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Abstract: The plethysm of two Schur functions can be expressed as a sum of Schur
functions with nonnegative integer coefficients. Current algorithms for computing
plethysms are designed to compute the whole expansion. However, in some appli-
cations only a few coefficients are of interest. In this work, we develop an algorithm
for calculating individual plethysm coefficients. We also give a simple result concerning
the zero coefficients which is obtained from the combinatorial properties of the Kostka
and the inverse Kostka numbers

Résumé:

Le pléthysme de deux fonctions de Schur peut s’exprimer comme une combinaison
linéaire de fonctions de Schur a coefficients entiers positifs. Les algorithmes actuelle-
ment connus calculent le développement complet. Toutefois, pour certaines applica-
tions, on ne s’intéresse qu’d un petit nombre de coefficients. Dans ce travail, nous
développons un algorithme permettant le calcul indidividuel des coefficients. Nous
donnons aussi un résultat simple concernant les coefficients nuls, obtenu & partir des
propriétés combinatoires de la matrice de Kostka et de son inverse.

1 Introduction

Given two Schur functions sx(z) and s,(z) where z = (1,22, -, ), A and p are partitions
of weight m and n, respectively, the plethysm s\ [s.(z)] is the symmetric function obtained
by substituting the monomials in s,(z) for the variables of s)(z). D.E. Littlewood intro-
duced this operation more than 50 years ago in connection with the representation theory
of the matrix groups and showed that sx[s,(z)] = X mn €} .S+(z) With nonnegative in-
teger coefficients. Current algorithms [1] for computing the expansion of s,[s,(z)] make
use of the plethysm of s)(z) with the power sum symmetric function px(z), and involve
multiplications of Schur functions. The expansion coefficients are determined at the end
of the algorithm, when similar terms are collected and combined. An obvious drawback
of this type of algorithm is that one can not calculate a single coefficient without going
through the whole expansion. In particular, one cannot know the zero coefficients in
advance.

In this paper, we derive a formula for the coefficient ¢ , in the expansion of sx[s,(z)] by
using the transition matrices among various bases of the ring A™ of symmetric functions of
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homogeneous degree n. As it turned out, the formula involves three types of objects: the
characters of the symmetric group, the Kostka numbers and the inverse Kostka numbers of
the nested shapes. We use the combinatorial properties of these objects to derive a simple
result on the zero coefficients. We introduce bubble sequences and bubbdle movements and
describe an algorithm for computing the nested inverse Kostka numbers. Finally, we give
an example of computing the plethysm coefficient.

Throughout this paper, by partition we mean a weakly increasing sequence of positive
integers. The common notation X, £()\), and || are used for the conjugate, length and
weight of a partition X respectively, and the notation A - n indicates that A is a partition
of n. For an integer k we define kA = (kA;, k)2, - - -, kAs). Let A/p denote a skew partition,
where A D u. Define the column width of a skew partition c(A/p) to be the longest row in
the Young diagram of \/u, and the row width r(A/p) = c(X'/i'). When 1 = 0, ¢(A) and
r(\) are equal to the total number of columns and rows covered by A, respectively. For
F(z) € A™ and v F n, we use < F(z), s,(z) > to denote the coefficient of s,(z) in the
expansion of F(z).

Recall from the theory of symmetric functions (cf. [4]) that the ring A™ of symmetric
functions has five well-known bases: the Schur functions sy (z); the monomial symmetric
functions ma(z); the elementary symmetric functions ex(z); the homogeneous symmetric
functions hy(z); and the power sum symmetric functions pa(z); where A F n and z =

(21,22, -+,). These bases are connected via the transition matrices. In particular, we
have
syelzi= ), ;}:/,hr(l'), (1)
/o]
ma(e) = S Kzhs, (), @
Y
¥
sx(z) = 3 “Zpo(z), (3)
oty %o
and
5:(2) = D Kuamal(z), (4)
ar{u|

where x is the character of the symmetric group Sn, and zo = [Lin; (¥ n()! with
ni(a) being the number of parts of & equal to ¢; K, is the Kostka number; KZ ! and
-5 are the inverse Kostka numbers.

L7
Let u(z),v(z) and w(z) be symmetric functions. We have the following properties for

plethysm (cf [3] and [4]):
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Distributivity:
(u +v){w] = ufw] + v{w],

and
(uv) [w] = ulw]v[w].

Commutativity with power sum symmetric function:
u[pe] = piu].
Conjugation:

< sx[sw(z)], sy () > if |u| even

B et { <sxlsw(@]sp@) > i |ul odd

These results will be used in deriving the formula for plethysm coefficients.

2 A Formula for the Plethysm Coefficients

(7)

(8)

Let o, B and v be partitions such that |y| = |o||8]. The coefficient of s, () in the
expansion of the product of a Schur function with a monomial symmetric function is

< so(z)mp(z),54(2) > = < ma(z), $4/0(z) >

- <m,,(x),ZK;.},,,hr(:z:)> by (1)

-1
Bwy/a?

(9)

since < mg(z), hr(z) >=1if § = 7, 0 otherwise (cf [4]). Thus, the coefficient of s-{z) in

the product of two monomial symmetric functions is

< Mq(2)mg(z),85(2) > = <3 Kiiss(z)ms(z),s,(z) > by (

2)

= <) K;L> Kt ,s-(z),5,(z)> by (9)

ag

= K—IK—I

Br/a
730

(10)

It is clear that this result can be generalized to more than two monomial symmetric

functions by induction.

Proposition 2.1 Let oV,a®, ..., be £ partitions, and |v| = T4, |a?|. Then,

< M) ()M (T) - -~ Myin (), 5, (z) >= Nyaha@..a

579
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with ,
N-y;a(l)a(?)...a(t) = Z H o7(%),.,("—1)/,.,(-') (12)

(D) 4@ (O i=1

where the summation is over all sequences of nested partitions v = ~0) 5~ 5 43 5
.o DAY = 0 satisfying |1 /49| = || for 1 <1< L

We shall refer to N..qa®...a0 a3 the nested inverse Kostka number of shape v, type
o a@ ... o). Using (11), we obtain the following formula for the coefficient of s,(z)
in the expansion of plethysm of two Schur functions.

Theorem 2.2 Suppose |v| = [M|ul. The coefficient of s4(x) in the ezpansion of sals.(z)]
1s

X'\ (o)
< sysu(@)], s4(2) >= 2 =% 3. [1 Ko Nyiorat),020® - catée) (13)

A 29 o) o), altle) i=1

where o is a partition of weight |u| for 1 <1< £(0), and Nyoia 00, 0eatt(®) is the
nested inverse Kostka number of shape v, type o1aM, g0a®, -, g4,

Proof: By (3) and distributivity (5), we have

A
silsu(@] = X 2Zpolsu(@) (19)
prapViEs
where
o)
pd[sp(x)] = I:.[lpa'i[sﬂ(x)] by (6)
o)
- 1:[13;1[1’«(2)] by (7)
o)
= H Z Kp,a(‘)ma(‘)[pdi(x)] by (4) and (5)
=1 ()l
o)
= H Z Kp,a(‘)ma.;a(‘) (:L‘) (15)
i=1 o |y|

where we have used the fact that mum[pe;(Z)] = Moa® (z). The theorem follows by
substituting (15) into (14), switching the order of the product and the summation and

expressing I'I'ff_f’l) Mg () in terms of Schur functions using (11).




3 Characterization of the Zero Coeffcients

We first briefly review the combinatorial interpretations of the Kostka and the inverse
Kostka numbers.

Suppose a is a partition of n and A/p is a skew partition of the same weight. A
column-strict tableau of shape \/u, content a is a filling of the Young diagram of shape
A/p with numbers, 1,2, -, n such that exactly o; copies of ¢ are used for 1 < i < n, and
the numbers must be non-decreasing in each row and strictly increasing in each column.
The total number of such tableaux is then equal to the Kostka number K/, o.

The combinatorial interpretation for the inverse Kostka numbers was given by Ege-
cioglu and Remmel (see [2]) in terms of special rim-hook tabloids. Recall that a rim hook
(or border strip) h of a skew partition A/p is a consecutive sequence of cells along the
North-Eastern boundary of the Young diagram of \ /u such that any two consecutive cells
of h shares an edge and the removal of the cells of A from \ /u results in a diagram cor-
responding to another skew partition. Denote the number of rows and columns covered
by h as r(h) and c(h), respectively, and let |h| be the total number of cells contained
in h, called the length of h. We call the rim hook A special if it contains the first cell
of the first non-empty row of A/u. A special rim hook tabloid of shape \/u, type « is
a sequence of partitions H = (A D A® 5> XM 5 A@ 5 ... 5 A® = ) such that
for 1 < i < k, where k < £()), hi = A6-D/A® 5 a special rim-hook of A= /1 and

order(|hi, k2|, -, |he|) = @, where order (i1, 4, -+, 1) denotes the rearrangement of the
sequence (i1,12,--,1,) in increasing order. The row-sign of H is defined by
wr(H) = ] we(h), where w,(h)= (=1)mtha=1, (16)
hi€H

Let SRHT(\/p, @) denote the set of all special rim hook tabloids of shape A/u, type a.
Then,

KEl,= Y w(D (17)
TESRHT (a,\/u)

It is clear from the above combinatorial definition that when c(A/u) is bigger than c(a),

it is impossible fill the diagram of shape \/u with special rim hooks of type a, since the
hooks are not long enough. In this case, SRHT(A p,a) = @ and the inverse Kostka

number is zero. We have
if K;j\/# #0 then c(\/p) < c(a). (18)

This leads to the following result on the zero plethysm coefficients.
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Theorem 3.1 Suppose || = |\|u|. Let c(y) and r(v) denote column and row widths of
~, respectively. Then, the coefficient of s4(z) in the expansion of sa[su(z)] is zero if

c(7) > [Ale(u),

or,
r(7) > |Alr(p)-

Proof: Suppose < sa[s.(z)],s4(z) >7# 0. By (13), there must exist some partitions
o and a®,a?,.-- ,a4@) such that Noyio1a),02a® . gy gy altl@) # 0 and K, . # 0 for
1< i< €(c). It follows from (12) and (18) that the largest possible column width of the
i-th segment is

(77 /41) < aic(a). (19)
On the other hand, it is well-known that in order for K, 4 # 0, we must have c(a) <
(). Thus, the largest possible column width of 7 is

o)

) = ey
=1

o) )
< > aic(a)
sal

(o)

< Z:aiC(#)
= |ofc(w)
= |Ale(p), since |o| = |pl-

Now, by applying the above result to the RHS of (8) and using the fact that || = [N,
we have that the largest possible column width of v/ is

() < |Ale(w),

or, equivalently,
r(7) < |Alr(p),

since c(v') = r(v) for any partition A.

4 Bubble Sequence and the Algorithm

In order to make use of (13) to compute the plethysm coefficients, we introduce the
idea of bubble sequence and develop an algorithm to evaluate the nested inverse Kostka
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numbers. We remark that the nested inverse Kostka number N, aae .40 is related to
the character, the Kostka number and the inverse Kostka. numbers as follows.

(a) When oV =¢q, and o =0 for2 <i < 2,

N.

yal) = K;'_ly (20)

(b) When each o has only one part, say o = () for1 <i <o,

No(ar),(aa)(ae) = X (21)

(c) When a® = (1%) for 1 <i < ¢,

Nye),(192), (19¢) = Koy 0. (22)

Hence an algorithm for computing N,.aa®..a0 can be used for calculating all three
objects.

A bubble sequence of length ¢ is defined to be a sequence of ¢ distinct nonnegative
integers B = (by, by, - - -, by). We shall refer to the elements of B as bubbles, and the integers
i such that ¢ € B and 0 < i < bmas, the largest part of B, as holes. Associated with each
partition A, we have a bubble sequence By = (:\1, :\2, e ,:\,—, ‘e ,;\(), where ); = Ai+i—1
for 1 < i < 4. Conversely, corresponding to each ordered bubble sequence B = (by < by <
-+» < b), we have a unique partition \ = (b1, ba, -+, by, -+, by) — 0,1,--+5—1,---,2—1).
We can construct an (uneven) staircase diagram from B as follows. Start from the point
P(0,0). For 0 < i < byax, we move a pen (without lifting it off the paper) one unit
to the right if ¢ ¢ B; one unit down if 1 € B, until we reach a terminating position Q.
This (uneven) staircase forms the North-Eastern boundary of the diagram. Now, draw
a vertical line through P and a horizontal line through @ to complete the Western and
the Southern boundary of the diagram. For example, the staircase diagram of the bubble

sequence B = (0, 1,4,8,13) is

P I = v-etep, corresponding to bubbles.
o — = h-step, corresponding to holes.
h{s

Figure 1

Note that the vertical steps (labelled) in Figure 1 correspond to the bubbles 0, 1,4,8,13 of
B while the horizontal steps (not labelled) correspond to the holes 2,3,5,6,7,9,10, 11, 12
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of B. The partition corresponding to B is A = (0,1,4,8,13) — 0,1,2,3,4) = (0,0,2,5,9),
whose Young diagram can be uniquely obtained from the above staircase diagram.

Let 1 < j < ¢, and n > 0. We define a bubble movement M (J, n) on a bubble sequence
B = (by,bs,- -+, be) by subtracting n from b;: '

M(G,n)B = (b1,b2, -+, b; —n, -+, be). (23)

Clearly, M (j,0) is an identity operation. We call a bubble movement legal if the resulting
sequence is again a bubble sequence. It is clear that the effect of a bubble movement is to
destroy the bubble b; (by turning it into a hole) and create a new bubble to fill the hole
b; — n. In the following discussion, we will assume that all bubble movements are legal.
We will see that a bubble movement on B, corresponds to removal of a rim hook from A,

and vice versa.

Suppose A = (z\l,Ag,-~-,/\;,~--,/\j,w-,/\g) and p is a partition obtained from A by

removing a rim hook & of length |h| which starts at the i-th row and ends at the j-th row

of )\, as shown in Figure 2.
A

Figure 2 Figure 3
Let the coordinates of the starting and ending cell of h be (3,¢) and (j, ¢;), respectively.
Then, ¢; and c; must satisfy

Mic1+1 << A, and c; = AJ—. (24)

It is clear from Figure 2 that the numbers of rows and columns covered by h are r{h) =
j—i+1and c(h) = )\; — & + 1, respectively and the length of A is
|h| = r(h)+c(h) -1
= j—itA—a+l (25)

It is also clear from the Figure 2 that u is related to A by

Ak for 1<k<i-1
G —1 for k=g
Ak—1 — 1 for i<k<y
Ak for j<k<U¢.
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The effect of removing the rim hook A from A can be better seen from the bubble sequence.
Let B# = i+ (01 1)' o )g— 1) = (/117[‘27 U >/:"k' o 7.&4)' By (26) and (25)7 ﬂk SatiSfy

A +k-=1 for 1<k<i-1

fie = G+i1—2=XA+j—1-|h| for k=1 (27)
M1+ k=2 for 1<k<j
AM+k-=1 for i< k<,

and it follows from (23) that
B, = order(M(J, |h])B.). (28)

Thus we have shown that removing a rim hook from A is equivalent to applying a legal
bubble movement on the sequence By. It is not hard to show the converse is also true.
Suppose B is an ordered bubble sequence and B’ = order(M (j,n)B). If we draw the
staircase diagrams corresponding to the bubble sequences B’ and B starting from the
same point, then the region formed between them is exactly a rim hook, as it can be seen
from Figure 3. This is due to the fact that the staircase diagram of B’ contains exactly
the same steps as B, except its (b; — n)-th step is vertical instead of horizontal, and its
b;-th step is horizontal instead of vertical, as shown in Figure 3. The following results can
be easily verified by looking at Figure 2 and 3.

Proposition 4.1 Suppose By = (b1, ba, -+ ,be) and B, = order(M(j,n)B,) such that
B,‘ = (b1 < b2 <- "bg_l <bj ‘—n< bg < < bj_l <bjj+1< e < bg) (29)

Then, A/u = h is a im hook of A such that

(a) The length of h is |h| = n.

(b) The starting row of h is s(h) = .

(c) The finishing row of h is f(h) = j.

(d) The number of rows covered by h isr(h) = j — i+ 1 = inv(M(j,n)B)) + 1, where
inv(iy, 12, - -, %) denotes the number of itnversions in the sequence:

¢
inv(iy, g, -, ie) = p_ inv(ix) where inv(ix) = #{im : im > i and m < k} (30)
=1
(e) The row-sign of h is w,(h) = (=1)"(MGr)B),
(f) The number of columns covered by h is c(h) =n — (j — 1).
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Now, consider the effect of applying successive bubble movements on a bubble sequence.

Proposition 4.2 Suppose 1 < j; # ja < £, and ny,ng > 0. Let By, By and By be
bubble sequences corresponding to partitions A\, XV and A®) respectively, such that By =
order(M(j1,m1)By) and Bya = order(M (j2,n2) Baw), which we write as

By M9 B,y M2V By, (31)
Then, the sequence of partitions H = (A D AW 5 A is g special rim hook tabloid of
shape A\/A@ | type (n1,m2) iff bjy — na < bj, — ng. Further, the row-sign of H s

w,-(H) — (_1)iﬂﬂ(M(J'2,ﬂa)M(J'1,ﬂ1)Bx) (32)

where M (j2,n2)M (j1,m1)Br = M (j2,m2) (M (j1,m1) B), namely, the action is from right
to left. .

Proof: Let hy = A/AM) and ke = A1 /X respectively. Then, by Prop.4.1, hy is a rim
hook of \ with hook length n;, and h; is a rim hook of A1 with hook length ng, since we
have assumed that the bubble movements are legal at each stage. Thus, (h1, h2) is a rim
hook tabloid of shape A/Az). When b, — ny < bj, — ne, the starting row of hy is above
that of h,, according to Prop. 4.1 (b). Hence the rim hook tabloid (A1, h) is special. The
row-sign of H is

wr(H) = (_l)iﬂ‘u(M(J'x.nl)BA)(_l)iﬂ"(M(J'z.ﬂa)BA(z)) by Prop. 4.1 (e). (33)
where by (30),
inv(M (j1,n1)By) = inv(bj, — n1),
inv(M (j2,n2) Byw) = tnv(bs — na2),

and ~
inv(M Gz, n2) M (J1, 1) Bx) = inv(M (51, 1) Ba) + inv(M (j2,n2)Byw)

since inv(b;, —n2) has the same value in the sequence M (J2, ny) By and M (J2, n2) M (j1,m1) Ba,
due to the fact that j1 < j2 and b;; —ny < bj;.
We can generalize the result to more than two bubble movements.

Proposition 4.3 Let \, u and a be partitions such that |A/p| = a. Let o be a permutation

of (1,---,£) where £ = £(c), and suppose we can find a sequence of legal bubble movements
such that y )
M(5h,ae M(3a, 2, %o
B, Gl By izl By@ -+ et Byxw—p, (34)
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where j1,72,+ -+ je are distinct positive integers. Then, the sequence of partitions H, =
(A D AU > AP ... A0 = L) is a special rim hook tabloid of shape A/u type a, iff
J1=ny < Jo—ng <+ < Jg— e Furthermore, the row-sign of H, ts

w(H,) = (_l)iM(Hf=1 M(ji,ao;)Br) — (__1)6(6) (35)
where e(c) is the parity of the permutation o, and

c:,,l\/p = Z wr(Ho), (36)

where the summation is over all possible permutations o such that (34) is valid.

Based on Prop. 4.3, we have the following procedure for computing N,..(a®...a-
It is understood here that |v| = T4, |a], and £(vy) < Ti, c(@?), for otherwise the
coefficient is zero. Let B, = (%1,92, ) Where n is the length of v, and i = v +i—1
for each i. The procedure consists of £ stages. At stage k, where 1 < k < ¢, we compute
Ky -1y 4 foT 2ll possible shapes 4*%=1) /4(¥) by moving bubbles.
Stage 1: Each stage has three steps.

step (a) Start with the bubble sequence B, of distinct numbers and subtract the num-
bers a(ll), agl), ces ,ag(ll(l)) from the sequence such that the following three con-

ditions are satisfied:
(i) No more than one number can be subtracted from the same position.
(ii) The resulting sequence must contain distinct non-negative integers.
(iii) The largest part of each resulting sequence can not exceed v) -1+
Lac(a®).

step (b) Count the inversion number inv of each bubble sequence obtained in step (a).
Rearrange each sequence in increasing order, and attach to it the coefficient
(-1

step (c) At the end of this stage, combine the identical ordered bubble sequences by
adding together their coefficients.

Stage k: From each ordered bubble sequence with non-zero coefficient obtained in stage k-1,
subtract the numbers ag-k) for 1 < j < £(a™®) (in any order), such that conditions
(i)-(ii) are satisfied, and the largest part of the resulting sequence is at most 2(v) -
1+ T8 41 c(e®). Complete step (b) as for stage 1, and multiply (—1)™" with the
old coefficient associated with each sequence. Complete step (c) as for stage 1.
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Repeat stage k for k = 2,3,-- - until stage £ is completed. There is only one bubble
sequence left (if any), namely, (0,1,2,---,€(7) — 1) corresponding to the empty
partition, and its coefficient is equal to the number N, o) o ..o Otherwise, the
answer is zero.
Example 4.4 To compute < s(23)[s(12) ()], S(12235) (z) > using Theorem 2.2, we first note
that x%é = -1, xgz = 2, xf§2 = 0, and X%i = 2 by simple constructions, and z;3 = 3,
z = 8, zj4 = 24, respectively. It is also easy to check that Kjp12 = 1, Ki213 = 2 and
Kia3 = 0 Thus, ¢ = 13,2% or 1* only, while a® = 12 or 1° only, in the summations.
Calculate the nested inverse Kostka numbers using the algorithm described above, we
have Njsass;36,12 = —1,N12235;36,13 = 0, N1323s;33,12 = 0, Ni3oss24,24 = —2, Nia23s;24,28 =
1 N1’235;12,12,12,12 = —22, N12235;12,12,12,13 = 6,N12235;12,12,13,13 = —5 and N117235;12,13,13,13 =
6. Note that the terms Nj2935203 28 and Nysoss;i213,13,13 are automatically zero since they
do not satisfy the condition ¥4, aic(a®) > 5 = £(7). Using the fact that the value of
N.

() a@,....a is unchanged under permutation of a(Vs, we have

< 8(23) [5(12) (x)], S(12235) (@) >

= —1/3(N12235:36,12 + 2V 13235;36,13 + 2N1203538 12) + 2/8(N1223524,24 + C(2, 1)2V)2035,04,23)

+2/24(N12235,12,12,12,12 + C(4,1)2N12235,12,12,12,13 + C(4, 2)221\[12235;12,12,13,13

+C(4,3)2° N113235,12,18,13,13)
= —1/3(—-1+2-0+2-0)+2/8(—2+4- 1) +2/24(—22+8-6+24-(—5)+32-6)
= 9,

where C(n, k) is the binomial coefficient.
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