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Abstract - In tfiis paper, we obtain two characterizadons of bi-mfinitary codes using formal power
series as well as unambiguous finite automata with the associated characteristic series.

Resume - Dans cet article, nous obtenoiis deux caracterisations des codes bi-infinitaires, au moyen
de series formelles et d'automates Qnis non-ambigus ainsi que des series caracteristiques associees.

1. INTRODUCTION

Combmatorics on words is an area which grew from group theory and probability
theory, but which m recent times appears frequently m problems of computer science
dealing with automata and formal languages. The theory of automata and formal
languages and subsequently, the theory of codes were developed, taking motivation
from computer science and mformation theory.

The theory of codes was mitiated by Schutzenberger in the mid fifties [10] and
extensive investigations were made m depth by him and many others [1, 8]. Do Long
Van [3, 4,5] introduced the notion of mflnitary codes which is a natural generalization
of the notion of codes for flnitary languages (sets of fmite words) to mfmitary
languages (sets consisting of finite and infmite words). Motivated by this and the study
of bi-mflnite words [9], the notion of bi-mfmitary codes which is the most general
notion of codes to bi-mfmitary languages (sets consisting of finite, left-mfmite, right-
infinite or infinite, bi-miiaite words) has been introduced in [6] and generalized results
were established. A different approach to the study of codes in the context of mfmite
or bi-infmite words is to consider mfmite factorization using only finite words. This
approach is examined m [2].

In this paper, the study of bi-infinitary codes is continued. Formal power series
are used as a tool to establish results in the study. We extend the notion of formal

power series on the monoid .A~. We give a characterization for a bi-mfmitary language
to be a bi-infmitary code in terms of formal power series. Again, we consider finite
automata recognizing bi-inimitary languages and the formal power series associated

with the automata. We define star operation on finite automata, thereby, on
unambiguous finite automata recognizmg bi-infmitary languages and establish a
characterization for such bi-mfmitary languages to be bi-inflnitary codes, using the
characteristic series associated with the automata.
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PRELIMINARIES

Let A be a finite alphabet. A' denotes the set of all finite words on A, e is the

empty word and A+ = A*- {e}. The length of a word x in A* is denoted by x

AN is the set of all right-infmite words a = a^a..i... a.^... {a^ G A). In the same way,
A-N is the set of all left-infmite words a. = ... a.^ ... a-zC-iffo (c-a £ A). Az denotes the
set of all bi-infinite words a = ... o:-<n+i) "-a - (2-2 "-i Co 0:1 a.^, ... a^ a^^ ... (.a,   A).

Every (bi-)inilnite word has a countable length (D.

For any X C A+, X" ("X, "X"), denotes the set of all right-infmite (left-infmite,
bi-infmite) words of the form Xi Xa... (... x_2X-iXo, ... x-zX-iXoXiXa... ) for x, £ X. In particular,
ifxGA+, then, xu=xxx..., "x=... xxx and "xu=... xxx.... We write Aao=A*UAN -A=A*UA-N

and -A- = A*U AN U A-N U Az.

A product operation . on elements of "A" is defmed as follows:
a, ifffGANUAZ

a^ = j ^, ifaGA*UA-Ny3eA*UAH
p, ifa A*UA-N, ^ A-NUAZ.

The product is associative and therefore "A- is a monoid. This monoid has A , A"
and -A as its submonoids. For simplicity, mstead of a.^, we write a^. For any X C "A-,

we denote by X*, the submonoid of "A" generated by X and write X+ = X* - {e}. If a is
a word, instead of {ff}* «a}+), we write (Z*(G:+).

By a bi-infinitary language on an alphabet A, we mean, a subset of a°A".
For any X C -A", we write X^ = X l1 A*,
x^ = xnAN, XL^ = xnA-N, x^ = xn AZ,
X(o) = {e}, Xa) = X,
x(a)

X(aJ

X(IU

x(a)

= {(xi,X2,..,xJ |x^X2,...,x^ G X<H, x^ G X^LX^} for n 2 2,
= {(Xi,X2,... Ax) |xi £ Xfl, U X^f, X2,X3,... ^   Xfi, } for n S 2,
== {(x^2,..., xj |^ e x_^, X» E X^, X2^3,... Ax-l S Xfi, } for n S 2
= X(;r UX(:7 UX(:> for n s 2, X'-' = U X(a>

nsO

We say that a word a S "Aa> has a factorization on elements of X if a = XiX2... Xa
for some (x^, x,̂ ..., xj S Xf*5. Here we note that a is expressed as a finite produce of
elements of X.
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Defmition 2. 1: A subset X of -°Aa° is called a bi-mfmitary code if every word a e "A"

has almost one factorization on elements of X. More precisely, X is a bi-infmitary code
if for anyn, m 2: 1 and for any (.x^,x^... ^)   X(n), (x{, ̂  ..., ̂ ) e X(a>, the equality
XiX2...Xa = x^. -.x^ implies n = m and x, = x; (i=l,2,...,n).

Example 2^: If A = {a,b}, the subset X = {"(ab)", "a, bff>, ba} is a bi-infmitary code

whereas the subset Y = {."(ab)'", "a, b", ab} is not a bi-milnitary code, since we have,
"ab" = ua. ab. ba> 

= "a.b".

Fmite automata recognizing separately languages of fmite words, languages of
right-infinite words and languages ofbi-inimite words are known [7, 9]. Based on these

notions, we now define a finite automaton recognizing a bi-infinitary language.

Definition 2.3: A finite automaton M over an alphabet A is a seven-tuple
M = (Q, A, EM, lan, Iw, T^ Trf^.) where

Q is a finite set of states;

A is a finite alphabet;

EM is a subset ofQ xA x Q, called the set of arrows;

Ifin c Qls aset of mitial states;

Iiuf C Q is asetof left-mimite repetitive states;

Tan C Q is asetof fmal states;

Trinf C Q is asetof right-mflmte repetitive states.

An arrow (p, a,q) is also denoted by p -a-> q. A path in M is either a finite or

right-mflnite or left-milnite or bi-mfinite sequence, namely, c = CiC2... Cn or c = CiCg...

or c = ... c_2C_iCo or c = ... c^^c^c-i ... respectively. The arrows in the path are
consecutive m the sense c, +i : q, i+l> qi+i where

(i) for finite c, 0 ^ i ^ m-1,
(ii) for right-infinite c, i NU{0}(Nis the set of all positive mtegers),
(iii) for leffc-mflnite c, i   Z~ (the set of all negative mtegers),

(iv) for bi-infmite c, i   Z (the set of all mtegers).

The word a corresponding to a path c is either a = 0183... a^ or a = aiaa... or

a. = ... a_2a_iao or cz = ... ̂ .^.^a^y,.. and is called the label of the path c.

We denote by c : p -£-> q, a finite path c of label f which begins at p   Q and
tenninates at q G Q.
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c : p -^-» Tri^r denotes a right-infinite path c of label u which begins at p

passes through the set T^i infinitely often on the right.

Q and

c : Ii^ > >-^-> q denotes a left-infinite path c of label v which passes through the set

luaf infinitely often on the left and terminates at q G Q.

c : luar > >-3-> > T^i denotes a bi-infinite path c of label w which passes through 1^

infinitely often on the left and through T^ infinitely often on the right.

We omit the label in the arrow of a path when it is not needed. We note that the

finite automaton moves only from left to right. We let

L*(.M) = {f   A* | 3 (c : i -^-> t), with i E I^, t G T^}

LN(M) = {u £ AN | 3 (c: i -^-» T^) with i   1^} .

L-N(M) = {v G A-N | 3 (c : Iu^ »-^> q) with q £ T^}

LZ(M) ={wGAZ | 3 (c : Iu^ »-L» Trinr)}
and L(M) == L-(M) U LH(M) U L-N(M) U LZ(M).

We defme a bi-infmitary language L C -A" to be recogni2able if there is a finite

automaton M over A such that L = L(M).

Example 2.4: Consider the finite automaton M=(QAEuJfinJunf>Tfia,Trinf) over A where

Q = {2, 3, 4} ; A = {a, b, c}; 1^ = 1^ = {2}; T^ = T^ = {4}. EM is given by Fig. l.

Fig. 1

Now, L(M) = b+a*cb* U "ba'cb" U "ba'cb* U b+a'cba '.

We now define a reduced finite automafcon.

31
I
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Defmition 2.5: A finite automaton M = (Q^., EM, I^, Iu^, T^, Tri^) over A is called

reduced if the following four conditions hold:

(i) Every q G Q is accessible from 1^ U Iiuy, i. e., there exists a finite path beginning

at a state of Ign U l^ and terminating at q.

(ii) Every q G Q is coaccessible from Tga U Trmr, i. e., there exists a finite path

beginning at q and terminating at a state in T^ U Tn^-.

(iii) The set T^ is contained in {q £ Q | 3 (c: q -» T^)}.
(iv) The set 1^ is contained in {q G Q | 3 (c: 1^ »-> q)}.

We note that the finite automaton given in example 2. 4 is reduced.

3 FORMAL POWER SERIES ON -A-

In this section, we obtain a characterization of bi-infmitary codes in terms of

formal power series on "A°°.

Definition 3. 1: A formal power series (or simply 'series') on "A" is a function
S: aAB -»NU{0}U{(y}. The series S can be written in the form 8=2: (S, a)a, where

(z °'A<°
(S, a) denotes the image of a by S.

The set Supp S = {a e "A" | (S, <z) ̂  0} is called support of the series S. A
series S is caUed characteristic if (S, a) ^ 1 for all a.

To every bi-mfinitary language X, we associate a characteristic series X

defined by
lifaGX

(X, a) =
Oifa ^X

Given two formal power series S and T on -A", we defme S+T and ST as follows:

for any a £ "A*,

(S+T, a)

(ST, a)

(S, a) + (T, a)

2(S, /3)(T, r)
^3T=<2
,9 e AH UAZ => r = e
T GA-NUAZ =>y3 = e
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Proposition 3.2

For any formal power series T, S, R on "A', we have,
(i) T+S = S+T; (T+S) + R= T + (S+R)

(ii) (TS)R = T(SR)

(iii) Supp (S+T) = Supp S U Supp T

Supp S. [(Supp T)&, U (Supp T)^]
if(T, e)^0, (S, e)=0.

(iv) Supp(ST) = -\
[(Supp S)^ U (Supp S)_^]. Supp T

if(T, e)=0, (S, e)^0.

Supp S.Supp T if (T, e)^0, (S, e)^0.

[(Supp S)&, U (Supp S)_^].
[(SuppT)^ U (Supp T)^]

if(T, e)=0, (S, e)=0.

The statements can be proved easily.

By virtue of proposition 3.2, we can consider nth power Sa of a series S and
therefore, we mtroduce the star operation on formal power series, S* = 2 Sa where

ns0
S°={e}.

Proposition 3.3: For any formal power series S on "A", Supp(S*) = (Supp S) .

Proof: We have two cases.

Case (i): Suppose (S, e) ^ 0. Then, using proposition 3.2 (iv),
Supp(S-) = U Supp(S:l) = U _ (Supp S)a = (Supp S)*.

n20 nsO

Case (u): Suppose (S, e) = 0.

Now, Supp(S-) = U Supp(S3) = {e} U (Supp S) U ( U^ Supp(Sa))
nsO " ns2

= {e} U (Supp S) U (Supp S)^ U (Supp S)_l-iaf

U(SuppS)u^U(U Supp(Sa))
ns2

On using proposition 3.2 (iv), we have
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Supp(S*) = {e} U (Supp S) U (Supp S)^U(Supp S)_^U (Supp S)Ŵ-nf

n-1
U[U [((SuppS)eJa U (U ((Supp S)<Ji (Supp S)^)

ns2 1=1

n-1
U (U (Supp S)_^ ((Supp S)s, )i)
i=l
n-2

U (U (Supp S)_^ ((Supp S)fiji (Supp S),,.)]]
i=0

But we note that
n-1 n-1

(Supp S)a = [ U ((Supp S)<Ji (Supp S)^] U [ U (Supp S)_^(Supp S)aJi]
i=l « i=l

n-2
U [ U (Supp S)_^(Supp S)a, )i(Supp S)^] U [(Supp S)^

i=0

U (Supp S)^ U (Supp S)_»f U (Supp S)b^ for all n > 2.

As a consequence, we have,

Supp(S*) = {e} U (Supp S) U ( U (Supp S)a)
ns2

= {e} U (U (Supp S)a) = (Supp S)'.
nsl

Definition 3.4: For any X C "A" and any a G "A°°, we define

FS(a) = {(xi, X2, ...^) G X(a> |a = Xix^...^} (n s 1) and Fxto) = U V^a).
nsl

Obvioiisly, X is a bi-mfinitary code if and only if Card (Fx(a:)) ̂  1 for any a.   "A",

where CardOO stands for cardmality of a set Y.

We now obtain a characterization ofbi-infinitary codes in terms of formal power

series on "A".

Theorem 3.5: For any subset X of "A" - {e}, X is a bi-iniinitary code if and only if the
series (X)* is characteristic.

Proof: We first claim that for any a   -A~, ((X)a, ff) = Card (F^ff)) for aU n2l. For

n=l, the statement is true. We assume that the statement is true for n. We prove it for
n+1. We have, ((X)a+l, a) = ((X)a X, c)

2((X)a, ^)(X, T)
?T = ff
^eA?rUAZ=or=e
T £A-NUAZ =>/3 = e

- 2: (COa, ^)(X, r)
PT = a

^ G -A-{e}, T £A--{e}
since (X, e) = 0 and ((X)a, e)=:0
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2 ((X)a, ̂ ) (X, r)
/3r = a
'^   CUa U X_^<X^)a-1
rex

since (X, r) = 0 forr $X and
((X)a, ̂ 3)=0 fo7/3 ^ CX^)a U X_^<XuJa-1

= 2 Card (F^)) . Card (F^r)),
PT = a

^ CX^aUX_, ^X^)n-1
T ex

Card (Frl ((2)).

We now prove that if X is a bi-inflnitary code, then the series (X)* is

characteristic. The converse of the statement follows by retracing the steps.

If X is a bi-infmitary code, then for any a G "A", we have,

1 > Card (Fx(a)) = Card(U F^a)) = 2: Card (F^a))
nsl n2l

=2 ((X)tt, a)
nsl

= (QC)*,a).

= 2
nsO

)a,a:) smce (QC)a,e) = 0 foralln s 1

Hence, (X)* is a characteristic series.

4 FDOTE AUTOMATON M* OVER A

In this section, we exhibit a characterization of bi-hifmitary codes in tenns of

unambiguous finite automata with star operation, through characteristic series

associated with the automata.

Definition 4. 1: To every given finite automaton M=(QAEM»IfiaJw»Tfia, Triaf), we

associate a finite automaton M* defined by the following steps:

(i)

(ii)

Let B = (QU {tl }, A, Es, {|-L}, <p, {\^ }, (f>) be a finite automaton with \L a new state

and EB = EMUJUKU G where
J

K

G

<(|^, a, q)
{ (p, a,,L)

3 i Gig, : (i, a, q) £ EM }
3 t  T^: (p, a, t) G EM }

{ (^L ,a, ^JL) 'I 31 £1^3 t GTfl, : (i, a, t) e EM }

{<p stands for empty set)

Let C = (Q U {[!'}, A, Ec, {[!'}, <p, <p, T^) be a fmite automaton with ^L', a new

state and Ec = E^UR where R = { ([L\ a, q) | 3 16 I&, : (i, a, q)   Ey }

(iii) Let D = (QU {[^"}, A, Eo, <p, \^, {^L"}, <p) be a fmite automaton with \L", a new

state and Eo = EMUS where S = {(p, a, LL") | 3 t  TQ^: (p, a, t) £ EM }.

(iv) Let H = (Q, A, EH, <p, luu-, ̂  T^) be a finite automaton with EH = EM.
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Let F be the disjoint union of the finite automata B, C, D and H, keeping

(i) the states |i, ̂ i' and ̂ L" equal, i. e., L = ^' = |i".
(ii) the sets of leffc-infinite repetitive states of the fmite automate

H and D, the same,

(ill) the sets of right-infinite repetitive states of the finite automata
H and C, the same.

The fmite automaton M* over A is defined as a reduced part of F, taking ;J. = 1.

Example 4^: Let M be the finite automaton considered in example 2. 4. The finite
automaton F as m the definition 4. 1 is given by

Fig. 2
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F= (Q', A, EF, {LL}, I^, {^}, T^)
where Q' = {2B, 3B, 4B, 2C, 3C, 4C, 2D, 3D, 4D, 3H, [1};

A = {a,b, c};

Iw = {2D};
T^ = {4C};
Ep is given by Fig.2.

Since the reduced part of F is itself, the finite automaton M* is obtained from F

by simply taking ^ = 1. Clearly,
L(M-) = (b+a*cb*)* U (b+a'cb*)' (b+a*cba>)

U (uba*cb*) (b+a*cb*)*

U (a>ba*cb*) (b+a*cb*)* (b+a*cba>)

U "ba'cb".

Definition 4.3: Given a finite automaton M = (Q, A, EM, Ifin» Iimf> Tfln, Trai) over A, we

denote by JM |, the formal power series defined as follows:

(|M|, ^)=

Card {c : i -^-> t | i Gl^t £ T^} if a   A*

Card {c : i -a-» T^ | i G I&,} if a   AN
Card <c : Iu^ »-^-> t |t G T^} ifcGA-^

Card {c : 1^ »^-» T^} if a £ Az

Obvioiisly, we have L(M) == Supp | M ].

Proposition 4.4: Let M be a finite automaton over A and X C "A" - {e}.

(i) If L(M) = X, then L(M-) = X*

(ii)If | M| =X, then |M'| = (X)*.

(4. 1)

Proof: We consider the fimte automaton F = (Qf, A, Ep, 1^, lunf, T&y T^) used m the

definition of the finite automaton M* over A. We say that a path c: |J. -> |J.

(c:'^-»T^ or c : I^ »-> \1 OT C : ]^f » -» T^) in F is simple if it is
non-empty and none of its mterior vertices is [-L. Evidently, every path c : ^ ->|J,
(c : ^ -> > T^i or c : luaf > >-> P- ore : lu^ > >-> > T^) in F has a unique

factorization into simple paths.
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Let now S be the formal power series defined by

(S, a) =

Card {c : \1 -a-> [1 \ c is simple} if a e A*

Card {c : ^ -^-» T^ | c is simple} if a e A^

Card {c : 1^ »-t-> ^ | c is simple} ifcG A-N

Card {c : Iu^ > >-^> > T^ | c is simple} if a   Az.

Then, we have |F| = S*.
We now prove that Supp S = X.

(4. 2)
(4. 3)

Since X C "A" - {e} and a simple path is non-empty, the empty word e does not

belong to both X and Supp S. For a G A, we have (S,a) = 1 if and only ifa   X by the
construction of F m the definition 4. 1. For a with 1c] s 2, we distinguish two cases.

Case (i): Suppose Id < <u.

Let a = afb for a,b G A, f£ A . Every simple path }i -a-> |i m F has a unique
decomposition of the form c : |J. -a-> p -£-> q -!2->[i (4. 4)

with p, q £ Q. So, there exists atleast a successful path in M with the same label <z, i. e.,
i -a-> p -£-> q _ii-> t, i £lfl», t   Tfi, (4. 5)

Conversely, every successful path of label <z in M corresponds with a simple path
^L -SL> |1 m F. We have thus shown that (S,a) ^ 0 if and only if a   X (4. 6)

Case (u): Suppose \a\ = <y.

Let a = aufora  A, u £ AN. Then the argument is analogous to case (i), m

which instead of (4. 4) and (4. 5), we use the following (4. 4a) and (4. 5a),

c : \J. -a-> p -^> > T^f (4. 4a)

i -a-> p -a-> > T^ i G 1^ (4. 5a)

with p   Q and obtain (4. 6).

Let cz = vafora £A, v£ A-N. Then, similar to (4. 4a) and (4. 5a), we have the

following (4. 4b) and (4. 5b),

c: r^ »-^-> p -^-> \1 (4. 4b)

lunf > >-> P -^-> t, with t GTa^p £ Q (4. 5b)

and the argument is similar to the case when a=au, where a£A, u£AN and obtain (4. 6).
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Let a = vau, where a £ A, v £A-N and u   AN. Then we have

c: ILf »->P-^-> q-a-» T^

luaf »-^-» P -a-> q -^» T.^., with p, q S Q

(4. 4c)

(4. 5c)

The argument can be done similar to previous cases and we can obtain (4. 6).

Now, combining proposition 3. 3, and the equations (4. 1), (4. 2) and (4. 3), we
obtain, L(M*)=Supp |M-1 = Supp |F [ = Supp S* = (Supp S)' = X*. Thus, (i) holds.

We now prove (ii). From |M = X, uniqueness of the paths 4.5, 4. 5a, 4. 5b, 4. 5c
wiU follow corresponding to the paths 4. 4, 4. 4a, 4. 4b, 4. 4c respectively. Hence (S, ff)^l
and (S,a) = 1 if and only if <z E X, i. e., if and only if (X,c:) = 1. Thus, S = X and so, we
have, |M-| = |F | =S-=(X)*.

Definition 4.5: A finite automaton M = (Q, A, EM, Ifin, Iiinf> Tfin. Trmf) is caUed

unambiguoiis if the following conditions hold:
(i) Vp, q £ Q, VfG A*: Card {c: p-t-> q} ^ 1

(ii) Vp GQ, Vu £AN : Card { c : p -»-> > T^} ^ 1

(iii) Vp e Q, Vv EA-N : Card { c : 1^> >-^> p } ^ 1

(iv) V we A2 : Card{c : Ii^»-JL» T^} ^ 1.

Proposition 4.6: Let M = (Q, A, E^, {i}, Iw, W, T^^) be a reduced finite automaton
having a unique initial state i and a unique final state t. Then, M is unambiguous if and
only if | M | is a characteristic series.

Theorem 4.7: Let X C "A" - {e} and M be a fmite automaton such that | M | = X. Then,

X is a bi-mfmitary code if and only if M' is imambiguous.

Proof: By virtue of proposition 4. 4 (ii), we have, | M* | =(X)*. Then, by theorem 3. 5 and
proposition 4. 6, we have, X is a bi-infinitary code if and only if (X)* is characteristic and
so if and only if M* is unambiguous.
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