
PARTITIONS AND SCHUBERT POLYNOMIALS

Extended Abstract

M. TORELLI

Dipanimenco di Scienze dell'Informazione
Universita di Milano

Via Comelico 39

I20135MILANO Italy

E-mail: torelli@hennes. mc. dsi. unimi. it

Abstract In this paper we discuss a tabular method to compute the number of integer partitions lying
inside a given one, A., and prove that the Schuben polynomial having code OX counts exactly these partitions.

Resume. Dans cet article, nous discutons une methode tabulaire pour calcuier Ie aombre de parti-
fcions d'entiers coatenues dans une partition doanee A, et aous montrons que Ie polynome de Schubert de
code OA compte exactement ces partitions.

1. Introduction. How many different positions can arise when playing nim, the well-
known game which can be succinctly described as starting with an integer partition and
removing as many elements as you want but from a single part? Try for instance with three
parts (often called piles), one with 4 tokens and Ae other two with 2 tokens each.

To put it differently, suppose to play a rather silly game: to sort a (0, l)-array or string
using bubble-sort. How many different strings can be obtained during the ordering? We are
rewriting a (0, l)-word by using Ae unique rule 10 -> 01, and we are asking for the cardinality
of the language we can obtain from a given word. If we interpret the strings as rim
representations [We] of integer partitions (1 for a vertical rim, 0 for a horizontal one, going
from the upper right comer A to the lower left comer B), the former problem is equivalent to
counting the number of integer partitions whose Ferrers diagrams lie inside that of a given
partition. For example, in the case of Figure 1. 1 this number is 5.

1010^ 0110

i i
1001 -^ 0101^ 0011

Figure 1. 1.
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This problem turns out to have less trifling applications, for instance in chemical graph

theory (cf. e. g. [Ra]). It acmally occurred to us when trying to count the number of matrices
with given row and column sums fTo]. We had to generate, store and retrieve partitions not
greater than a given one, and we were looking for a simple way to determine their number and
possibly a ranking function, so that it were easy to determine ±e place of each partition in an
array, e. g. to record its presence or absence. We found we could do that by simply filling up
the Ferrers diagram in much Ae same way as computing binomial coefficients in a slant version
of Pascal's triangle. In fact, a rectangular diagram is filled up exactly with binomial
coefficients.

Let us call such diagrams, filled wiA suitable numbers, tableaiLx. In the next Section we
will precisely describe an algorithm to fill a tableau, and prove its correctness. As a preview
Figure 1. 2 shows the tableau relative to partition 422^the one we suggested for the game of
nim: we shall use ±at partition as a standard example). The number of partitions whose diagram
can be contained inside a given one is the sum of all such numbers, plus I if also the empty
partition is to be included. In the case of partition 422 there are 21 smaller partitions.-
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1+1+1+1+4+3+7+3 =21.

Figure 1. 2.

If one considers the Schubert polynomial relative to code 0422, one discovers that it has
exactly 22 terms. In §3 we prove that Schubert polynomials relative to codes of the form OX,
where ?i is a partition, count precisely the number of partitions not greater than ̂ , and a
bijection is provided to associate each partition with a monomial of the Schubert polynomial.

2. Counting partitions. A partition X is a nonincreasing sequence of nonnegative
integers, having only a finite number/? of positive elements, ca.\\ed parts. We shall write \ as
(Xi, ̂ 2, ..., ̂ -p), or simply \^- ^p, and say that 'k^[i whenever ̂  < p. ; for each f > 1. A
standard reference for partitions is Andrews' book [An].

With each partition one can associate a diagram, often called Ferrers diagram, the set
points (i, j) s N2 such that 1 <j ̂  A,i, 1 <- (< p. Points can be substituted bY s{!uares'andm
[he following we will refer to th'is latter kind of diagrams, as in Figures 1. 1 and 1 .2. Notice that
X ̂  |j. ifand only if the diagram of X can be covered by that of |l. This order relation defines a
partial order on the set of partitions. With each partition X one can associate the Young's lattice
Y^ of all partitions not greater than X (cf. e. g. [SW], page 29). We want to count the number
N^ of elements in this lattice, and we will also devise a ranking algorithm, assigning to each
partition a number in {0, ..., N^-l}, and vice versa.

With each partition we will associate a(p + l)x(Xi + 1) matrix A of nonnegative integers.
Rows are indexed 1 top + 1, columns 0 to ̂ . i; the algorithm to fill the matrix is simply
described by two nested for instructions:

for c= ltop+ 1 do
forj:=0to^i do

A[i, j]:=l+S SA[r, c] (^
r=l c=j+I

b

with the usual convention that ̂  x = 0 if b < a.
In other words: each element is one more than the sum of all e\ements above and to the

ng/zro fTtseif. 'The "following table will help to understand the algorithm, applied to the already

familiar partition 422 ; here p=3, ^\ =4.

col.
row

row I

row 2

row 3

row 4

col.
0

1

12

22

col.
1

-. r%

:-4^

7X

col.
2

fi;l

w

col.
3

%l

col.
4

1

Table 2. 1.
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Of course, one could use only the diagram of the partition (the shaded portion of Table
2. 1), as we did in §1; however, it is convenient to add a column to the left, since the element in
place (p + 1, 0) will then contain exactly the number of partitions not greater than the given one.

A few shortcuts are also immediately evident, such as the fact that each element is the sum
of all elements in the row immediately above, up to its column included (22 = 12 +7 +3), or
that each element is the sum of the t^vo adjacent elements immediately above and to the right, if
they are both present (7 = 4 + 3). This last rule proves at once that a rectangular table (partition
with equal parts) yields the binomial coefficients: Pascal's triangle is actually obtained by
rotating the table 45 degrees counterclockwise.

Let us now prove our assertions. The simplest way to do this seems to require a different
approach, which is useful, in any case, to extend the algorithm to skew partitions and to
generalize the results. Consider the diagram of a partition as a graph: the edges are the edges of
the squares, and the vertices are the vertices of the squares. We can orient the graph so that
there are oriented paths between the upper right comer A and the bottom left corner 5 as in
Figure 1. 1. What we obtain is a directed acyclic graph (DAG). Now, the number of paths from
A to B is precisely what we want to count.

Assign value 1 to vertex A. Assign the sum of the values of the incoming vertices to all
other vertices (in breadth-first order). The value of each vertex is then exactly the number of
paths from A to that vertex. Figure 2. 1 shows the example of partition 422.
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Figure 2. 1.

If one inscribes each value into the square having the corresponding vertex as its upper
right comer, then one obtains exactly Figure 1.2, or the matrix in Table 2. 1 by adding column 0
and row 4. It is now quite evident that each value is the sum of the two adjacent ones, since
paths can only reach adjacent points just before reaching the point under consideration.
Alternatively, one can reach points on the row above the point of arrival, on condition that there

5 .4 3

be a connection (starting with a vertical step) with such a point, as in K
It is immediate to prove (2. 1) by induction on the row index ;, using the formula for the

-1,

row sum A[i+l, j]=^A[i, c]. (2. 2)
C=J

However, it seems to be more useful to resort to a "geometrical" approach. Let a, b, c, ...
symbolically represent portions of the tableau and also the sum of values in that portion. Refer
to Figure 2. 2(a): by using (2. 1)we getc= d+\, a= b + d+ I =b + c, and this is exactly what
we had to prove to show the equivalence of (2. I) and (2. 2); precisely, that each element a is the
sum of all elements in the row just above it, b+c.

This geometrical approach is useful to prove some more properties of tableaux. For
instance, if we do not want to add a further row and column to the diagram, we can however
compute the number of included partitions more efficiently than summing all the elements and
adding 1: it suffices to sum column 1 and row p (element (p, 1) being counted twice). In Table
2. 1, e~g., (1 +4+7) + (7 +3) =22. In fact, referring to Figure 2. 2~(b), e=a+&+c+J+l,
butc = 6 + 1, therefore e= (a + c) + (c+<^).
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Figure 2. 2(a). Figure 2. 2(b).

Before we can introduce a ranking function mapping each partition ^ < Xto a value
between 0 and rank(K), we have to define a suitable total order on partitions. The "right" order
is the so-called colexicographic [SW] or inverse lexicographic order: ̂  < v iff there exists an ;
such that [ii < Vi while |ly = Vj for each j greater thw i We shall call this order co^or^r
andmdTcate it simply with </since this symbol will distinguish the total colex order from the
partial order <.

Example 2. 1. The following is a list of the partkions JLL < 422 in increasing colex order,
up to-211-/0 < 1<2 <3 <4< lf<2l <31 <41 <22 <32 <42 < 111 < 211.

The ranking function rank^yD will simply yield the place of (l in the colex order list of the
, not greater than X. For instance, ran/:422(211) = 13. Letus, now/emark that, thi,s. rank

co incides wi'A~the sum of Ac values covered, in the tableau of 422 (cf. Figure 1. 2), ^by Ae

tableau o'f 2 IT, provided the two tableaux have coincident upper left corners:_1 +1+4+7=
iTAndtfiis'is'by no means a... coincidence, as stated by the following theorem.

^i

Theorem 2. 1. rank^\i) =^SA[i, j].
i>0 j=l

Proof. We will show that whenever v immediately follows p. in the increasing colex order
of partitions not greater than X, by assigning rank^\t) the value specified by the theorem we
have rank^(y) = rank-^) + 1, and of course rank-^\) = 1. To this end, suppose p.̂ = ̂  for
O^j^ i, while ̂ l, +i<^;+i G = 0 accounts for the case ̂  < ^i): then, to get the partition v
immediately following \i, we must have v^=^;+i + 1 for 1 ^7^ '+ 1. and Vy= |l^ for
j>i +1. This amounts to getting the diagram of v by changing the diagram of ̂  with the
addition of element A[i + 1, ̂t. +i + I] and removal of all the elements above and to the right oi
such'an'eYement. By (2. 1), the element we add has a value which is exactly one more
sum of the values of the elements we remove. 1

Example 2.2. Again, let ̂  = 422, [i = 32: then (. = 0, since ̂ i< ̂. i, and the partition
next to^l is v = 42. Now, let [i = 42: then ;= 2, andv = 111. In this latter case, passing form ]l
to v we remove from the tableau elements with values 1+1+1+3 =6, while adding ̂an
element with value'7"(cf. Figure 1.2). Therefore rank({\ 1)= 1 +4+7 = 12= rank(42) + 1 =
1+1+1+1+4+3+ 1.

Notice that, given a rank r and a partition X, we can easily construct the partition |l such
that rank^\i) = r. It suffices to take squares in the diagram of X, from top down and left to
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right, in such a way that the sum of their values is exactly /-. Theorem 2. 1 ensures that if it is
possible to do so, then it can be done in only one way.

The tabular method just described works as well for skew diagrams, i. e. diagrams which
are difference of two others. More precisely, suppose p. $ X: then, we shall denote by X/p. the

diagram associated with the set of squares which are associated with X and not with p..

0

Figure 2. 3(a) Figure 2. 3(b).

In Figure 2.3(a) we show the tableau relative to 422/211. It is obtained by applying (2. 1),
which is absolutely valid, while now it is no more true that each element is the sum of elements
in the row immediately above! However, the meaning of values inscribed in the tableau is the
same as before: there are 1 + 1 +3+3=8 skew partitions or diagrams smaller than or inside
the diagram of X/}l, and they are orderly reproduced in Figure 2. 3 (b). But this also means that
there are 8 partitions between 211 and 422 (including one of the two and excluding the other):
211, 311, 411, 221, 321, 421, 222, 322 (just add the skew partitions to the smaller one!).
Therefore, we are able to count the number of partitions which are comprised between two
others, and to attribute them a rank: the case of partitions smaller than a given one, examined
before, is simply associated with \IQ.

The approach of counting partitions as paths inside a DAG still works: one simply has to
imagine a. unique path connecting possible disconnected components, and this justifies the use
of afgorithm ('2. 1)'. One can even imagine partitions with increasing parts, or stranger diagrams
filled according to (2. 1). In any case, by specifying a construction rule for the tableau and a
particular sequence of squares inside the tableau itself, one can obtain a numerical sequence
which, in some cases, can have a well-known, or a new and interesting, combinatorial
meaning. For instance, one can easily obtain more than 40 sequences reported in Sloane's book
[Sl]. In "[Co] this point is illustrated and formulae are given to directly compute the number of
partitions, without having to fill a table.

3. Certain Schubert polynomials enumerate partitions. Schubert polynomials
were introduced in [LS1] by means of divided difference operators (cf [LS2], [Ma]). A few
combinatorial characterizations have also been given (cf. [BJ], [BB]). However, well before
Schubert polynomials were called so, they were studied in a paper by D. Monk [Mo], who
devised an "'intersection formula" which can be used very conveniently to compute the
polynomials [KK]. A particular case of that formula is the following rule The polynomials,
with variables xj. 'xz ...', x^, are indexed by pennutations and will be denoted with X^.

Monk's rule: X^=\, -X^+^X^. (3. 1)

The rule is valid under more general conditions, but we shall assume that

p., ... (J., ... |J.k ... ' where j is the maximum index such that jlj > (J-k while 7 < k, and /: is
the maximum index such that ̂  > (lk. Then, v is obtained from |i by exchanging ̂  and ̂ , so
that v = ... flj ... p-k ... ̂ j ... > and the ̂ um is over all permutations K which can be obtained
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from v by exchanging p-i and [t^ whenever ;' < A:, ji; < p.k and for every index h between ; and k
|lh is external to the interval [fJ.;, p.kj.

By recursively applying the rule, one can get to the identical permutation 1, and by
substituting X/ = 1 one can use Monk's rule to obtain any Schubert polynomial.

Example 3. 1. Let us take X^^s. For p. = 1423 one hasj = 2, k= 4, so that
v = 1324 and K = 3124. Therefore Xj423 = ^2^7J24 + ^724. Applying the rule once more
X 1324 = X2Xn34 + ^2134-^0^ Substitute X 1234= 1- The other terms^ give
X'3'i24 = xiX~2i34 = xi2Xi234 = x i2 and X2i34=^l, so that one obtains
X 1423 = Xl2+ X 1X2 + X22.

An alternative way to identify a permutation is to specify its Lehmer code (or one of many
possible similar codes'[Se]). Lehmercode is "the right one" since itgive^the_lexicograP, hl^aily
smallest sequence of exponents for the monomials of the associated Schubert polynomial (if the
variables are ordered xi>x-^> ... > Xn). Given a pemiutation K, its Lehmer code L(7T) is the
list (C7, C2, .... C»), where c, := |{7 > i: ̂  < TC, }|, \<i^n. For_example, L(1423) = 0200, and
in fact the lexicographically smallest monomial in X 1423 is xr. We shall occasionally use the
code as an index to specify a Schubert polynomial in place of the corresponding permutation.

'We will now consider only those "permutations (and associated polynomials) whose code
consists of a zero followed by a partition. Let us examine in detail a permutation p. of at least 4
elements, whose code is of the form (0, Xi, \z, ..., ^p), with Xi > ^2 ̂  ... > ^-p > 0. First of
all, ̂ i=l, since the first element must not be followed by any bigger element. Suppose
1 < «7<fe and|l = I... (l; ... l^j ... |^k ... : then |lj > l^k > P-i is impossible, since otherwise
one can choose (li to be the smallest element between 1 and }lj, and then all greater elements
must occur after ̂ j, implying X; < Xj, contrary to the hypothesis. But this means that when
using Monk's formula the only term contributing to the sum is the one exchanging the initial
element 1. We can therefore refonnulate

Monk's rule for codes of the form 0^: XA = Xp+i XB + Xc, (3. 2)

where A, B and C are codes, and precisely A = 0^. i... Xp_i^p, B = 0/\. i... Xp_i^, p-l,

C=?LpXi... ?ip-iO.

Example 3. 2. Let the code be A = 042200. Then p. = 164523. Let us apply Monk's rule:
in this csisej=p+ 1 =4, fc= 6, v = 164325, Tt = 364125. Notice that B = L(v) = 042100 and
C = L(TI) = 242000.

Consider now p, = 53412, L(p. ) = 422 (henceforth we shall omit final zeros in the code),
j =3, k=5, v = 53214, L(v) = 421, and there is no permutation K. In fact, an interesting
consequence of Monk's rule is the fact that when a pennutation has a code which is a. partition ^

"the initial zero), then there is no contribution to the sum, and therefore the Schubert
uai'isa'siiiglemono/n^Z, whose exponent vector coincides with the partition itself. This

is whenever the pemiutation has no subpermutation isomorphic to 132 As shown eg
m"fsS]7thenumbe-rofn-pennutations having this characteristic is the n-th Catalan number, and
therefore Ae number of n-permutations having code OX is simply the (n-l)-th Catalan number.

To go on, we need to know how to operate on Xc, whose code is not of the form 0^,.
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Lemma 3. 1. Let C = (c^, 02, ..., Cp) be a Lehmer code with c; > 0, 1 </ < p, and
C-l = (c/-1, C2-1, ..., Cp-1). Then Xc = xix^... Xp Xc-i.

Remark. This lemma is similar to the Block Decomposition Formula of § 1. 5 in [BJ], but
the conditions of the two formulae are in fact different: permutation 546132, having code
43301, has a block decomposition, while our lemma is not applicable; on the other hand, ~24513
is not decomposable, but its code is 122 and the lemma can be applied. The proof of the lemma
is not difficult by using difference operators, and it is immediate by resorting to a suitable
combinatorial interpretation.

Iterating the application of Monk's rule (3. 2) and Lemma 3. 1, one gets to the further
lemma, which is crucial to prove the final result.

Lemma 3. 2. Let \ = (^i, y\. 2, ..., ^-7, ^p), ^' = (^l, ^2, ..., ^-/),
\-1= (^. i-l, X2-1, ..., ̂ -7-1, X,p-l). Then Xg^ = x^, Xo^, +x, X2... XpX<,^_,.

Now, let Yc denote the value of the Schubert polynomial of code C when assigning value 1
to each variable: then, from Lemma 3. 2, YQ^. = YQ^. ' + YQ^. I. Both X, ' and ̂ .-1 are partitions

smaller than X (in the partial order), therefore if one assumes that Yo^i gives the number of
partitions not greater than (l when jj, < ^., p, ^ ^,, one has a valid induction argument, provided
the recurrence above is valid for partitions and YQ= 1. Since XQ is the Schubert polynomial
associated with the pemiutation with no inversions, XQ= 1, and YQ = 1 is trivial. For the
recurrence, let us resort to our "geometric" approach, cf. Figure 3. l(a).

A A

B

r

^

B

^-\

'p-1

Vl xp+l- xp+l

Figure 3. 1 (a). Figure 3. 1(b).

There is almost no need for words: YQ^.' counts partitions inside the "trapezoid" at the

upper right of point B, constituted by the diagram of X without the last part Xp; in the tableau,
YOA,' should be inscribed into the square marked \'. Yo^.-i counts partitions inside the region at
the upper right of point C, and should be inscribed into the square marked ?i - I. YQ^. should
appear in the square marked A, : as we know, YQ^. is exactly the sum of its adjacent values.

However, the proof through the two lemmas is a little involved. After all, one would like to
associate a partition with each monomial and vice versa! Paths are easily associated with
monomials, after Gessel & Viennot [GV], but here the number of steps does not coincide with
the number of squares, which is the homogeneous degree of the monomials. Actually, we were
not able to find the correspondence before discovering how to exploit Lemma 3.2. The lemma
seems to suggest that paths inside the diagram, starting from A and reaching B, should be

associated with monomials having a factor Xp^, while paths from A to C should be associated
with monomials containing xjx^- Xp.

Figure 3. 1(b) should make things clear: squares on the last row under the path from A to B
should be labeled Xp+j, while, going instead to point C, the first column would be left above the
path, and squares should be labeled xjx^... Xp. Labeling should increment the index when
crossing the path. Figure 3. 2 reports some examples for partition 422, code 0422: only indices
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are reported in the diagram; the corresponding monomial and partition are written below each
diagram.

2| 2 2| 2 iH ll_L LLl

X24X32X42
0

X[2X23X3X42
21

Xi3X22X32X4

311

Figure 3. 2.

Xi4X22X42
42

Xi4X22X32
422

While it is quite evident that with each path is associated one and only one monomial, the
vice versa is not entirely obvious. But observe that the exponent of xi in the monomial gives the
first part |J. i of the partition \i we are constructing inside the diagram of X, then (J. 2 equals the
exponent of x^ minus ^i - p. i, and so on: therefore the partition is completely determined by
the monomiaL In this way we have proved not only that this class of Schubert polynomials
counts partitions inside a given one, but also that each polynomial associated with a code of the
form 0/L has all its positive coefficients equal to 1. This fact is interesting by itself, but may also
be relevant when trying to compute such polynomials, since one can then generate the
monomials without having to check, in order" to increment the coefficient, if a monomial has
already been generated.
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