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Abstract - In this paper, we obtain two characterizations of bi-infinitary codes using formal power
series as well as unambiguous finite automata with the associated characteristic series.

Résumé - Dans cet article, nous obtenons deux caractérisations des codes bi-infinitaires, au moyen
de séries formelles et d’automates finis non-ambigus ainsi que des séries caractéristiques associées.

1. INTRODUCTION

Combinatorics on words is an area which grew from group theory and probability
theory, but which in recent times appears frequently in problems of computer science
dealing with automata and formal languages. The theory of automata and formal
languages and subsequently, the theory of codes were developed, taking motivation
from computer science and information theory.

The theory of codes was initiated by Schiitzenberger in the mid fifties [10] and
extensive investigations were made in depth by him and many others [1,8]. Do Long
Van [3,4,5] introduced the notion of infinitary codes which is a natural generalization
of the notion of codes for finitary languages (sets of finite words) to infinitary
languages (sets consisting of finite and infinite words). Motivated by this and the study
of bi-infinite words [9], the notion of bi-infinitary codes which is the most general
notion of codes to bi-infinitary languages (sets consisting of finite, left-infinite, right-
infinite or infinite, bi-infinite words) has been introduced in [6] and generalized results
were established. A different approach to the study of codes in the context of infinite
or bi-infinite words is to consider infinite factorization using only finite words. This

approach is examined in [2].

In this paper, the study of bi-infinitary codes is continued. Formal power series
are used as a tool to establish results in the study. We extend the notion of formal
power series on the monoid "A”. We give a characterization for a bi-infinitary language
to be a bi-infinitary code in terms of formal power series. Again, we consider finite
automata recognizing bi-infinitary languages and the formal power series associated
with the automata. We define star operation on finite automata, thereby, on
unambiguous finite automata recognizing bi-infinitary languages and establish a
characterization for such bi-infinitary languages to be bi-infinitary codes, using the
characteristic series associated with the automata.
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2 PRELIMINARIES

Let A be a finite alphabet. A* denotes the set of all finite words on A, e is the
empty word and A* = A® — {e}. The length of a word x in A’ is denoted by Ix |

AY is the set of all right—infinite words @ = @,a»...@,... (@, € A). In the same way,
AN is the set of all left—infinite words @ = ... @_, ... @@ @, (@_, € A). A% denotes the
set of all bi-infinite words @ = ... @qas1) Gg - @g Ty Ao Ay Az oo Ay Tagy - (@ € A).

Every (bi—)infinite word has a countable length w.

For any X C A*, X» (°X, *X®), denotes the set of all right—infinite (left—infinite,
bi—infinite) words of the form x; X, ... (...X_pX_;Xg, ...X3¥ ;XX Xz...) for x; € X. In particular,
if xEA*, then, x*=xxx..., *X=...xxx and *x*=...Xxx.... We write A==AUAY, "A=A"UAY
and "A~ = A"UAYUANUAZ

A product operation . on elements of *A* is defined as follows:

a, ifa € AN U AZ
af = af, ifa € A"UAN, B € A"UAY

B, ifa € A"UAY, B € ANUAZ

The product is associative and therefore *A~ is a monoid. This monoid has A", A»
and =A as its submonoids. For simplicity, instead of .8, we write af. For any X C =A~,
we denote by X°, the submonoid of *A* generated by X and write X* = X" —{e}. Ifa is

a word, instead of {a}" ({a}*), we write a’(at).

By a bi—infinitary language on an alphabet A, we mean, a subset of *A~.
For any X C A=, we write Xz, = X A
Xoe =XNAY X o= XNAN Xpgor = X M AZ
X0 = {e}, XV =X,
X® = {(ZX5:%0,. %) le,xg,...,x,,_l € Xg, Xa € Xl Xie} forn = 2,
XS = {(RyXp%) | %1 € Xan U Xiap XoX3%s € Xaa} forn = 2,
X® = {x,Xg--Xs) le € Xip X2 € XinpX2,X3,-rXay € Kgat forn = 2
X = X® X% UX™ forn=2 X = UX®
n=0
We say that a word a € A= has a factorization on elements of X if ¢ = x;X5...X4

for some (X;, Xg..., X)) € X7. Here we note that a is expressed as a finite product of

elements of X.
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Definition 2.1: A subset X of "A” is called a bi~infinitary code if every word @ € *A*
has atmost one factorization on elements of X. More precisely, X is a bi—infinitary code
if for any n, m = 1 and for any (x;,X5...,X)) € X™, (], %3, ..., x,) € X® the equality

X;X5...X, = XXp...X, implies n = m and x; = x{ (i=1,2,...,n).

Example 2.2: If A = {a,b}, the subset X = {»(ab), »a, b®, ba} is a bi—infinitary code
whereas the subset Y = {®(ab), »a, bv, ab} is not a bi—infinitary code, since we have,

“ah* = *g.ab.b* = *a3.be,

Finite automata recognizing separately languages of finite words, languages of
right—infinite words and languages of bi—infinite words are known [7,9]. Based on these

notions, we now define a finite automaton recognizing a bi—infinitary language.

Definition 2.3: A finite automaton M over an alphabet A is a seven—tuple
M = (Q, A, Ey, Lg, Ling Tan, Trnp) where

- Q is a finite set of states;

- A is a finite alphabet;

- Ey is a subset of Q X A X Q, called the set of arrows;

- Iz, € Q is a set of initial states;

— I € Q is a set of left—infinite repetitive states;

- Ta € Q is a set of final states;

- T € Q is a set of right—infinite repetitive states.

An arrow (p,a,q) is also denoted by p —-> q. A path in M is either a finite or
right—infinite or left—infinite or bi—infinite sequence, namely, ¢ = ¢,¢,...c, Or ¢ = ¢,C;...
OF € = ... C_3_Cy OT C = ... C_C_;CoC,C; ... Tespectively. The arrows in the path are
consecutive in the sense c;,, : g; Bty q;+; Where

(i) for finite ¢, 0 =i = m-1,

(ii) for right—infinite ¢, i € N U {0} (N is the set of all positive integers),
(iii)  for left—infinite ¢, i € Z~ (the set of all negative integers),

(iv)  for bi—infinite ¢, i € Z (the set of all integers).

The word @ corresponding to a path c is either ¢ = a,a, ... a,, or @ = a3, ... OT

Q@ = ..8.53,8)0r @ = ... a_,3_,;343,3,... and is called the label of the path c.

We denote by ¢ : p ——~> gq, a finite path c of label f which begins at p € Q and

terminates at q € Q.



¢ :p—+>> T, denotes a right—infinite path c of label u which begins at p € Q and

passes through the set T, infinitely often on the right.

¢ : Iy, >>—> q denotes a left—infinite path c of label v which passes through the set

I..r infinitely often on the left and terminates at ¢ € Q.

¢: Iy >>—=>> T, denotes a bi—infinite path c of label w which passes through I,

infinitely often on the left and through T, infinitely often on the right.

We omit the label in the arrow of a path when it is not needed. We note that the

finite automaton moves only from left to right. We let

LM ={f€A | Ic:iL>t), withi€ g, t € Ty}
L¥M) ={u€AY |I(c:i—+>>T,) withi €I}
L¥M) = {ve€AYN|3(c: Iy >>=>q) withq € Ty}
LXM) = {w€A? |3 (c: Ly >>—=>> Ty}

and L(M) = L*(M) U L¥M) U L-NM) U L¥(M).

We define a bi—infinitary language L C “A"~ to be recognizable if there is a finite
automaton M over A such that L = L(M).

Example 2.4: Consider the finite automaton M=(Q,A,Ev,I5n,Liins Tan, Tring) OVver A where
Q = {2,3,4} ; A = {a,b,c}; Iz = Ly = {2}; Tgn = Tor = {4}. Ey is given by Fig.1.

o
[V

b
2 >— 3 5
v - 4
Fig.l

Now, L(M) = b*a’ch® U *ba‘cb® U *ba’cb® U b*a“cb®.

We now define a reduced finite automaton.
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Definition 2.5: A finite automaton M = (Q,A,Ey,lin,liins Tans Tringd Over A is called

reduced if the following four conditions hold:

(1) Every q € Q is accessible from Ig, U Iy, i.e., there exists a finite path beginning
at a state of Iz, U I, and terminating at q.

(i) Every q € Q is coaccessible from Ty, U T, i.e., there exists a finite path
beginning at q and terminating at a state in Ty, U Thnr

(iii) The set T, is contained in {q € Q I Jc:q—>> T}

(iv)  The set I, is contained in {q € Q l 3 (c: Ly >>—> 9}

We note that the finite automaton given in example 2.4 is reduced.

3 FORMAL POWER SERIES ON ~A*

In this section, we obtain a characterization of bi—infinitary codes in terms of

formal power series on “A”.

Definition 3.1: A formal power series (or simply ‘series’) on “A~ is a function
S: *A=->NU{0}{w}. The series S can be written in the form S = = (S, a@)a, where

(S, @) denotes the image of @ by S. aE"A"

The set Supp S = { a € A~ | (S, a) # 0 } is called support of the series S. A
series S is called characteristic if (S, @) < 1 for all a.
To every bi—infinitary language X, we associate a characteristic series X

defined by

lifeeX
X, a) =
OifegX

Given two formal power series S and T on *A=, we define S+T and ST as follows:

for any a € =A”~,

S+T,a) = S, a) + (T, a)

DINCH NG
Br=a

BEAYUAZ =7 =c¢
TEAVYUAZ=>8=c¢

(ST, a)
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Proposition 3.2

For any formal power series T, S, R on A=, we have,
) T+S = S+T; (T+S) + R=T + (S+R)
(i) (TSR = T(SR)
(iii) Supp (S+T) = Supp S 'JSupp T

Supp S.[(Supp T)g, U Supp Tiad
if (T,e)=0,(S,e)=0.

[(Supp S)g U (Supp S)_nd-Supp T
(iv)  Supp(ST) = - if (T,e)=0, (S,e)=0.

Supp S.Supp T if (T,e)#0, (S,e)=0.
[(Supp S)g. U (Supp S)ind-

[(SuppDaa U (Supp Diad
- if (T,e)=0, (S,e)=0.

The statements can be proved easily.

By virtue of proposition 3.2, we can consider nth power S* of a series S and
therefore, we introduce the star operation on formal power series, S* = £ S where

Proposition 3.3: For any formal power series S on *A~, Supp(S”) = (Supp S)".
Proof: We have two cases.

Case (i):  Suppose (S,e) = 0. Then, using proposition 3.2 (iv),
Supp(S?) = U Supp(S®) =U (Supp S)* = (Supp S)".

n=0 n=>0

Case (ii): Suppose (S,e) = 0.

Now, Supp(S?) = U Supp(S?) = {e} U (Supp S)YU(U Supp(S?)
n=0 n=2
= {e} U (Supp S) U (Supp S)ins U (Supp S)_inr
U (Supp Spime U (U Supp(S2))

n=2

On using proposition 3.2 (iv), we have
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Supp(S") = {e} U (Supp S) U (Supp S);,; L(Supp S)_inr U (Supp Sy,

n—1
UL [(SuppS)g)* U (L ((Supp S)gn)! (Supp S)inp)
n=2 =1
n—1
U.(Ul (Supp S)_ins ((Supp S)ga))
i= :
n—2
U'(Uo (Supp S)_ins ((Supp S)s,)* (Supp S)inp1]
1=
But we note that
n—1 n—1
(Supp S)* = [U  ((Supp S)g.)' (Supp S)iwd U [ U (Supp S)_.{(Supp S)4.)]

=1 =
! n—2 s

UTU  (Supp S)_iad(Supp S)5.)'(Supp S)ind U [(Supp S)g,]»

i=0

U (Supp S)iue U (Supp S)_inr U (Supp S)pyn for all n = 2.

As a consequence, we have,

Supp(S?) = {e} U Supp S) U(U (Supp S)»
nz=2

= {e} U(U (Supp S)*) = (Supp S)".
nzl
Definition 3.4: For any X C “A~ and any a € A=, we define
Fxa) = {x, g ...,X,) € X® la = X;X3..X,} (n = 1) and Fx(@) = U F¥a).

n=1

Obviously, X is a bi—infinitary code if and only if Card (Fx(a))<1 for any ¢ € "A",

where Card(Y) stands for cardinality of a set Y.

We now obtain a characterization of bi—infinitary codes in terms of formal power

series on "A~.

Theorem 3.5: For any subset X of A= — {e}, X is a bi—infinitary code if and only if the

series (X)® is characteristic.

Proof: We first claim that for any @ € =A®, (X)*,a) = Card (F¥a)) for all n=1. For
n=1, the statement is true. We assume that the statement is true for n. We prove it for

n+1. We have, (X)**, a) = (XX, a)
- 2@ &0 - 2 (@5 &)
T=a fr =a
BEAYVUAZ=>T =¢ B E€=A—{e}, v € A~ - {e}
TEANUAZ>f=¢ since X,e) = 0 and (X)2,e)=0
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— 2 (X=, 8 & 1) = 2 Card (F¥()) . Card (Fiz)),

Bt =a fr=a
B € Ka) U XaslXe)™ B € (Ko™ U X iud X
teX reX

since X, 7) = 0 for v & X and
(@n’ ﬂ)=0 for ‘5 $ (Xﬁn)n U K-im‘(Xﬁn)n-l

= Card (F%™'(a)).

We now prove that if X is a bi—infinitary code, then the series X" is

characteristic. The converse of the statement follows by retracing the steps.

If X is a bi—infinitary code, then for any @ € A=, we have,
1 = Card (Fx(@)) = CardU FXa)) =2 Card (Fxa))

n=1 n=1
=3 (Xma) =3 (X)*a) since (X)*e) = 0 for alln=1
n=>1 n=0
= (X°a). Hence, X)® is a characteristic series.

4 FINITE AUTOMATON M" OVER A

In this section, we exhibit a characterization of bi—infinitary codes in terms of
unambiguous finite automata with star operation, through characteristic series

associated with the automata.

Definition 4.1: To every given finite automaton M=(Q,A,Ext,Ign,Liins Tins Trind)y WE

associate a finite automaton M" defined by the following steps:

() LetB=(QU{L}Y,AEs{L} ¢ {L},p)bea finite automaton with |L a new state
and Ez = Ey UJ UK UG where

d = { (W,a,9 Jiel,:(G a q €Ex?}
K = {(pal) | ItETxm:(p,at) E Ex}
G = {M@al) |Fi€ly,It€Tu:(al) EEx}

(¢ stands for empty set)

) LetC=(QUILMA Ec, {L'}, 8, 4, Tem) be a finite automaton with |L', a new
state and E¢ = Ey U R where R={(( " aq IEiEIﬁn:(i,a,q) e Ey}

(i) LetD=(QU{L"}, A, Ep, @, Lins {LL"}, ) be a finite automaton with [L", a new
state and Ep = Ey U S where = {(p, a, L") | 3t € To: (p,a t) € Exy ).

(v) LetH =(Q A, Eg ¢, Lins 9, T_.) be a finite automaton with Ey = B




Let F be the disjoint union of the finite automata B, C, D and H, keeping

6] the states L, [L' and |L" equal, i.e.,, L = [L' = |L".

(i)  the sets of left—infinite repetitive states of the finite automata
H and D, the same,

(iii)  the sets of right—infinite repetitive states of the finite automata
H and C, the same.

The finite automaton M" over A is defined as a reduced part of F, taking Lo=1

Example 4.2: Let M be the finite automaton considered in example 2.4. The finite
automaton F as in the definition 4.1 is given by
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F = (Q', A, EF, {u‘ }7 Iltmfy {LL }) Tr'lnf)

where Q' = {2B, 3B, 4B, 2C, 3C, 4C, 2D, 3D, 4D, 3H, L };
A = {a,b,c};
w = {2D};
Tt~ = {4C};

Er is given by Fig.2.

Since the reduced part of F is itself, the finite automaton M is obtained from F
by simply taking [L = 1. Clearly,
LMY = (b*a*cbh”)* U (b*a’ch”)* (b*a’cb®)
U (*ba’cbh®) (b*a’cbh")*
U (®*ba’cb”) (b*a’ch”)” (b*a’cbh®)
U *ba’cb~.

Definition 4.3: Given a finite automaton M = (Q, A, Ex, Tan, Ling Tan, Trngd Over A, we

denote by lM I, the formal power series defined as follows:

Card {c:i—%>t | i € Ig, t € T} ifa € A

Card {c:i—2>> Tuy | i €Ig} ifa € AY

(|M].ar= y
Card {c : Iy >>—4> t|t € Ty} if @ € AN
Card {c: I >>—=%>> T} ifa € AZ
Obviously, we have L(M) = Supp |M|. (4.1)

Proposition 4.4: Let M be a finite automaton over A and X C =A> — {e}.

(i) If LAM) = X, then L(M") = X*

(i) If [M| = X, then |M"| = ®".
Proof: We consider the finite automaton F = (Q', A, Er, Ii, Ling Tha, Trne used in the
definition of the finite automaton M® over A. We say that a path ¢: L —> L
(clb—>>Tipe or ¢ & Ly >>—> L or ¢ : L >>—>> T,) in F is simple if it is

non—empty and none of its interior verticesis |L. Evidently, every pathc:|L —>L
(c: L —>> Tyeor c: Ly >>—> L or ¢ : [y >>—>> T, in F has a unique

factorization into simple paths.
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Let now S be the formal power series defined by

[ Card {c: L —=> L | cis simple} if @ € A®

Card {c: |l —=>> Ty, | cis simple} if @ € AY

(S)a) = N
Card {c : [jpr >>—=> L | c is simple} if « € AN
Card {c: [ >>—=>> Ti; l c is simple} if @ € AZ,
Then, we have IFI = B, (4.2)
We now prove that Supp S = X. 4.3)

Since X € “A> — {e} and a simple path is non—empty, the empty word e does not
belong to both X and Supp S. For a € A, we have (S,a) = 1 if and only if a € X by the

construction of F in the definition 4.1. For a with |a| =2, we distinguish two cases.
Case (i): Suppose |a| < w.

Let a = afb for a,b € A, f € A”. Every simple path [l —=> |L in F has a unique
decomposition of the form ¢ : L —&> p £L> q 2>|L (4.4)
with p,q € Q. So, there exists atleast a successful path in M with the same label ¢, i.e.,

ia>pL>q2>t i€l te Ty (4.5)
Conversely, every successful path of label @ in M corresponds with a simple path
L —=> |L in F. We have thus shown that (S,a) # 0 if and only if @ € X (4.6)

Case (ii): Suppose |a| = w.

Let @ = au for a € A, u € AV. Then the argument is analogous to case (i), in
which instead of (4.4) and (4.5), we use the following (4.4a) and (4.5a),
&1 L —2>p—=>> Ty, (4.4a)
i—=>p—=a>>T,,i1€ I (4.52)
with p € Q and obtain (4.6).
Let @ = va for a € A, v € A™N. Then, similar to (4.4a) and (4.5a), we have the
following (4.4b) and (4.5b),
¢ L >>—>p—=2> UL (4.4b)
Ly >>—>p—=2>t witht € Tg,, pEQ (4.5b)
and the argument is similar to the case when a=au, where a€A, u€AY and obtain (4.6).

Ut
B
Ut




Let ¢ = vau, where a € A, v € A~ and u € AY. Then we have
o3 By >>—>p 2> q —->> T (4.4¢)

[ >>—2>>p —2>q—=>> T, withp,q €EQ (4.5¢)
The argument can be done similar to previous cases and we can obtain (4.6).

Now, combining proposition 3.3, and the equations (4.1), (4.2) and (4.3), we
obtain, LOM?)=Supp |M"| = Supp |F| = Supp S" = (Supp S)" = X". Thus, (i) holds.

We now prove (ii). From IM | = X, uniqueness of the paths 4.5, 4.5a, 4.5b, 4.5¢

will follow corresponding to the paths 4.4, 4.4a, 4.4b, 4.4c respectively. Hence S,a)=l
and (S,@) = 1 if and only if @ € X, i.e., if and only if X,a) = L. Thus, S = X and so, we
have, [M*| = |F| =8 = &".

Definition 4.5: A finite automaton M = (Q, A, Ey, gy linsp T Trad is called
unambiguous if the following conditions hold:
) VpgeQ VfEA: Card{c:p-L>q}t =1

() VpeEQVu€AY :Card{c:p—=2>>Tupt =1
i) VpeEQVveEAN:Card{c:[p>>—>p}t =1
(iv) VweA? : Card { ¢ : Iy >>—=>> T < 1.

Proposition 4.6: Let M = (Q, A, Ey, {i}, Iins {t}, T..) be a reduced finite automaton
having a unique initial state i and a unique final state t. Then, M is unambiguous if and

only if ]M l is a characteristic series.

Theorem 4.7: Let X C A= — {e} and M be a finite automaton such that IM I = X. Then,
X is a bi—infinitary code if and only if M" is unambiguous.

Proof: By virtue of proposition 4.4 (ii), we have, lM‘ I =X)*. Then, by theorem 3.5 and
proposition 4.6, we have, X is a bi—infinitary code if and only if (X)* is characteristic and

so if and only if M is unambiguous.
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