... ^x^... (y^_^x', _, _,)
will be the valleys of a(R) = s^s^ ... S2n   {P   C(n) : DoubleA(P) = k}.
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6. SOME CATPATH BUECTIONS.

We will^now introduce some of the bijections from C(n) to C{n) that establish the ed?es
to prove the Propositions 2, 3, and 4. Figures 1 and 2 witness their effects.

Rijection 3. The reverse of a path is defined as REV : C(n) -^ C(n) : REV(P) = P' so that
PA = 1 - P^n-/,. E.g. REV(OIOOII) = 001101.

Lemma 1. For any P   C{n},
'1 1 0
000
1 1 0
000

(REV(^))+

p

n

0

m

h

/
9

e

]
k (REV(P)) =

1

0

1

0

0"
0

0

01

{p}+

a

e

z

m

b

/
]

n

9
k

(f
A

I

p\

(-P).

Bijection 4. IDY : C(n) -^ C(n) denotes the identity map, i.e., IDY(P) = P.
The following shows that there are path statistics that have more than one representation

as a matrix code.

Lemma 2. For any P   C(n),
n i 1 0
0000
0000
0000

(-P)=

'0000'
0 0 0 1|
0 0 0 1|
0 0 0 11

{p}

Proof. Since a giwn path wiU have the same number of OO's as IT'S, it will have the same
number of OO's as TT's that do not belong to a 00 H quadruple.
Bzjection 5. The exchange ofa_boomerang, No. 1, EXl : C(n) ^ C(n), is a path isomor-
phism defined so each 01 or TO that occurs immediately after any 00 is replaced by the
other step pair. E.g. EXl(0 00 10 10 01 11 1) = 0 00 01 10 01 11 1.

EX2 is defined is same way with "IT" replacing "00."

Bijection 6. EX3 : C(n) -r C(n), is a path isomorphism defined as follows: Let zT... 5^
be a maximal subpathofP such that ̂    {Ol, 10}. Let yT... y^ denote its image under
EX3, also with yj;   {OT, TO}. Put yT = ^T. For 1 ^"A < m, put y^TT = yT when 5^ = 5T
and y/^T 7^ y^, otherwise.

Bijection 7. The slides o/UT's w^/i respect to ascent on a path results, essentially, when
the maximal (possibly empty) subpaths of 01's on both sides of each 00 are mterchanged.
More precisely, define SLl : C(n) -^ C{n) so that each maximal subpath of P of the form
I'7iW2^3, where (1) W^ and 1^3 are maximal and consists only of OT step pairs and (2)
W^ is nonempty and consists only of step pairs from {00, OT}, is replaced by W^W-iW^ on

Bijection 8. ZAP_:C(n) -^ C(n), is a path isomorphism defined so each quadruple TO Ol is
exchanged for 00 TI, and vice versa. E. g. ZAP(OOlOOlll) = 00101101.
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Bijection 9. For brevity, we will only informally define the useful bijection: 3 : £{n, k) -r
£{n, k). We will view the '-skeletou'7 of a path, P, as the reduced path consisting only of
the QO's and IT'S after all other even-odd step pairs have been removed from P. 3 will map
the skeleton of P into a new skeleton under a: (from Definition 2) where a treats each 00 as
just a single ascent 6 and TT as just a single descent 1. Further, ft will map each maximal
subpath in {OT, TO} located between two OO's on P to a valley on the new skeleton, and
vice versa. Likewise, l3 will map each maximal subpath in {01, 10} located between two
U's on P to a peak on the new skeleton and vice versa.

As an example, a(6l60i0ii) = OOOllOli, by Definition 2. If each Wh's is a maximal
subpath on {01, 10}, then

0 Wi 00 W^ TT W^ 00 FKi 00(^5 11 H^ 00 F^r 11 ^3 11 Wa I )

= 0 Wi 00 Ws 00 FVs 00 Ws H ^2 TT ̂ 4 00 Wg H ^5 IT Wrl

Proposition 5.
a b c d\

e f 9 d\
i j k d\

m n o d\

p
4->.

'm n o <T\

e f 9 d\
i j k d\
a b c d\
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