
Uniform random generation for the powerset
construction

Paul Zimmermann*

Abstract. An algorithm for the uniform random generation of the powerset con-
struction is presented, completing the calculus developed in [1] and [2], and its imple-
mentation in the Gaia system [7]. Given a combinatorial class I, known by a counting
procedure and an unranking procedure (or simply a random generation procedure),
this algorithm provides similar procedures for P = Powerset(J). For most combina-
torial structures, each random powerset of size n is produced in O(nlogra) arithmetic
operations in the worst case, after 0(ra2) coefficients have been computed.

Resume. Nous presentons un algorithme de generation aleatoire uniforme pour
la construction "ensemble sans repetition", qui complete la theorie generate exposee
dans [1] et [2], et son implantation dans Ie systeme Gaj'a [7]. Etant donnee une classe
I de structures combinatoires, definie par une procedure de denombrement et une
procedure de generation aleatoire, cet algorithme donne des procedures similaires pour
P = Powerset(/). Pour la plupart des structures usuelles, un ensemble aleatoire de
taiUe n est genere en O(nlogra) operations arithmetiques dans Ie cas Ie pire, apres un
precalcul de 0(n2) coefRcients.

Keywords: powerset, uniform random generation, unranking, decomposable data
structures.

We consider here the following problem : given a class / of unlabelled objects
such that for each integer n, the number I[n] of objects of size n is finite, and
7[0] = 0, how to generate uniformly a random object of size n from Powerset(Z),
where Powerset(A) means the class of sets without repetition made from objects
in A.

To make the problem formal, we consider that the only informations we have
about the class / are two "black box" procedures, namely

. a counting procedure count I such that count I (n) gives the number I[n]
of objects of size n,

. a procedure uarankl such that for each n, the function k -^ unrajikl(n, k)
is a bijection from [0, I[n] - 1] to the set of objects of size n from /. The
integer k is called the rank of the object un. rankI(D., k).

*Inria Lorraine, BP 101, 54600 Villers-les-Nancy, email Paul. Zimmermaan.aioria. fr. This
research was done while the author was visiting the MuPAD group in the University of
Paderborn.

589

''^^^fv^^SS^W^-S^BS

Given the functions count I and unrankl, we want to construct the similar func-
tions countP and unrankP to count and generate at random the objects from
P = Powerset(J).

In the first section we recall that the counting problem is rather easy to solve.
namely we are able to compute all the numbers P[k} up to fc = n in O(n^)
arithmetic operations, like for other combinatorial constructions like products,
sequences, cycles and sets with repetition [2]. In the second section we present
an original unranking algorithm for the powerset construction, and give a suffi-
cient condition to get a 0{n log n) complexity. The third section provides some
experimental results about the implementation of this algorithm in the MuPAD
computer algebra language [3].

Firstly, we describe three examples of combinatorial objects that use the pow-
erset construction. These examples will be used along the paper, especially in
the section about experimental results.

Example 1 (Integer partitions with distinct summands) A partition of n
into distinct summands is a set of integers {z'l,..., ik] such that 1 ^?i < ... <Zfc
and ?i+ ... +U = n. For example, one of the 444793 partitions of 100 is

{3, 4, 5, 10, 11, 16, 51}.

Using the notation introduced in [2], the combinatorial specification of these
partitions is P = Powerset(Z), where I = Sequence(Z, card >. 1) represents the
class of positive integers.

For this example, we have simply I[n} = 1 for all n > 1. The counting and
random generation procedures for / are the following (we use here the MuPAD
computer algebra language [3]):

countl:=proc(n) begin if n=0 then 0 else 1 end_if end_proc:
unreuikl:=proc(n, k) begin n. end_proc:

Example 2 (General trees with distinct subtrees) These trees correspond
to the specification A = Prod(Z, Powerset(A)) where Z (the root of _t he tree)
stands for an atomic object of size 1. Here 7= A, P = Powerset(J), which
implies I = Prod(Z, P), thus we have a recursive specification. As a consequence,
the counting and random generation procedures of J use themselves the counting
and random generation procedures of P (to be defined):

countI:=procCn) begin if n=0 then 0 else countP(n-l) end. if end.proc:
unrankl:=proc(n, k) begin Prod(Z, unraiAP(n-l, k)) end_proc:

There is only one object of size 1, namely ai = Prod(Z, {}), one object of size 2,
which is 02 = Prod(Z, {ai}), one object of size 3, l. e. 03 = Prod(Z, {02}), and
two objects of size 4, namely Prod(Z, {03}) and Prod(Z, {a:, 02}). For size 100,
there are 4525974618627147805214362396247365909 different trees derived from
I. thus this is the number of sets derived from P forn = 99. Figure 1 shows one
tree of size 20, using the above defined abbreviations ai, 03 and 03.

590

z

/L\
a-i Z a-i

/ \'
L / \
Z a3 Z
l_ I
Z G3

z

"3

Figure 1: One of the 416848 general trees of size 20 with distinct subtrees.

Example 3 (Integer partitions with distinct prime summands) For n =
100, there are only 198 such partitions, one of these being

{7, 11, 23, 59}.

The counting and random generation procedures are:

countl:=proc(n) begin if isprime(n) then 1 else 0 end. if end_proc:
imraiLkI:=proc(n,k) begin n end_proc:

1 The counting problem

The counting problem is rather easy to solve because the generating functions
-P(^) = E^^o P["]^n and I{z) = Zny ̂ ["]^n satisfy the following identity due to
Polya:

P(.) = exp(J(z) - J/(.2) + J/(z3) - ^/(^) +...). (i)
Applying the operator Q == z-^ (see [2] for a combinatorial interpretation) to
both sides, we get the identity

QP[z}=P[z}Q(s) where Q{z} = Q

that translates easily to coefficients:

:.~2) + QI{z3) - QI{z4) +

nP[n] = ^ P[k}Q[n - k} where Q[n} = ^ (-l)k+^I[^}.
k=0

(2)

where k \ n means "A: divides n". The equations (2) enable one to compute the
coefficients P[k} up to k=n m 0{n2) arithmetic operations.

591

REMARK. It is worth to note that the sum in the first equation of (2) is always
divisible by n because P[n} is an integer, namely the number of powersets of size
n. But the products P[k\Q[n - k\ in the sum are not necessarily divisible by n,
whence they have no comblnatorial interpretation themselves. The generating
function Q(s) has no combinatorial interpretation either.

The reason why random generation of sets without repetition is more difficult
than for sets with repetitions (i. e. multisets), for which an O(nlogn) algorithm
is described in [I], is the appearance of minus signs in the formula for Q[n}. For
multlsets, the minus signs in Equations (1) and (2) become plus signs, whence we
have some kind of combinatorial interpretation for Q, that enables us to apply the
methods described in [2] and to get a (9(nlogn) random generation algorithm.

2 An unranking algorithm

Let us now explain the unranking algorithm for the powerset construction. To
generate a random object of size n from P, we proceed as follows:

1. [shape generation] first generate the shape of the set, that is a decomposi-
tlon n =?i +2?2 + ... +^;+--- + nin;

2. [equal size generation] for each /, generate ii distinct objects of size /.

If we want an uniform distribution, we have to ensure that the first step produces
a shape (?'i,..., in) with probability

7r<l,..., «n
R[ii,..., in]

-P[nT

where R[i-i,... , ?n] is the number of sets having the shape (?i,..., in). The proba-
bility TT^,..., in only depends on the numbers I[k] forl ^ fc ̂ n, thus for the shape
generation, we only need the counting procedure count I.
REMARK. When I[n} <, 1, like in Examples 1 and 3, the random generation prob-
lem reduces to the shape generation, because the equal size generation becomes
then trivial (z; is either 0 or 1).

2. 1 Shape generation

The shape generation algorithm we propose is based on the decomposition

P;, m = Prod(P(, 2m, ^+m, 2m)

where Pi.m stands for the sets made with objects of size equal to / module m,
with 1 < I <^m (here m will always be a power of two). We have of course
P = Pi, i. To generate a random shape of size n for P;,m, we proceed as follows:

592

^?

(i) ifn < /+ m the set can only contain objects of size /, thus necessarily /
divides n. and we output the shape z;= n// and ij = 0 for j ^ I,

(ii) otherwise we choose an integer z G [0, n] with probability Pi.2m[i]Pi+^.2m[n-
?]/^, m[n] and we output a shape of size i for P/^m and a shape of size n - ;
for Pl+m, 2m-

This process eventually terminates because the quantity n- I - m decreases at
each step in the second case.

Assuming that we have a procedure unrankl2 which solves the equal size
unranking problem ie. unraiikl2(l, i, k) produces the set of rank k among the
sets of i elements of size / from I, the algorithm unrankP is the following:
uiirankP := proc(n, k)
begin

if n=0 then Set() else Set(unraiikP2(n, 1, l, k)) end_if
end_proc:

unranfeP2 := proc(n, l, m, k) local b, c, i;
begin

if n<l+m then unrankl2(l, n/l, k)
else

for i in {0, n, l, n-l, 2, n-2,... } do

b:=countP2(i, l,2*m); c:=b*coimtP2(n-i, l+m, 2*m);
if k<c then break else k:=k-c end_if;

end_for;

unrankP2(i, l, 2*m, k mod b) , unraiiAP2(n-i, l+m, 2*m, k div b)
end_if

end. proc:

where countP2(n, I m) gives the number of objects of size n in P;, ^ (countP(n) =
countP2(n, 1, 1)). For a given n, only 0{n2} coefficients countP2(z, /, m) have to
be computed for I ^i^n, applying Equation (2) to P;, ^ and Qi,^.

Figure 2 shows an example of the binary tree representing the recursive calls
in unrankP2(lOO, l, l, k), with the leaves shown in gray. Each node indicates
the values of n, / and m, and the non-zero leaves are the components of the
decomposition, here 100 = 5+3+51 +11 + 10 +4+ 16. The procedure unraiikP2
uses the boustrophedonic method introduced in [2] to find the decomposition
(i, n - ?') in step (ii). In this manuer, the number of loop evaluations is less than
n Ig n, as shown by the following lemma (the notation Ig stands for the logarithm
in base 2).

Lemma 1 The number of loop evaluations during unraiikP2(n, l, m, k) is less
than max(0, 2nflg(n/m)1).

PROOF. If n ^ m, then n < S+m, and there is no loop evaluation. Ifm < n <
2m, then the recursive calls produce no loop evaluation, since i < 2m and n-i<

593

Figure 2: An example of recursive calls for un. ran.kP2 (100, 1, 1).

2m, thus the number of loop evaluations is bounded by n+1 <: 2nflg(n/m)1 = 2n.
Otherwise, if 2m < n, let Ar(n, /, m) be the maximal number of loop evaluations
for 0 <:k < Pi,m[n}; we have

N(n, I, m) = max [2 mm(z + l, n-?+ 1) + Ar (?, /, 2m) + ^V(n - z, / + m, 2m)].
0< t < n

By induction on n/m we can bound the two last terms by 2z max(0, flg(t7(2m))~|)
and 2(n-z) max(0, rig((n-z)/(2m))]), and by monotonicity of the logarithm their
sum is bounded by 2nmax(0, flg(n/(2m))1), which is simply 2nflg(n/m)] - 2n,
and the first term is bounded by 2n. D

2. 2 Equal size generation

The equal size generation problem is equivalent to the problem of selecting
k distinct elements ai,..., afc from {l, 2,..., m}, which was called "selection
sampling" by Knuth [4]. Namely, if we have a procedure unrankS such that
unrankS(m, k, j) unranks one of the ̂ possible samples, we can write the pro-
cedure unrankl2 needed in the procedure unraiikP2 as follows:

unraiAI2 := proc(l, k, j) local s; #0 <=j < binomiald[1], k) #

594

begin
s :=l.unrankS(count 1(1) , k, j)] ;
op(map(s, proc(j) begin unrankl(l, j-l) end_proc))

end_proc:

The selection sampling problem looks simple, but it is not trivial to find an
efficient solution. By efficient solution, we mean an algorithm that requires 0{k}
time and space (in terms of operations on coefficients of same size as the index
j, that is (9(^logm)). Such a solution for the random selection is Algorithm
RANKSB of [5], which satisfies the additional condition 1 ^ai <a2 < ...<
<2fc ^ m. But this algorithm only generates a sample a,t random uniformly, and
provides no unranking.

For recursive specifications like in Example 2, we really need an unranking
procedure unrankS to get an unranking procedure for P. Otherwise, the indices
in the list s in unrankl2 could be equal, and the procedure unr3Lnk!2 could
generate sets with repetitions.

The first unranking algorithm that comes to mind is based on the following
identity:

fm - l\ , fm - ^
i*-^+r*

which can be interpreted as "A subset of k elements from {!,..., m} is either
the union of a subset of k - 1 elements from {!,... , m - 1} and of the element
m, or a subset of k elements from {1,... , m- 1}. " Unfortunately, this algorithm
needs 0(m) operations on coefficients of size O(klogm) in the worst case. As
in unrankl2 m has to be replaced by the number /[/] of objects of size /, which
usually grows exponentially with /, this would give an exponential algorithm,
which is unacceptable here.

Apart from [6], where the above algorithm was presented (in a more general
framework), we have found no unranking algorithm for the selection sampling
problem.

We propose the following algorithm, that achieves 0{k\ogm) complexity in
the worst case.

unrankS := proc(m, k, j) begin unrajikS2(0,m, k, j) end.proc:

uiu-aiikS2 := proc(a, b, k, j) # unranks a set of k elements in [a+l,b] #
local c, i,u, v;

begin
if k=0 then null() # empty set #
elif k=l then a+l+j # one element #
else

c := (a+b) div 2;
for i from 0 to k do

u:=binomial(c-a, i); v:=binomial(b-c,k-i);

595

if j>=u*v then j:=j-u*v else break end_if
end_for;
unrankS2(a, c, i, j mod u), unrankS2(c, b, k-i, j mod v)

end_if

end_proc:

Lemma 2 The procedure unrankS(m, k, j) uses 0{k\ogm) arithmetic opera-
tions on coefficients of size 0{k\ogm) in the worst case.

PROOF. C{m, k} being the maximal number of loop steps in unraiikS2(a, b, k, j)
when a+m= 6and 0 ^j < (^), we will prove that C{m, k) is bounded by
2A;lgm by induction on m. If fc =0orm = 1, the number of iterations is 0.
Otherwise, suppose m^ 2andfc ̂ 1. Then for the integer i chosen when we
leave the loop by the break instruction, the following inequality holds:

C'(m, fc) ̂ i+l+ C{[^\, z) +C(^, k- 0.
If we bound by induction on m the terms in the right hand side, we obtain

.m

j l -I, -- -, -01 ^(7(m, k)^z+l+2z\g[^\+ 2{k - z) Ig f^1.

For m even, the right hand side becomes z+l+ 2A;lg(m/2), which is less than
2k Ig m because i+l^k+l<, 2k (remember k>l).

For m odd, the right hand side equals 2&lg((m + 1)/2) + /(Q, where /(^)=
z+l+ 2?lg((m - l)/(m + 1)). Studying / on the interval [0, k} shows that the
maximum is obtained at z = 0 when m ^5, andatz = fc when m ^ 7 (m is odd).
Thus for m ^ 5, we have C'(m, k} ̂ 2k lg((m + 1)/2) + 1 = 2fclgm +2fc lg((m+
l)/(2m))+l ^2A;lgm+2&lg(2/3)+l ^ 2A:lgm because 2 lg(2/3)^-1. 17 For
m'^ 7, we ha^e C'(m, fc) ̂ 2fclg((m + 1)/2) + fc+ 1 + 2fclg((m - l)/(m + 1)) =
.2A;lg((m-l)/2)+^+l <2k\gm+l-k^2k\gm.^

The indices j during the recursive calls are bounded by the initial value, which
is less than (^) ^ mfc, thus of size 0(fc log m). D

Definition 1 A combinatorial class I is o/standard growth if there exists a
constant A such that the number I[n} of structures of size n satisfies I[n} ̂ n-'
for n large enough.

Most comblnatorial classes are of standard growth (integer partitions, binary
sequences, permutations, rooted trees, nonplane binary or ternary trees hier-
archies, random mappings patterns). In particular, all classesjvith a radius^of
convergence p > 0 are of standard growth, because their coefficients grow like
p~n times a polynomial factor, thus are o(nA") for any A > 0.

596

Lemma 3 If I is a comb'inatorial class of standard growth, and unrankl (n, k)
requires in the worst case 0[n\ogn} operations on coefficients of size O(nlogn),.
then uiirankl2(l k, j) requires in the worst case 0(kl\ogl) operations on coef-
ficients of size 0(kl\ogl).

PROOF. ThecostofunrankI2(l, k, j) isthesumofthecostofunrankS(J[/], fc, j)
(to generate a sample 1 ^GI <a2< ... <a^- ^ /[/]), and of uiirajikl(/, a.) for
each i [!, &]. From Lemma 2, we deduce that unraiikS(Z[/], ̂ , j) uses at most
0(kiogl[l}) operations on coefficients of size 0(fc log 7[/]), -which is O(kllogl)
because 7 is of standard growth. On the other side, each call unrankl(^, a,) costs
0(l\ogl) by hypothesis, and there are k such calls, therefore this gives a total
cost of 0(^/log/) again. D

Theorem 1 If I is a combinatorial class of standard growth ararf unraiikl(n, k)
needs in the worst case 0{n\ogn} operations on coefficients of size 0{n\ogn},
then unraiikP(n, k) needs in the worst case O(nlogn) operations on coefficients
of size O(nlogn) too.

PROOF. From Lemma 1, the shape generation costs O(nlogn) in the worst case.
It produces a decomposition n = i^+2i^+ ... + lii+... + nin. Now the equal
size generation calls unrankl2(/, !;, j;) for I [l, n], whence from Lemma 3 the
total cost equals 0(^, li[log /), which is 0{n log n). D
This theorem proves that the procedure unrankP provides a 0(n log n) unranking
algorithm for Examples 1 and 3, because in both cases the class / is of standard
growth {In ^ 1) and the procedure unrankl has cost 0(1). But for recursive
structures where / depends on P, like in Example 2, we get no iuformation from
this theorem. Perhaps the following lemma could help in this case.

Lemma 4 Z/unrajikP(n, k) produces a shape with j non zero indices, then the
number of loop iterations in the shape generation is bounded by 2j lgn+2(j'-l)n.

PROOF. Each call unrankP2(n, l, l, k) produces a binary tree, whose nodes are
calls of the form unraiikP2(i, l, m, p) with i ^ /+m for internal nodes, and i <
/+m for leaves. The number of loop iterations in the shape generation is the sum
over all internal nodes unrankP2(i, l, m, p), with subtrees unrankP2(z'iJ, 2m, pi)
and unraiikP2(i-2'i, /+m, 2m, p2), of 2 4-2min(!"i, z - 2'i). Thus for each branch

from the root to a leaf, with nodes unraiikP2(n, 1, 1, A:), uiiraiikP2(!'i, /i, 2, pi),
unrankP2(2'2, /2, 4, p2), ..., unrankP2(^, ^, 2^, p^), the cost is bounded by twice

the depth d of the leaf, which is always less than Ig n, plus twice the sum (n - z'i) +
(?1 -!'2)+- . . + (?rf-l - !'d), which equals n - i^. As the sum of the sizes i^ over all
leaves equals n, summing over all j leaves, we get a bound of 2j Ign + 2(j - l)n.
a

When the average number of components in a set in o(log n), this lemma provides
a better upper bound than Lemma 1 for the shape generation.

597

REMARK. If we do not have an unranking procedure for /, but only a proce-
dure randoml(n) that produces a random element of size n uniformly, we can
nevertheless obtain a random generation procedure raiidoml2 as follows:

randoml2 := proc(l, i) # outputs i objects of size 1 #
local s;

begin
s:=0;
while nops(s)<i do s:=s union randoml(l) end. while;
s

end_proc:

This method requires on average n/n + n/(n - !)+.. . + n/(n -k+1) steps (see
for example the solution of Exercise 15 in section 3. 4. 2 of [4]) where n = 7; and
k = i. When k <, n/2 (otherwise we simply generate the complementary), the
average number of steps is bounded by 2k. Therefore the procedure randoml2 is
efficient in the sense defined in section 2. 2.

Replacing the call unrankl2(l, n/l, k) by randoml2(l, n/l) in the body of
uiirankP2, we obtain a procedure randomP that generates a random powerset
uniformly with O(nlogn) complexity (though in the average only) without the
standard growth condition:

Theorem 2 Z/randoml (n) has average cost 0(n\ogn), then randomP(n) has
average cost O(nlogn) too.

PROOF. From Lemma 1, randomP(n) generates a random shape with O(nlogn)
operations in the worst case, then for each if of the shape, randoml2(/, ii) gives
a random set of ?; components of size / with 0((() operations in the average. We
therefore obtain a total cost of 0(n log n) in the average. 0

3 Experimental results

We have implemented the above algorithms in the MuPAD computer algebra
language, exactly as they were described here. To prove the real efficiency of

n

25
50
100
200

Example 1 Example 2 Example 3
IS/O/O. SGs 61, 0. 1, 1. 9s 15, 0, 0. 31s
42, 0, 0. 68s 145, 0. 2, 4. 4s 32, 0, 0. 56s
84, 0, 1. 3s 325, 0. 9, 9. 8s 83, 0, 1. 3s
202, 0, 2. 8s 717, 1. 2, 21s 199, 0, 2. 9s

Figure 3: Average values of L/M/T during unrankP(n, k).

598

these algorithms, we have studied for each example the value of three parameters:
the number L of loops in the procedure unrajikP2, the number M of loops in the
procedure unrankS2, and the cpu time T needed for one random generation,
after all the necessary coefficients have been computed. Figure 3 gives for each
example presented in the introduction, and each size n 6 {25, 50, 100, 200}, the
average values of the parameters Z, M and T over 100 generations. As expected,
the value of M is zero whenever I[n\ <, 1 (Examples 1 and 3). In Example 2,
we observe that the value of M remains very small; the reason is that the shape
generation produces a decomposition having identical sizes with low probability.
This means that - at least in our examples - the main complexity lies in the
shape generation.

This table confirms the quasi-linear behaviour of the algorithm: for each
example, the ratios {L + M)/(n log n) and T/(n log n) decrease when n increases.

From these figures, we conclude that a random powerset of size 200 can be
unranked in a few hundreds of arithmetic operations, that take only a few seconds
on modern computers.

4 Conclusion and open questions

We have presented here a random generation algorithm for P = Powerset(J),
where I is any combinatorial class. This algorithm is very general, as it requires
only a counting procedure and a random generation procedure for I. If we have
an unranking procedure for 7, we obtain an unranking procedure for P. Other-
wise, we only obtain a uniform random generation procedure for P. Due to its
generality, this algorithm is well suited for inclusion into a system for the ran-
dom generation of combinatorial structures like Gala [7], that is included in the
version V.4 of MAPLE under the name COMBSTRUCT.

Two questions remain open:

1. does there exist an algorithm for the unranking of ̂ -samples in an m-set
requiring less than O(^logm) operations on coefficients of size (9(A;logm) ?

2. what is the worst case complexity of unrankP for recursive specifications ?

The first question is interesting by itself, because the answer would complete the
state of the art about the "selection sampling" problem. For the random genera-
tion of the powerset construction, if there exists a 0(k) algorithm for unrankS (in
terms of operations on coefficients of size 0(k log m)), then the standard growth
condition would be no longer needed in Theorem 1. For the second question, we
conjecture from the figures obtained in section 3 for Example 2 that the number
of arithmetic operations is 0(n log n).

Another interesting topic is the design of an algorithm with a lower prepro-
cessing cost (which is here of 0(n) arithmetic operations, because we have to

599

"?"'Ky'»^^-M^x^.̂ f

compute the coefficients Pi,2k[1} for 1 ^ /< 2k < i <: n). This would give a faster
algorithm to generate one powerset, or a small number of powersets. One idea
for such an algorithm would be to split the class P into a set P<^m of elements
of size less than or equal to m, and another set P>m made with elements of size
greater than m. A random set from P^m - considered as Pi xP^ x... x Pm
where P, denotes the powersets made only from objects of size i - would be
generated using an exact algorithm, with a preprocessing of only O(mn-) arith-
metic operations, whereas a random set from P>m would be generated using a
rejection method into the multisets of elements of size greater than m, with a
preprocessing of 0(n2) arithmetic operations, using the algorithm described in
[1]. The threshold m should be chosen in order to get both a cheap preprocessing
and a bounded expectation for the number of steps in the rejection method for
P>m. The drawback of such a method is that the best value of m with respect to
n (for example ^fn or log n) depends on the combinatorial class 7, and whence
has to be computed again for each new class.

Acknowledgement. I want to thank Philippe Flajolet and Bruno Salvy who helped
me to make more precise the cost in terms of arithmetic operations, the referee who
suggested me to add Figure 2 to improve the readability of the paper, and Fran^ois
Bertault who developed the A DOCS system - Automatic Drawing Of Combinatorial
Structures - which produced Figure 2.

References

[1] FLAJOLET, P., ZlMMERMANN, P., AND CUTSEM, B. V. A calculus of random
generation: Unlabelled structures. In preparation.

[2] FLAJOLET, P., ZlMMERMANN, P., AND CUTSEM, B. V. A calculus for the raudom
generation of labelled combinatorial structures. Theoretical Comput. Sci. 132, 1-2
(1994), 1-35.

[3] FUCHSSTEINER, B., AND AL. MuPAD Tutorial. Birkhauser, Basel, 1994.

[4] KNUTH, D. E. The Art of Computer Programming, 2nd ed., vol. 2 : Semlnumerical
Algorithms. Addison-Wesley, 1981.

[5] NlJENHUIS, A., AND WlLF, H. S. Combinatorial Algorithms, second ed. Academic
Press, 1978.

[6] WILF, H. S. A unified setting for sequencing, ranking, and selection algorithms
for combinatorial objects. Advances in Mathematics 24 (1977), 281-291.

[7] ZIMMER. MANN, P. Gaia: a package for the random generation of combinatorial
structures. MapleTech 2, 1 (1994), 38-46.

600

