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Abstract: The plethysm of two Schur functions can be expressed as a sum of Schur

functions with nonnegative integer coefficients. Current algorithms for computing
plethysms are designed to compute the whole expansion. However, in some appli-

cations only a few coefficients are of interest. In this work, we develop an algorithm

for calculating individual plethysm coefficients. We also give a simple result concerning

the zero coefficients which is obtained from the combinatorial properties of the Kostka
and the inverse Kostka numbers

Resume:

Le pl^thysme de deux fonctions de Schur peut s'exprimer comme une combinaison

lin^aire de fonctions de Schur b coefficients entiers positifs. Les algorithmes actuelle-
ment connus calculent Ie developpement complet. Toutefois, pour certaines applica-

tions, on ne s'iut^resse qu'h un petit nombre de coefficients. Dans ce travail, nous

developpons un algorithme permettant Ie calcul indidividuel des coefficieats. Nous
dounoDS aussi un r&ultat simple coacemant les coefBcients nuls, obtenu a partir des

proprietes combinatoires de la matrice de Kostka et de son inverse.

1 Introduction

Given two Schiir functions s\(x~) and s^x} where x = {xi, x^, -- ., ), X and p. are partitions
of weight m and n, respectively, the plethysm SA[s^(3;)] is the symmetric function obtained
by substituting the monomials in s^x) for the variables of s\{x). D.E. Littlewood intro-
duced this operation more than 50 years ago in connection with the representation theory

of the matrix groups and showed that s^ [5^(2;)] = S-^-mncZ, ^5-y(;r) wlth nonnegative in-
teger coeflScients. Current algorithms [1] for computing the expansion of 5^ [5^(2;)] make
use of the plethysm of s\{x) with the power sum symmetric function pk{x), and involve
multiplications of Schur functions. The expansion coefficients are determined at the end

of the algorithm, when similar terms are collected and combined. An obvious drawback
of this type of algorithm is that one can not calculate a single coefficient without going
through the whole expansion. In particular, one cannot know the zero coefficients in
advance.

la this paper, we derive a formula for the coefficient c^ in the expansion of SA[s^(2;)] by
using the transition matrices among various bases of the ring A" of synunetric functions of
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homogeneous degree n. As it tziraed out, the formula involves three types of objects: the
characters of the symmetric group, the Kostka numbers and the inverse Kostka numbers of
the nested shapes. We use the combinatorial properties of these objects to derive a simple
result on the zero coefficients. We introduce bubble sequences and bubble movements and

describe an algorithm for computing the nested inverse Kostka nimibers. Finally, we give
an example of computing the plethysm coefficient.

Throughout this paper, by partition we mean a weakly increasing sequence of positive
integers. The common notation \', ^(A), and | A | are used for the conjugate, length and
weight of a partition A respectively, and the notation A !- n indicates that A is a partition
of n. For an integer k we define k\ = {k\i, k\2, . . ., ^^z)- Let X/p. denote a skew partition,
where \ 3 p.. Define the column width of a skew partition c(X/p. ) to be the longest row in
the Young diagram of A//I, and the row width r{\/p. ) = c(A///^/). WTien ̂  = 0, c(A) and
r(A) are equal to the total number of columns and rows covered by A, respectively. For
F{x)   A" and 7hn, we iise < F{x'), s^x) > to denote the coefficient of 5^(2;) in the
expansion of F{x).

RecaU from the theory of symmetric functions (cf. [4]) that the ring A" of symmetric
functions has five well-known bases: the Schur functions s\{x'); the monomial symmetric

functions m\^x); the elementary symmetric functions e\{x}; the homogeneous syinmetric
functions h\{x); and the power siim symmetric functions p\{x}; where A h- n and x =
(2;i, 2:2, "., ). These bases are connected via the transition matrices. In particular, we
have

^.W= ^ K^^{x), (1)
rhl-r/al

m^x}=^K^W, (2)

5A(^)=E^(2;)'
<^|A| 2<r'

and

s^W = ^ K^c. ma. W,
a^\

(3)

(4)

where ^ is the character of the syrnmetric group 5n, and ̂ a = Y[i^iini('a)rii{oi)l with
n, (Q:) being the niunber of parts of a equal to !; K^a is the Kostka number; K^ and
K^^y are the inverse Kostka numbers.

Let u{x'), v{x) and w{x) be symmetric functions. We have the following properties for
plethysm (cf [3] and [4]):
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Distributivity:

and

(u + v)[vj] = u[w} + v[w],

(ur)[w] = u[tu]z'[zu].

Conamutativity with power sum synunetric function:

u\pk}=Pk[u}.

Conjugation:

< s^{x)], s^x} >= <! < s^x^ s^x\> if 1^1 even
"^^^^ '- ) < s^[s^x)}, s^{x) > if |^| odd.

These results will be used in deriving the formula for plethysm coefiicients.

(5)

(6)

(7)

(8)

2 A Formula for the Plethysm Coefficients

Let <7, ̂  and 7 be partitions such that [-/I = |o-||/3|. The coeffident of s^(x) in the
expansion of the product of a Schur function with a monomial symmetric function is

< s^m^x}, s^(x) > = < m^(z), s^/^{x} >

= <m0{x)^K^hr{x}> by (1)

= K0,-, /<T^ (9)

since < m0{x}, hr{x} >= 1 if/3=r, 0 otherwise (cf [4]). Thus, the coeffident of s^x} in
the product of two monomial symmetric functions is

<m^x')m^x), s^x)> = <Y, K^s^x)m0{x}, s^x) > by (2)
0-

= <E^E^/^(^>^^)> by (9)

= E^-,^-,^. (io)
73o-

It is clear that this result can be generalized to more than two monomial symmetric
fimctions by induction.

Proposition 2. 1 Let QW, QW, - . ., aw be i partitions, and [7! = ELi |a(t)l- Then,

< m^w(x)m^m{x) . . -m^w(x}, s^x) >= N^w^m...^ (11)
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with

N^.̂ wc.m-aW= S T1K^, ^-1'>/^
^w^m^... ^w 1=1

(12)

where the summation is over all sequences of nested partitions 7 = 7(0) D 7(l) D 7(2) D
... D 7(<) = 0 satisfying l7(t-l)/7(t)[ = |a(t)| forl ^i ̂  £.

We shaU refer to A^;Q(DQO)... Q(^ as the nested inverse Kostka number of shape 7, type
a(-l\ a(2^, ..., a^. Using (11), we obtain the following formula for the coefRcient of 5-^, (a:)
in the expansion of plethysm of fc-wo Schur functions.

Theorena 2. 2 Suppose J7J = ]A|]/^|. The coefficient 0/37(2:) in the expansion ofs\[s^(x}\
u

<(<r)
<3x[s^x)], S^x)>= Y^^- ^ II ̂ ,a«)^i°W.^(2),.. -,

, 0'(0: «(')): (13)
<ri-W "v a(l),a(3),...,a<<(<'» *=!.

where aw is a partition of weight \p. \ for 1 < i <, £{a], and N^y^w^Qw^. ^^w^ is the
nested inverse Kostka number of shape 7, type (7iQ(l), o-2Q(2), . . ., cTtCi{l{<7)}.

Proof: By (3) and distributivity (5), we have

where

s>[s^x)} = ^ ^-p. [s, {x)},
<7t-iA | <T

t(<T)

P. WX}} = Hp., ^^)] by (6)
i=l

= TI^IP^}} by (7)
1=1

<(<7)
= II 1^ K^wm^w\p^x)\ by (4) and (5)

*=1 at'lh-l^l

tW
= n 1^ K^^wm^^w^x}

*=1 aOh^l

(14)

(15)

where we have used the fact that m^i)[py. (x')} == my^w(x). The theorem follows by

substituting (15) into (14), switching the order of the product and the summation and
expressing m^/ m^ ̂ ,w{x) in terms of Schur functions using (11).



3 Characterization of the Zero Coefficients

We first briefly review the combinatorial interpretations of the Kostka and the inverse
Kostka numbers.

Suppose o; is a partition of n and X/f^ is a skew partition of the same weight. A
column-strict tableau of shape \/p., content a is a filling of the Young diagram of shape
\/p. with numbers, 1, 2,... ,n such that exactly a, copies of i are used for 1 ^z ̂ n, and
the numbers must be non-decrea^ing in each row and strictly increasing in each column.
The total number of such tableaux is then equal to the Kostka number K^^.

The combinatorial interpretation for the inverse Kostka numbers was given by Ege-
cioglu and Remmel (see [2]) m terms of special rim-hook tabloids. Recall that a rim hook
(or border strip) A of a skew partition A/^ is a consecutive sequence of ceUs alons the
North-Eastem boundary of the Young diagram of A//x such that any two consecutive ceUs
of h shares an edge and the removal of the cells of h from X/p. resets in a diagram cor-
responding to another skew partition. Denote the number of rows and columns covered
by h as r(/i) and c(h), respectively, and let \h\ be the total number of cells contained
in h, caUed the length of h. We caU the rim hook h special if it contains the first cell
of the first non-empty row of \ I p.. A s-pedal rim hook tabloid of shape X/p., type a is
a sequence of partitions £- = (A D \W -^ ^W ^ ^(2) ^ ... ^ ^W = ^ such that
for 1 ^ i ^ k, where A; ̂  ^(A), ^ = \^-^/\W }s a special rim-hook of \(i-l)/^ and
order{\hi\, j^l, - . ., \hk\) = a, where order^-i, z-2, ..., ?.<) denotes the rearrangement of the
sequence (?i, i^, ---, z<) in increasing order. The row-sign of H is defined by

urW = H ^(/i, ), where ^(^) = (-l)^^-1.
/X ^

(16)

Let SRHT{\/^ a} denote the set of aU special rim hook tabloids of shape \f^ type a.
Then,

K^= E ^(^). (17)
TS. SRHT[a, \/p.}

It is dear from the above combinatorial definition that when c(A/^) is bigger than c(a),
it is impossible fiU the diagram of shape \/p. with special rim hooks of type a, since the
hooks are not long enough. In this case, SRHT{\/^a) = 0 and the inverse Kostka
number is zero. We have

if K^/^Q then c(A//. ) ^ c(a).

This leads to the following result on the zero plethysm coefficients.

(18)
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Theorem 3. 1 Suppose [7! = \\\\p. \. Let 0(7) and r(7) denote column and row widths of
7, respectively. Then, the coefficient of s^{x} in the expansion of s^[s^x')} is zero if

c(7) > |A|c(^),

or,
r(7) > |A|r(^).

Proof: Suppose < 5^5^(2:)], 5^(2;) >^ 0. By (13), there must exist some partitions
a and aW, aw, -.. , aw<T)) such that N^^W^W,.. ^^M^ ^ 0 and ̂ ,, «) 7^ 0 for
Ki<. W. It foUows from (12) and (18) that the largest possible column width of the
z-th segment is

c(7(t-l)/7(i)) ^ <7.c(a(t)). (19)

On the other hand, it is weU-known that in order for K^w 7^ 0, we miist have c(o;(t)) ^
c(/i). Thus, the largest possible column width of 7 is

c(7) == Ec(7(t-l)/7(l))
»=1

t{<T)
^ $:^c(a(t))

t=l

<(<7)
^ S^C(/A)

1=1

= \<^ )

= |A|c(/A), since \cr\ = \p, \.

Now, by applying the above result to the RHS of (8) and using the fact that \X\ = \\'\,
we have that the largest possible column width of Y is

or, equivalently,

c(V) ̂  |A|c(/./),

r(7) ^ |A|r(/. ),

since c(y) = r(7) for any partition A.

4 Bubble Sequence and the Algorithm

In order to make use of (13) to compute the plethysm coefficients, we introduce the
idea of bubble sequence and develop an algorithm to evaluate the nested inverse Kostka

582



numbers. We remark that the nested inverse Kostka number N^. aw^. )...^w is related to
the character, the Kostlca number and the inverse Kostka numbers as follows.

(a) When QW = a, and a^ =0 for2 ̂ i ^^,

N^w = ^. (20)

(b) When each Q(i) has only one part, say a(l) = (a;, ) for 1 <:i ̂  ^,

N^a, ). ^}, ^) = Xl- (21)

(c) When a^ = (i°<) for 1^i^^,

-^;(iai), (iai),..., (ia() = K^'. (22)

Hence an algorithm for computing N^.̂ m^m.. ^w can be used for calculating aU three
objects.

A bubble sequence of length £ is defined to be a sequence of £ distinct nonnegative
integers B = (&i, &2, -- ., be). We shall refer to the elements of -B as bubbles, and the integers
i such that i ^ B and 0 <^ i ^ bmax, the largest part of B, as holes. Associated with each
partition X, we have a bubble sequence B\ = (A^Az, - . . , A,, . . . , A<), where A, = Ai+z- 1
for 1 <^i <:£. Conversely, corresponding to each ordered bubble sequence 5= (&i <&2 <
. . . < &<), we have a unique partition A = (&i, &2>' .. )&»,... , &<) - (0> 1>" . . ^- 1>-" , -^- 1).
We can construct ein (uneven) staircase diagram from B as follows. Start from the point
P(0, 0). For 0 ^ i <: 6max, we move a pen (without lifting it off the paper) one unit
to the right if !" ̂  B; one unit down if i 6 B, until we reach a tenninating position Q.
This (uneven) staircase forms the North-Eastem boundary of the diagram. Now, draw
a vertical line through P and a horizontal line through Q to complete the Western and
the Southern boundary of the diagram. For example, the staircase diagram of the bubble
sequence B = (0, 1, 4, 8, 13) is

= v-rtop. corrstfpondinc to bubbloa.
_ = ik-acep, corratpo&duig to holaa.

Figure 1

Note that the vertical steps (labelled) in Figure 1 correspond to the bubbles 0, 1, 4, 8, 13 of

B while the horizontal steps (not labelled) correspond to the holes 2, 3, 5, 6, 7, 9, 10, 11, 12
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of B. The partition corresponding toB is A = (0, 1, 4, 8, 13) - (0, 1, 2, 3, 4) = (0, 0, 2, 5, 9),
whose Young diagram can be uniquely obtained from the above staircase diagram.

Let \<. j <. i, and n ^ 0. We define a 5uA6^e movement M(J, n) on a bubble sequence
B = (bi, &2, - . . >&<) by subtracting n from bj:

M{j, n)B =(h, b^, ---, bj-n, ---, bi~). (23)

Clearly, MQ", 0) is an identity operation. We caU a bubble movement legal if the resulting
sequence is again a bubble sequence. It is dear that the effect of a bubble movement is to
destroy the bubble bj (by turning it mto a hole) and create a new bubble to fiU the hole

bi - n. In the following discussion, we wiU assume that all bubble movements are legal.
We will see that a bubble movement on B^ corresponds to removal of a rim hook from A,
and vice versa.

Suppose A = (Ai, A2, --- ,A,, - . . ,Aj, -. . ,A<) and A! is a partition obtained from A by^
removing a rim hook h of length \h\ which starts at the !-th row and ends at the j-th row
of A, as shown in Figure 2.

A L.
row 1 k, -n B

Figure 2 Figure 3

Let the coordinates of the starting and ending ceU of h be (z, c. ) and (J, Cj), respectively.
Then, c, and c, must satisfy

A,-i +1 ̂ c. ̂  A,, and c, = A,. (24)

It is clear from Figure 2 that the numbers of rows and columns covered by h are r{h) =
j -i+ 1 and c{h) = Aj -c, + 1, respectively and the length of h is

]/i| = r^+c(h)-l

= j-i+Xj-Ci+1.

It is also dear from the Figure 2 that p. is related to \ by

(25)

^k= ^

Afc for
c, - 1 for

Afc_i - 1 for
Afc for

1 <fc< !- 1

k^i
i<k<,j

3 <k<,L

(26)

584



The effect of removing the rim hook h, from A can be better seen from the bubble sequence.

LetB^=^+(0, l,. -., ^- 1) = (/ti, /l2, ---, /lfe---, ^). By (26) and (25), ^satisfy

^k=

Afc 4-A: - 1 for

d+i-2=\, +j-l-\h\ for
Afc-i +k-2 for

\k+k-l for

Kk<i-l

k=i

i<k^j
j <k^£,

(27)

and it foUows from (23) that

B^(yrder(M(J, \h\)B^. (28)

Thus we have shown that removing a rim hook from A is eqiiivalent to applying a legal
bubble movement on the sequence B\. It is not hard to show the converse is also true.

Suppose B is an ordered bubble sequence and B' = order {M(J, n')B). If we draw the
staircase diagrams corresponding to the bubble sequences B and B starting from the
same point, then the region formed between them is exactly a rim hook, as it can be seen
from Figure 3. This is due to the fact that the staircase diagram of B' contains exactly
the same steps as B, except its (6j - n)-th step is vertical instead of horizontal, and its
bj-th step is horizontal instead of vertical, as shown in Figure 3. The following results can
be easily verified by looking at Figure 2 and 3.

Proposition 4. 1 Suppose B\ = (bi, b-2, - . ., 6<) anrf 5^ = order {M(J, n)B\) such that

B^= (&i <&2 < ... bi-i <bj -n<bi< ... < 6;-i <6.,-+i< . . . < be).

Then, X/p. = h is a rim hook of X such that

(29)

(a) The length of h is \h\ = n.
(b) The starting row of h is s{h) = i.
(c) The finishing row of h is f(h} = j.
(d) The number of rows covered by h is r{h) .= j -i+1 = inv{M(J, n}B\) 4- 1, vjhere

inv{ii, i-2, - . ., it) denotes the number of inversions in the sequence:

t

inv{ii, !'2, . -. , i<) = ^ mz'(ife) where inv(ik) = #{?m : ^ > !fc and m < k} (30)
fc=l

(e) The row-sign of h is uj^h) = (-l)in<'(^U. »)^).
(f) The number of columns covered by h is c(h) =n- (J - i}.
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Now, consider the effect of applying successive bubble movements on a bubble sequence.

Proposition 4. 2 Suppose 1 ^ Ji ̂  Js ̂  ^ a"^ ̂ i, n2 > 0- Let Bx, B^w and B^. ) be
bubble sequences corresponding to partitions X, \w and A(2) respectively, such that B^w =
OT-der(MC7"i, ni)5A) and B^m = ardeT^M^. n^B^w}, which we write as

M(j'i, ni. ) " M(j'3, n'2)
^ --' tf\M - 1- -D\W- (31)

Then, the sequence of partitions H = {X ̂  Xw D A(2)) is a special rim hook tabloid of
shape \/\w, type (ni. na) iffbj, - ni < 6j, - ns. FurtAer, the row-sign of H is

itni»(AfU3, ni)M(ji, ni)B^) (32)

where M^n^M^. n^B^ = M{j^n-i){M{j^n^B^}, namely, the action is from right
to left.

Proof: Let h^ = \/\w and h^ = \W/\W, respectively. Then, by Prop. 4. 1, /ii is a rim
hook of A with hook length ni, and ,12 is a rim hook of A(l) with hook length 712, since we
have assiimed that the bubble movements are legal at each stage. Thus, (hi, hz) is 3. nm
hook tabloid of shape \/\2)- When b^ - ni < b^ - n^, the starting row of hi is above
that of ,12, according to Prop. 4. 1 (b). Hence the rim hook tabloid (/ii, ,12) is special. The
row-sign of H is

^(^-) = (_iy^(^0'i, "i)^)(_l)mu(M(-'2. "3)JBAW) by Prop. 4. 1 (e). (33)

where by (30),
inv{M(ji, ni)Bx} = inv(b^ - ni),

inv{M{J2, n2)B^w} = inv{b^ - n^,

and

mi/(MC72, "2)^071, ni)BA) = mu(MO-i, ni)^) + inv{M(j^ n^B^w)

since inv(b^-nt) has the same value in the sequence MC7'2, n^B^w and M{ji, n-i)M{j^n^B^,
due to the fact that j\ < js and 6^ - ni < b^.

We can generalize the result to more than two bubble movements.

Proposition 4.3 Let A, p. and a be partitions such that \\/p. \ = a. Let a be a permutation
o/(l, - . . , ^) where i = ^(a), a.nd. suppose we can find a sequence of legal bubble movements
such that

M(ji, a.»i) " MUl.a't) n M(J<,Q^(J
BA 

"".^.y1 ' 

B^w ""^^~" B^m . . . '--"" ^\w=^
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where ji, J2, -.. Jt are distinct positive integers. Then, the sequence of partitions Ha =
(A D A(l) D A(2) . . . \w = /i) ^ a special rim hook tabloid of shape X/p. type a, iff
j^-n^ < j'2-Ti2 < .. . < Jt ~ ne- Furthermore, the row-sign of Ha. is

Ur(H^ == (-l)tnl'(nLl ^..a'i)^) = (-1)£^ (35)

where e(o-) is the parity of the permutation a, and

^;i/. =E^(^)' (36)
a

where the summation is over all possible permutations a- such that (34) is valid.

Based on Prop. 4. 3, we have the following procedure for computing N^.^w^m-aW-
It is understood here that |7| = ZLi|a(l)|, and ̂ (7) ^ E^=ic(a(t)), for otherwise the
coeffident is zero. Let 5^ = (71, 72, - .., 7n) where n is the length of 7, and-y; = 7+^"- 1
for each z. The procedure consists of t stages. At stage fc, where 1 ^ A;^^, we compute
K^)^k-i)^w for a11 Possible shapes ̂ k-^/-yW by moving bubbles.

Stage 1: Each stage has three steps.

step (a) Start with the bubble sequence B-y of distinct numbers and subtract the num-
bers Ctw, af\- . ., Q^(D) from the sequence such that the following three con-
ditions are satisfied:

(i) No more than one number can be subtracted from the same position.
(ii) The resulting sequence must contain distinct non-negative integers.

(ill) The largest part of each resulting sequence can not exceed ̂ (7) - 1 +
EL2 c(aO).

step (b) Count the inversion number inv of each bubble sequence obtained in step (a).
Rearrange each sequence in increasing order, and attach to it the coefficient
{-l}inv.

step (c) At the end of this stage, combine the identical ordered bubble sequences by
adding together their coeffidents.

Stage k: From each ordered bubble sequence with non-zero coefficient obtained in stage k-l,
subtract the niimbers aw for 1 ^ j ^ ^aw} (in any order), such that conditions
(i)-(ii) are satisfied, and the largest part of the resulting sequence is at most ̂ (7) -
1 + E^fc+i c(a(t)). Complete step (b) as for stage 1, and multiply (-1)1"" with the
old coefiicient associated with each sequence. Complete step (c) as for stage 1.
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Repeat stage fc for fc = 2, 3, --- until stage i is completed. There is only one bubble
sequence left (if any), namely, (0, 1, 2,. --, ^(7) - 1) corresponding to the empty
partition, and its' coefficient is equal to the number N^^w^w^. ^w. Other^vise, the
answer is zero.

Example 4. 4 To compute < s^s^W}, s^23S)W > using Theorem 2. 2, we first note
that %g = -1, X§ = 2, X& = °' and X? == 2 by simple constructions, and ̂ 13 = 3,

= 3, 2l4 = 24, respectively. It is also easy to check that K^, i2 = 1, ̂ i2, i3 = 2 and
Ku.3 = 0 Thus, a- = 13, 22 or I4 only, while a(t) = 12 or I3 only, in the summations.
Calculate the nested inverse Kostka numbers using the algorithm described above, we
have M»235;36. 12 = -l, M^235;36, l3 = 0, ̂ 235., 33, 12 = 0, ^235, 24, 24 = -2, M^235;24, 23 =
l, ^235;12, 12, l2, 12 == -22, ̂ 235;12, 12, 12, l3 = 6, Ni. 235;12. 12, l', l3 = -5 and Ml^35;12, l3, l3, l^ =
6. Note that the terms N^^-^^ and N^^-^. ^, ^^ are automatically zero since they
do not satisfy the condition ̂ ^ic{a^) ^ 5 = £{-f}. Using the fact that the value of
N^.aM.aW.-.aW is unchanged under permutation of Qi(l)s, we have

< S(22)[S(12)(. r)])S(i3235)(3;) >
= -1/3(M^235;36, 12 + 2.Vi2235;36, l3 + 2M^235;33, 12) + 2/8(^235:24, 24 + C'(2, l)2.Vi2235;24, 23)

+2/24(^235:12, 12, 12, 12 + C'(4, l)2M^235;12, 12, 12, l3 + C'(4, 2)22^Vi2235;12, 12, l3, l3
+C'(4, 3)23Ml^235;12, l3, i3, i3)

= -1/3(-1 +2. 0+2 . 0) + 2/8(-2 +4 . 1) + 2/24(-22 +8- 6 +24 . (-5) + 32 . 6)
9,

where C(n, k) is the binomial coefScient.
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