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Abstract

We provide a "toolkit" of basic
lemmas for the comparism of homo-
topy types of (homotopy) limits of di-
agrams of spaces over finite partially
ordered sets, among them several new
ones. In the setting of this pa-
per, we obtain simple inductive proofs
that provide explicit homotopy equiv-
alences. We show how this toolkit of

old and new diagram lemmas can be
used on quite different fields of ap-
plications. In this paper we demon-
strate this with respect to the "gener-
alized homotopy-complementation for-
mula" by Bjorner [4], the geometry and
combinatorics of tone varieties (which
turn out to be homeomorphic to homo-
topy limits, and for which the homotopy
limit construction provides a suitable
spectral sequence), and in the study of
the combinatorics and homotopy types
of arrangements of subspaces.

1 Introduction

Abstract

Nous presentons un outillage de
lemmes fondamentaux servant a la
comparaison de types d'homotopie de
limites (d'homotopie) de diagrammes
d'espaces sur un ensemble fini ordonne
partiellement. La formulation choisie
dans cet article nous permet de deduire
des preuves inductives simples four-
nissant explicitement des equivalences
d'homotopie. Nous montrons comment
appliquer cet outillage de lemmes an-
ciens et nouveaux a de differents re-
sultats - notamment a la "formule

de complementation de homotopie" de
Bjorner [4], a la geometric et la com-
binatoire de varietes toriques (qui se
revelent etre homeomorphes a des lim-
ites d'homotopie et pour lesquelles la
construction de limites d'homotopie
fournit une suite spectrale propre) et fi-
nalement a 1'etude de la combinatoire et

des types d'homotopie d'arrangements
de sous-espaces.

A diagram of spaces is a functor from a small category to a category of topological spaces. In the
following, we will consider the special case where the small category is a finite partially ordered
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set P, and a P-diagram is an assignment of topological spaces Dp to the elements p   P, and
compatible maps dpp' : Dp -^ Dp' to the order relations p >. p' w P.

In various geometric, algebraic and combinatorial situations one has to deal with structures
that'canprofitlbly be interpreted as limits or homotopy limits of diagrams over^finite posets^. In
fact", if-a space is written as a finite union of (simpler) pieces, then it is the limit of a corresponding
diagram of spaces. While limits do not have good functorial properties in homotopy theory they
can°usuaUy"be replaced by homotopy limits ("Puppe [18] may have been the first to exploit this).
Homotopy limits have much better'functorial properties. Thus there^is a wide variety of Possib^
te7hn"iqu"es to manipulate diagrams of spaces in such a way that the homotopy limit is preserved
(up to homotopy type). , ^^ ^ ^ ,, o_ r^.

"Basic workon'homotopy limits ha5 been done by Segal [21], Bousfield & Kan [6J, torn
Dieck [25], Vogt [27], and Dwyer & Kan [9, 10]. See Hollender & yog\[loKorarecen. tsuI', ye y-

"Two key results in this setting are the'"Projection Lemma" [21] [6, XII.^. l(iy)], whx^ anows
oneto'replace'limits by homotopy limits, and the "Homotopy Lemma'^25] [6, XH.4.2] [27] which
compares" the homotopy types of diagrams over the same partially ordered set. These too\s have
found striking applications, for example, in the study of subspace arrangements [30] [24].

'There "are" two objectives in our mind, first we want to provide a "tool kit" for the manip-
ulation of limits and'homotopy limits: basic lemma^ that allow one to compare the homotopy
types of diagrams defined over different partial orders. Not all of these results are^ew:^in
parrt~icuYar7Dwyer & Kan [10, Sect^'Q] provide a list of some (apparently) "well-known" results,
for which a proof can be found in Hollender & Vogt [15, Prop. 4.4]. However, in ̂ ur attemPt to
isolate the "central results" we also describe new tools, in particular the UPPER FIBER LEMMA,
Theorem 3.8 below. _ . . .. . .

Our second objective is to reveal the very combinatorlal nature of the homotopy imit its-
self and its power "in describing the combinatorial structure of mathematical objects, like toric
varieties, subspace arrangements and subgroup complexes.

We provide several applications of our methods to various areas within mathematics. As a
first application, in the field of topological combinatorics, we present a new proofofa^esukby
Bjorner on the homotopy type of complexes [4]^ which generalizes the HOMOTOPY COMPLE^
ME'NTATION FORMULA of Bjorner and Walker-[5]; a tool which has proved to be very powerful
in~combinatorics. Since this'proof affords the application of many of the techniques provided in
this paper, we give a detailed exposition of it here.

Then we present a new view of toric varieties. Namely, we show that toric va.neties are
homemorphic'to homotopy limits over the face poset of the fan defimng^the variety. ^ This leads
to a'spectra! sequence to compute the homology of tone varieties. Explicit results follow quite
directly in the case of toric varieties associated with simplicial fans.

More briefly we cover two applications for which details are contained in other papers. We
describe'anew result on the homotopy type of the order complex of the poset Sp{G) of non-
trivial'p-subgroups of a finite group G [17]. Finally, we review results obtained by homotopy
limit methods on the topology ofsubspace arrangements in [30].

2 Set-up and Basic Tools

In the following all posets are finite partially ordered sets. _A ba^ic operation ̂ we will use is the
construction oTsubposets like P^ := {p'C P :P'^ p}, P<p ..={P' e P-. p' <p}, etc.^ Also^
the'order complex of P is the (abstract) simplicial complex A(P) given by the collection
chains in P. By |A| we denote the geometric realization of the complex A. (See Stanley [22,
Chap. 3] for other basic concepts, notation, etc. ) Whenever we talk about the topology of a
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poset, we refer to the order complex. Thus a contractible poset is a poset whose order complex
is contractible, and a poset is a cone whenever the order complex is a cone, etc. All topological
spaces will have the homotopy type of a finite CVV-complex. (See Whitehead [28] for the basics
about this category.)

The following lemma is extremely useful for our inductive proofs (in the next section, and
elsewhere): it can be used for proving that a map is a homotopy equivalence if it is "glued
together" from two homotopy equivalences.

Lemma 2. 1 (GLUING LEMMA: see for example torn Dieck [25])
Let X =- A^J B and Y = C\J D be spaces and f : X -rY a continuous map with the property
/(A) C C and f(B) C D. Assume that the pairs (A n B, A), (A n B, B), (C H D, C) and
(CnD, D) have the homotopy extension property.

Iff\A:A-^C, f\B:B-^Dandf\(AnB}:AnB^CnDare all homotopy equivalences,
then the map f : X ->Y is a homotopy equivalence.

A join semilattice is a poset P such that every finite subset has unique minimal upper bound.
Such a P has a unique maximal element 1 (note that P is finite). The crosscut complex F(P)
of a join semilattice is the simplicial complex of all nonempty subsets of min(P) that have an
upper bound in P\l.

Proposition 2. 2 (CROSSCUT THEOREM: see Bjorner [3, (10. 8)])
For every join semilattice, the crosscut complex F(P) is homotopy equivalent to the order complex
o/P\i.

3 Homotopy Comparison Lemmas

In our setting, a P-diagram T> is an assignment of spaces Dp to the elements p 6 P, and of
maps dppi : Dp -> Dpi to the order relations p > p , in such a way that dpp is the identity, and

dppi o dp'p" = dpp" for p > p' > p".
If P is a P-diagram, and P C Pis a subposet of P (that is, a subset with the induced

partial order), then we write 2?[P] for the induced subdiagram: the P-diagram whose spaces
and maps are given by the spaces and maps in P.

The limit lim'O of a P-diagram V is constructed from the disjoint union Upgp Dp by identi-
fication of x ^ Dp with dppi (x)   Dp', for all p>. p and all a; £ Dp.

For example, "subspace arrangements" give rise to "inclusion diagrams. " The following
definition provides suitable generality for our purposes.

Definition 3. 1 An arrangement is a finite collection A of closed subspaces in some ambient
space U, such that any nonempty intersection of subspaces in A is a (finite) union of subspaces
in A.

Then there is a natural associated diagram, whose poset P is in bijection with A, the order
on P is by reverse inclusion, the spaces Ap are the elements of A corresponding to p ^ P, and
the maps are the inclusion maps Ap ^-> Api for p > p .

In general, a subspace diagram will mean the inclusion diagram of an arrangement. With
this, one sees that the limit of a subspace diagram is exactly the union [JA = UpeP -4p-

A,
(An assumption one needs for the PROJECTION LEMMA below is that the inclusion maps
^- Api are closed cofibrations, i.e., that these maps possess the homotopy lifting property.

Equivalently, the subspace Ap' X {0} U Ap x / IS a retract of Api X I, or that (Ap'. Ap) is an
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NDR-pair, see [28, 1. 5]. This assumption is always satisfied in a situation where everything is
smooth, or where one is dealing with inclusions ofsubcomplexes in a triangulable arrangement.)

The homotopy limit holimU of a P-diagram T> can be constructed from the disjoint union

y A(P^) x Dp,
p6P

by "making the obvious identifications, " as follows. For each order relation p > p\ there is an
injection i : A(P<p') c-^ A(P<p), and a map dpp, : Dp -^ Dp'. Using the map id x dpp-, we
identify the subspaces

A(P<^) x Dp C A(P^p) x Dp

and

A(P<p-) x Dp, C A(P^pQ x Z5p/.

If "s" is the equivalence relation generated by these identifications, then the homotopy limit of
the P-diagram T> is the space

holimU := ( t+J A(P<p) x Dp)/ = .
p P

An inductive construction of the homotopy limit is as follows: start with a disjoint union
y gp Dp. Then, for every pair p > p', glue to it a copy of Dp x I, to create a mapping cylinder
of the map ripp'. Then, for every triple p > p' > p", glue into this a copy of Dp X A(p > p' > p"),
and so on. The "usual" spectral sequence for the (co)homology of homotopy limits follows this
inductive construction, i.e., it uses a filtration induced by the skeleta ofA(P).

We may observe that for every P-diagram 25 there is a canonical partial order on P :=
l^lpgp Dp defined by setting a: ̂  .r'for a;   Op and a;'   -Dp' if and only if p > p/ and ripp'(-c) = .r'.
With this definition there is a canonical bijection A(P) <-> holim(P); however, the topology on
the two spaces is different: in fact, with the usual topology on simplicial complexes the subspaces
Dp C A(P) get a discrete topology.

Examples 3. 2 Here are some trivial examples for the construction of homotopy limits.

(i) If Dp is a one-point space for all p   P, then holim T> is (isomorphic to) the order complex
of P.

(ii) If P = {p, p'} has two points, and p' > p, then holim D = Dp'U/ Dp is the mapping cylinder
of the map / = dpi p 

: Dpi ->. Dp.
(The mapping cylinder is homotopy equivalent to the image space Dp, which is the limit
of the diagram.)

(iii) If 25 is a diagram such that all the spaces Dp are identical, and the maps are identity maps,
then holim-D^A(F) x Dp.
(The limit of such a diagram is Dp, if P is connected.)

If P is a P-diagram and £ is a Q-diagram, then a map of diagrams <f> :T> -> £ consists of an
order preserving map of posets f : P -rQ, together with a collection of maps <f)p : Dp-^ £'/(?),
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which have to be compatible in the sense that for p > p , the maps e/(p)/(p') ° <^p a"d <^>p' o d.
Dp -> £'/(p') have to coincide, that is, the square

pp'

D^

dpp-l 1
<J!(p}

,

e/(p)/(p':

D,, ^/(p')

has to commute for all p ^ p/. (Formally, this amounts to the requirement that $ be a natural
transformation between the functors V and £.)

We now start our presentation of "tools" with the observation that every map of diagrams
induces a map of their homotopy limits in a natural way.

Lemma 3.3 (MAPS)
Let (f> :T> ->. E be a map of diagrams. Then <f> induces a natural map

4>: holimZ) ->. holimf.

Lemma 3.4 (EMBEDDING LEMMA)
Let ̂ :T> ->. £ be a map of P-diagrams associated with id : P -4- P. If ̂ p : Dp .->. Ep is a closed
embedding for every p   P, then ̂  induces a closed embedding

$ : holimP <->. holim £.

In particular, if D is a P-diagram and QC P is a subposet, then holim 'D[Q} '-). holim P is a
closed embedding.

Lemma 3.5 (CONE LEMMA: Bousfield &; Kan [6, XII.3. l(iii)])
Let P be a poset with least element 0. IfT> is a P-diagram, then the inclusion {0} C P induces
a homotopy equivalence

DQ a holim 25.

Lemma 3.6 (PROJECTION LEMMA: Segal [21], Bousfield & Kan [6, XII.3. 1(iv)j)
Let A be an arrangement with intersection poset P, let P be the corresponding P-diagram. Then
the natural collapsing map ̂  : holim "P -). lim 2? is a homotopy equivalence.

(See [30, Lemma 1.6] for a simple inductive argument.)

Lemma 3. 7 (WEDGE LEMMA: Ziegler & Zivaljevic [30, Lemma 1. 8])
Let P be a poset with maximal element 1. Let T> be a P-diagram so that there exist points
Cp/   £>p' /or a// p' < 1 such that dpp' is the constant map dppi : x <-r c?', for p > p'. Then

holimP ^ V (A(p<p)*JDp)-
P P

where the wedge is formed by identifying Cp   A(P<p) * Dp u'^/i p   A(P^. ^) * D^, /or p < 1.

567



Theorem 3.8 (UPPER FIBER LEMMA)
Let V be a P-diagram and let £ be a Q-diagram. Assume <p : V
induces a homotopy equivalence

£ is a map of diagrams. If <f>

^ : holim(2?[p   P :/(y) ^ 9]) ^ holim^[Q^, ]/or a^ 9 C 0,

then (f> induces a homotopy equivalence (p : holimT? -^ ho\\m£.

Note that by the CONE LEMMA the condition of the UPPER FIBER LEMMA implies that
holim(Z)[p 6 P : f{p) '>. q}} is homotopy equivalent to Eq for all p   P. Thus, in particular, the
uTpER FIBER LEMMA implies the following HOMOTOPY LEMMA, for which a simple inductive
proof was described in [30, Lemma 1. 7].

As a special case, when all the spaces Dp and Eg are one-point spaces, the UPPER FIBER
LEMMA contains the QUILLEN FIBER THEOREM (in the case of upper ideals /-l(P>:p)).
Corollary 3. 9 (HOMOTOPY LEMMA: torn Dieck [25], Bousfield & Kan [6, XII.4.2], Vogt[27])
Let V and £ both be P-diagrams, and assume that there is a map of diagrams <f> :V -r £ that
corresponds to the identity map \d:P -> P on the posets. If 4>p ̂  Dp -^ Ep is a homotopy
equivalence for each p e P, then (f> induces a homotopy equivalence cj>: holimP -^ holim £.

(The fact that a similar HOMOTOPY LEMMA is not available for ordinary limits Hn^i'D is one
of the main reasons to work with homotopy limits instead.)

Corollary 3. 10 (MAPPING CYLINDER LEMMA)
LetV be a P-diagram and let £ be a Q-diagram. Assume (f>:V -^ £ is a map of diagrams, with
f : p -,. Q the accompanying map of posets. We define a partial order P@/ Q on the disjoint
union PwQ by

s, s/   P and 5 ^ s/ m P, or
s > s' :<==> { s, s'^Q and s^s'inQ, or

se P, s/ Q and f(s) ̂ s' in Q.

Let T) @4, £ be the P ©/ Q-diagram defined by

{-D(B^)s:=['E, ifsCQ,
.
D, if seP.

The maps of V ^4, £ are induced by the maps of the diagram V and £ and the map 4>. Then
the natural inclusion \\o\\m£ ^ holimP ©^ £ given by the EMBEDDING LEMMA is a homotopy

equivalence.

Corollary 3. 11 (DIRECT IMAGE LEMMA: Dwyer & Kan [10, 9. 8])
Let T> be a P-diagram, and let f :P-^Q be a poset morphism. Define a Q-diagram f^D by set-
ting f^D, := holim'D[/-l(Q^^], and taking for f^, the inclusion maps holim'D[/-l(Q^, )] ^
holim2?[/-l(Q>, ')].

Then there is a homotopy equivalence holim/j)'D ̂  holim'D.

The following, quite innocent-looking, lemma contains the key idea to the combinatorial
formulas for "Grassmannian" arrangements in Section 6. It uses the notion of a homotopy
between P-diagrams P and i: a P-diagram U with diagram maps 4>:V -^ U and 4) : £ -^ 'H
such that the maps <pp and ipp are homotopy equivalences. This is motivated by the special case
where we would have compatible maps /p : Hp ->. [0, 1] such that /p-l(0) = Dp and /p-l(l) = Ep
for all p   P, and such that the inclusions Dp, Ep ̂  Hp are homotopy equivalences.
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Corollary 3. 12 (HOMOTOPY BETWEEN DIAGRAMS)
If there is a homotopy between P-diagrams T> and £, then holim'D ̂  holim£".

From this result, we can see e. g. that mapping cones are well defined (for homotopy classes
of maps, up to homotopy!). In particular, in Example 3. 2(v) one can insert any contractible
space for Dpi i and still obtain the homotopy type of the mapping cone.

Theorem 3. 13 (INVERSE IMAGE LEMMA: Dwyer & Kan [10, 9. 4])
Let f '-P ̂ Q be a poset morphism and let £ be a Q-diagram. Define the P-diagram f^£ by
(/»^)p := Ej^ and /»Cpp/ = e/(p)/(p, ).

If for all q C Q, f~ (Q<q) is contractible, then f induces a homotopy equivalence

holim /a<? holimi?.

The condition ilf~l(Q<q) is contractible" in the INVERSE IMAGE LEMMMA cannot be re-
placed by the order dual condition "/-1(Q><;) is contractible."

Let P be^the P^diagram and let £ be the Q-diagram in our Figure. Then Da = D,, = EJ^) is
a point and Dc = E^^) is a circle. All maps are the constant maps to the point Da = D,, = E\
The homotopy limit of the P-diagram P is a 2-sphere and the homotopy limit of the Q-diagram
£ isa. cone over a circle. Obviously, f~l(Q>y) is contractible for all qCQ, but holim Z> ̂  holTm ̂ .

ByalemmaofBabson [2] (see [23, Lemma3. 2]) the conditions of the INVERSE IMAGE LE~MMA
are satisfied if (a) the inverse image /-l(g) is contractible for all q^Q, and (b) P>p n /~1 (g) is
contractible for all p e P and q Q. Q with f{p) < q.

Proposition 3. 14 (ORDER HOMOTOPY THEOREM)
Let T> be a P-diagram, and let f : P-^P bea poset map which is decreasing (that is, f(p) <, p
for all p   P).

Then the inclusion i : f{P] .-4- P induces a homotopy equivalence

holim'D[/(P)]^holimZ>.

The ORDER HOMOTOPY THEOREM is definitely false if we use increasing ma.ps: see the case
of a single mapping cylinder.

Note that the CONE LEMMA is a very special case of the ORDER HOMOTOPY THEOREM.
We just remark that for any function satisfying /(/(p)) = f{p] ̂  p for all p   P the homotopy
limit holim'D[/(P)] is in fact a deformation retract ofholimP.

Another simple consequence of the ORDER HOMOTOPY THEOREM is that one can remove
"join irreducibles" from a diagram without changing the homotopy type of the homotopy limit.
That is, if Q is obtained from P by deleting an element that covers exactly one element, then
the homotopy limits of a P-diagram V and of its deletion V[Q] are homotopy equivalent.

Lemma 3. 15 (LOWER FIBER LEMMA)
Let V be a P-diagram and £ a Q-diagram. Let(f> :V ->. £ be a morphism of diagrams. If for all
q G. Q the induced map

<^ : holimP[/-l(Q^)] -^ holim^[<9<,]

is a homotopy equivalence, then <f>: holim "D -> holim £ is a homotopy equivalence.
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We will call a P-diagram V a poset diagram if the spaces Dp are order complexes, Dp = A(Qp)
for posets Qp, and the maps dppi : Dp -> Dp' are simplicial maps induced by poset morphisms

/pp': Qp -^ Qp'-
Let 2? be a poset diagram. Then we define the poset Plim T> on the set y gp Qp x {p} =

{(g, p) :p  P, g   Qp} by setting {q, p} ̂  (g/, p/) if and only if p > p/ and /pp'(g) > 9'.

Proposition 3. 16 (SIMPLICIAL MODEL LEMMA)
For every poset diagram T> over a finite poset P, there is a natural homotopy equivalence

.9 : holimP A(PlimD).

The PROJECTION LEMMA studies the effect of collapsing the order complexes A(P<p) in the
construction of the homotopy limit of a P-diagram V Now we are going to study the effect of
collapsing the spaces Dp, p   P. First we observe that this collapsing induces a map holimP -r
A(P) for a P-diagram P. This map turns out to be a quasifibration, a concept introduced by
Dold & Thorn [8], under certain strong conditions. A map f : X ->-Y between topological spaces
is a quasifibration if for any y eY, x e /-l(y) the induced maps /» : 7T, (A', f~l(y), x) -^ 7T, (y, y)
are isomorphism for all i > 0.

Proposition 3. 17 (QUASIFIBRATION LEMMA) [l9], [9, (9. 10)])
If T> is a P-diagram such that all the maps dppi are homotopy equivalences then the natural

projection map holimP -> A(P) is a quasi-fibration. In particular, if ̂ . (P) is contractible,
then for every p   P the inclusion of Dp into holimZ? induces a homotopy equivalence.

4 Bjorner's generalized homotopy-compleinentation formula

Bjorner's generalized homotopy-complementation formula [4] is an effective tool to compute
the homotopy type of asimplicial complex A in the case when a. large, contractible induced
subcomplex Aj is known, whose connections to the rest of the complex are not too complicated.

In the following, we provide a "homotopy limits" proof of Bjorner's result, thereby demon-
strating the applicability of some of our lemmas.

Let A C 25 bea finite (abstract) simplicial complex with vertex set 5, let AC 5 bea subset
of its vertex set, and denote by A the complement S\A of A.

Let A/i :={o-  A :cr C A} =An2A be the induced subcomplex on A, and similarly for
Aj, the induced complex on A. In the following, the key assumption we will make is that Aj
is contractible.

Theorem 4. 1 (GENERALIZED HOMOTOPY-COMPLEMENTATION FORMULA: Bjorner [4])
For any simplicial complex A C 25 and ACS, define a new simplicial complex TA by taking
the union of all the simplicial complexes

(pltlo-) * (star^ (o-) n A^-)

where p is an additional point p ^. S, and * denotes the join of two complexes.
7/Aj is contractible, then A and TA are homotopy equivalent.

We note that there are alternative ways to describe the construction ofT^. For example, one
can (as Bjorner does in his manuscript [4]) start from a wedge (or a disjoint union) of the spaces
E(ff^) = (ptel <7) * (starA(<7') n -Xj), and then check that all the identifications of the limit \'im£
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are generated by identifying, for cr C r, the identical subcomplexes (p l±l o-) * (star^(r) n Aj) in
E(ir, v) and in £'(r, r).

Also there are countless variations possible, corresponding to different coverings of the com-
plex A. The beauty ofBjorner's set-up is that his transformations of A end up with a subspace
diagram, and thus with a limit instead of a homotopy limit, which leads to an effective model
for A/Aj.

5 Toric Varieties

In this section we give a representation of the topological space underlying a toric variety (see
Danilov [7], Fulton [13], and Ewald [11] for general background on toric'varieties) as the ho-
motopy. limit of. a dia6I'am- For this we reca11 a description, due to MacPherson (see Yavin &
Fischli [29], [12]), of a toric variety. A decomposition of R" into a complex of closed, convex
polyhedral^cones with apex 0 is called a complete fan. If all cones in S are generated by lattice
points in Z", then E is called rational. Assume that Z is a complete and "rational fan in Rn.
Then let ̂  be a cell decomposition of the unit ball in R"that is dual to the one induced by 2.
For <7 £ S we denote by a- the cell in P that corresponds to a. Thus CT is a cell of dimension
n - dim(<7).

We identify the n-torus Tn with the image of the projection map n- : R" -». R"/Zn. For all
cones o-   E the image of <j under this projection is a subtorus Tr(o-) = 7r(spanR(o-)) = 7; of 7~.
Since <r is rational, this is a closed subtorus of dimension dim(o-). Thus the quotient 7^ ,7^. is
a real torus of dimension n - dim (o-).

The tone variety X^, is obtained from P x Tn by modding out (o-)° xT^ by the action of
To. on T for each o- 6 S. This leads to a nice (compact, Hausdorff) quotient space since we mod
out by larger tori on Q(T x Tn. In particular, we see that the toric variety .YS has a well-defined
map n :A's ->. P, for which the fiber over any interior point of a Is isomorphic to T/Ty.

Let Ps be the poset whose elements are in bijection with the cones in E and whose order
relation is defined by the reversed inclusion of the cones in S. Thus PE is the poset ofnon-empty
faces of P, ordered by inclusion. In particular, P has a largest element i corresponding to the
0-dimensional cone {0}. We construct a diagram PS over the poset Ps as follows. For cr e E
set D<^ == T/7^. Topologically ^ is a n - d\m{cr) torus. The map d^ for r C (T is the map
induced by the projection T/Tr -». T/Ty.

Proposition 5. 1 Let S 6e a complete and rational fan in R". Then the toric variety A's is
homeomorphic to the homotopy limit of the diagram PS associated with S;

holimPs ̂  .Ys.

The resolution of singularities of a toric variety also fits our homotopy limit framework.
Namely, let S/, S be two complete, rational fans in R" such that S' is a refinement of S
(i.e., for every open cone r'° in S/ there is an open cone r° in S such that r/o C r°). Thus
there is an induced map /: PS' -^ PS. Also assume that r/ is a cone in E/ whose interior is
contained in the interior of the cone r of S. Then the inclusion r/ ^ r/ induces a surjective
map ^^ : T/Tr'^-f T/TT. Is is easily seen that (f> induces a map of diagrams. Hence there is

an induced map <f>: holim Ps' ̂  ^=' -> holimPs ̂  ^s. The map ̂  is surjective since / and all
4>r'r are surjective.

Proposition 5. 2 Let S/ 6e complete rational fan which is the refinement of the complete rational
fan E. Then there is a surjective map <p : Xv ->. Xr-.
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It is well known that X^, is non-singular if and only if S is simplicial (i. e., all cones are
simplicial) and unimodular (i. e., all full-dimensional cones are equivalent to {x   Rn '. x >. 0}
under unimodular transformations from GL[Rn, Z)). For an example that shows that H'(X^) is
not a combinatorial invariant of S in general see [16]. It is also well known that for any complete
rational fan 2 there is a simplicial and unimodular complete rational fan S which refines E. In
this case <?> is a resolution of singularities.

One can also use our results to investigate the (co)homology of a toric variety. For this we
set up a spectral sequence introduced by Segal [21], which uses the filtration of hol^mT? by the
s-skeleta of the order complexes. For a simplicial complex A we denote by AA its s-skeleton.

Assume Visa P-diagram for a poset P. Then we denote by holim T>s the image of y gp Dp x
A(P<p)< in holim T>. The filtration holim 2?° C holjm P1 C . . . holim V defines a spectral sequence
with termination ^. (holimZ)) in the £'2-term and E^ = -Hr3+((holim2?3, holimZ>s-l). Following

Segal's arguments on finds that E^ is given by ^ H^T/Ts. }- Now assume ((TO <
<TO<-<^. A(P)"

. . . < o's) xc is a (s+ ()-cell in holim253. Then the differential of the cell complex holimP is

given by 9{ao < ... < a, ) x c=

3-1

^(-I)'(CTO < ... < CT; < ... < (7j XC+
<=0

+ (-l)3-l((7o< ... <<7, _i) X^, ^_, (c)+(-l)n(<70< ... <<7, ) X9c.

Thus the differential d^ : E^ -» £I,l-i. t applied to the cell (o-o < ... < cr, ) xc equals
s-l

^(-l)'(<7o < ... <0~i < ... < (T, )XC+ (-1)3-1(0-0 < ... < O-^-l) x ^. <7, _i(c), where c is a

cycle in ̂ (T/T. J.
From this it is easily seen that our spectral sequence is isomorphic to the deRahm-Hodge

spectral sequence applied by Danilov [7, Chap 3, §12] to compute the cohomology of a toric
variety.

6 Subspace Arrangements

Arrangements of affine subspaces in Rn also allow an application of the homotopy limit method.
Let A be a, finite set ofafRne subspaces in Rn. Let us denote by A the corresponding arrangement
of spheres in the one-point compactification 5" of R". Under our assumptions intersections of
spheres in A are again spheres. The following result can be deduced from the PROJECTION,
HOMOTOPY and the WEDGE LEMMA.

Theorem 6.1 (Ziegler & Zivaljevic [30])
Let A be a finite set of affine subspaces in R". Let U^. be the one-point compactification of the
set-theoretic union of the subspaces in A and let P be the intersection poset of A. Then

UA ^ v5dlm(p)+A(p<p)-
P6P

An equivalent result can be found in Vassiliev [26, III. §6. Theorem lj. In Vassiliev's
formulation the spaces A(P<p) are replaced by quotients ofsimplices by crosscut complexes, the
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spaces K(p) in his notation. More precisely, for an arbitrary subspace V corresponding to some
point p = pv \n the intersection lattice P of A, let Vi,..., Vt be the subspaces in A such that
V, contains V as a subspace. Let S(p) be the simplex which is spanned, in the abstract sense,
by the vertices Vi,. .., Vt. Vassiliev calls a face r of S(p) marginal if V" is not the intersection
of the subspaces corresponding to the vertices of r. Thus the marginal faces are the simplices
in the crosscut complex F{P^p) ofP^p. By the CROSSCUT THEOREM the complex of marginal
faces is homot°Py ecluivalent _toA(P<p). In Vassiliev's formula the spaces Sdlm^ * A(P<p)' are
replaced by5dim^-l*E(j, )/r(P<p). Let us analyse S(p)/F(P^). IfF(P<p) is the full s?mplex
Z(p), then S(j))/r(P^p) and by the CROSSCUT THEOREM alio A(P<p)-are contractible. In
particular, 5dim^* A(P<p) and Sd[mW-1 * E(p)/F(P^p) are contractYb'Ie. If r(P<p) is some
non-empty part of the boundary of E(p) then £(p)/F(P^p) is the suspension ofF(P<p). Thus
again the CROSSCUT THEOREM shows that 5dim(p) * A(P<p) and 5'dim(p)-1 * S(j?)/r'(P< ) are
homotopic. If F(P^p) is empty, then we have to "interpret" E(j))/F(P<p) as the suspension
of the empty space, which is in our definition of the join with a two point space. Then the
homotopy equivalence also follows in this case.

By Alexander duallty on Sn we infer from Theorem 6. 1 the following formula of CT oresky &
MacPherson [14].

Theorem 6. 2 (Goresky & MacPherson [14])
Let A be a finite set of affine subspaces in R"
be the intersection poset of A. Then

Let MA be the complement Sn - UA and let P

Ht{M^Z) - ^ ffcodin, (p)-. -2(A(P<, ), Z),
P P

where codim(p) denotes the real codimension of the subspace corresponding to p.

Analogous results for arrangements of spheres and projective spaces can be found in Zieeler
& Zivaljevic [30].

7 Subgroup Complexes

The order complex of the poset Sp(G) = {P ̂ Q :\P\= pi + 1} of non-trivial p-subgroups of a
finite group G has received considerable interest over that past few years (see for example [1]).
It was already observed by Quillen [20] that Sp(G) is homotopy equivalent to the poset Ap(G)
°! non-trivial elementary a.belian p-subgroups of G. In [17] the authors consider the covering
of A(Ap(G)) by the subcomplexes ^(Ap(NA)) for a fixed solvable normal p'-subgroup N and
maximal elementary abelian subgroup A of G. Then they use the following facts :

(a) Intersections of the spaces of type A(Ap(ArA)) are again of the type A(.4p(^VD)) for some
elementary abelian p-subgroup D of G.

(b) For a solvable normal p'-group N and an elementary abelian p-subgroup A the complex
A(.4p(./VA)) are homotopic to a wedge of spheres of dimension rank(Z5) - 1.

Observation (a) follows by basic group theoretical argumentation. Assertion (b) is much less
obvious. It was established by Quillen [20, Theorem 11.2], but also follows by applications of
the homotopy limit methods (see [17, Theorem (A)]). Using facts (a) and (b), the PROJECTION,
HOMOTOPY and the WEDGE LEMMA the following wedge decomposition ofA(Ap(G')) for finite
solvable groups G with non-trivial normal p/-group is proved in [17].
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Theorem 7. 1 (Pulkus & Welker [17, Theorem (B)j)
Let G be a finite group and let p be a prime. Let N be a solvable normal p'-subgroup. Let
CN/N be the intersection of all maximal elementary abelian p-subgroups °fG/N. For AN/N  
Ap(G/N) let CAN/N be an arbitrary but fixed point in A(Ap(G'/2V)>. 4^v/.v). Then A(5p(G)) is
homotopy equivalent to

V A(.4p(A-A)) * A(Ap(G'AV)>. 4.v/.v).
AN/NeAp(G/N^c^/N{-i{CN/N}

where the wedge is formed by identifying, for AN/N > N/N,

the point

with the point

CAN/N   A(Ap. (G'/N)>^/^/) * Ap(^VA)
AN/N   A(Ap(G/A^)) * A(Ap(^Vl)).

In particular, if A is a maximal elementary abelian group of rank r in G, then A(Ap(A/'A)) *
A(Ap(G/Ar)>AN/N) " homotopic to a wedge of (r - l)-spheres.
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