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Abstract

A map is at the same time a group. To represent a map (that
is, a graph drawn on the sphere or on another surface) we usually
use a pair of permutations on the set of the "ends" of edges. These
permutations generate a group which we call a cartographic group.
The main motivation for the study of the cartographic group is the
so-called theory of "dessins d'enfant" of Grothendieck, which relates
the theory of maps to Galois theory [17].

In the present paper we address the questions of identifying the
cartographic group for a given map, and of constructing the maps
with a given cartographic group.

Resume

Une carte est en meme temps un groupe. Pour representer une
carte (c'est-a-dlre, un graphe dessine sur la sphere ou sur une autre
surface) on utilise d'habitude une paire de permutations sur 1'ensem-
ble des "brius" d'aretes. Ces permutations engendrent un groupe que
1 on appelle Ie groupe cartographique. La motivation la plus impor-
tante pour etudier Ie groupe cartographique provient de la theorie des
"dessins d'enfant" de Grothendieck, qui relie la theorie des cartes a la
theorie de Galois [17].

Dans cet article on adresse les questions de I'identiiication du
groupe cartographique d'une carte donnee, et de construction des
cartes avec un groupe cartographlque donne.
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1 Maps and cartographic groups

The same graph can be drawn in different topological ways, as the following
picture shows (we consider these graphs as drawn on the sphere, and not on
the plane):

Figure 1: One graph, but two maps

The combinatorial structure that reflects not only the graph properties
but also those of its imbedding is called a map.

Definition 1. 1 A map is a connected graph (loops and multiple edges
are allowed) which is "drawn" on (imbedded into) a compact oriented two-
dimensional surface in such a way that:

1. the edges do not intersect;

2. if we "cut" the surface along the edges, we get a disjoint union of sets
which are homeomorphic to an open disk (these sets are called faces of
the map).

In the example above the left-hand map has two faces, of degree 5 (the
outer face) and 1, while the right-hand snap has both faces of degree 3.

The additional information one needs to represent a map is the rotational
order of edges around each vertex. Consider the set B of the "ends of edges"
(each edge has two ends, hence the number of elements in B is twice the
number of edges). Let a. be the permutation on B that transposes the ends
of each edge; let a be the permutation that rotates the ends adjacent to each
vertex counterclockwise (we use the fact that the surface on which the map
is drawn is oriented).

The permutatioas a and <r must satisfy the following conditions:

1. All the cycles of a have the length 2, or, in other words, a is an invo-
lution without fixed points (this condition means that each edge has
exactly two ends).

2. The permutation group G ==< Q!, CT > generated by cr and cr acts traja-
sitively on B (this condition means that the graph is connected).

The example that follows was a starting point for our interest in the
combinatorics of the cartographic group. It was presented by Gunter Malle in
his talk on the conference "Dessins d'enfant (Cartes cellulaires de Riemann)"
held at Luminy in April 1993.
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Example 1. 2 Consider the following map with 6 edges:

^\
Figure 2: Example of G. Malle

We number the ends of edges by 1, 2,... , 12 in an arbitrary way, for example
as in Figure 2. Then

a=(l, 2)(3, 4)(5, 6)(7, 8)(9, 10)(ll, 12)

and

<7=(1, 6, 2)(4, 11, 8)(5, 7, 9).
The cycle type of a is 3313, which corresponds to the vertex degrees. The faces
of the map can be reconstructed as the cycles of the permutation (^ = aa'~1
(we multiply the permutations from left to right: this notation corresponds
to that used in MAPLE group package). In our example,

(^=(1, 6, 9, 10, 7, 11, 12, 4, 3, 8, 5).

The cycle type of this permutation is II1!1, which corresponds to the face
degrees. The pair of permutations (cr, y) corresponds to the map dual to that
of (a, o-). If we remove the condition of a being an involution without fixed
points, we get the definition of a hypermap; the hyperedges of a hypermap
may have any number of ends. For details on this approach to the theory of
maps and hypermaps see [10 .

The definition of the cartographic group was "almost given" above.

Definition 1. 3 The cartographic group of a map is the permutation group
G =< Q', 0- > generated by the permutations a and a. We also say that the
map represents its cartographic group.

Remark 1. 4 In some publications this group is called effective cartographic
group.

Remark 1. 5 A map and its dual obviously represent the same group, be-
cause if = Oi<7-l implies that < a, o- >=< a, ^ >. For a planar map (o;, ^),
the map axially syinmetric to it is described by the pair of permutations
(Q;, (T-I), which again gives us the same group.
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Remark 1. 6 For a bipartite map we may also consider a simpler object, its
monodromy group. This is a permutation group on the set of edges generated
by rotations of the edges around "black" vertices and around "white" ones.
Note that each tree is bipartite.

Though the above combinatorial definition of a map is well-known, to
the best of our knowledge very little attention has been paid to the study of
the cartographic group. For the specialists in the theory of maps this group
was alwavs a kind of a "transparent object" through which they used to
look directly at the maps. As for the group theorists, quite a lot of research
was undertaken concerning the finite groups generated by two elements (see,
for example, [5], [6], [15]); but an interest in maps as a specific object of
study is very rarely manifested. There is a vast literature dedicated to the
groups of automorphisms of maps; but this object is very different from the
cartographic group.

The new interest in the structure of the cartographic group and its re-
lations to the structure of the corresponding map arose in connection with
the theory of "dessins d'enfant", where this group is supposed to play a
fundamental role (see [17]).

2 Small maps

How do we recognize the cartographi. group for a given map? For small
maps, we may use the tables of transitive permutation groups given in [7].

Example 2. 1 Let us consider the maps in Figure 1. It is a matter of a
second for MAPLE to compute the order of the groups: for the left-hand
map it is 120, for the right-hand one it is 24. Looking through the table [7]
we find out that there is only one transitive subgroup of 5e of order 120.
This is the group PGL^S) (as an abstract group it is isomorphic to 5s).

Example 2. 2 As for the transitive subgroups of Sg of order 24, there are
three of them, not conjugate to each other in SQ. The following additional
information is helpful in order to recognize the "right" group: the cycle types
of the permutations a, (T, ̂  are 23, 4ll2 and 32. Looking through the cycle
type distribution tables of the same paper [7] we find out that only one of the
subgroups of order 24 has the elements of all the three cycle types It is the
group S\ together with its natural action on 6 cycllc orders on 4 elements.

Remark 2. 3 (G. Jones) The latter group is also isomporphic to the rotation
group of an octahedron, permuting its six vertices. Indeed, one can "see" this
from Figure 1, where the second map is just the quotient of the octahedron
by the rotation group of order 4 fixing a vertex.
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Example 2. 4 The following map presents a "difficult" case.

Figure 3: A map representing PSL^{1}

The order of the group is 168. There are two permutation groups of degree
8 and of order 168: one is PSL^{7), the group of automorphisms of Fano
plane; the other one is the group of semi-affine transformations of the field
GF{8}. Unfortunately, both of them contain elements of the cycle types 24,
3212 and 7111. In order to show that the correct answer is PSL-z(7) we need a
new method. We used the method presented below in the study of the group
Mi2. Roughly speaking, it consists in starting from the group, not from the
map. Another proof was given by G. Jones (private communication).

Example 2. 5 Consider the map of Figure 2. The order of the group is
95040. This case would be an easy one, had we a table of transitive groups
of degree 12 (there are about 300 of them). In fact, it is not difficult to prove
that there exists only one (up to a conjugation) permutation. group of degree
12 and of order 95040, namely, the Mathieu group Mis. But we would like
to maintain the purely experimental nature of this work.

3 The group Mis

Five Mathieu groups, traditionally denoted as Mii, Mi2, M.^, M-^s, M'^,
were constructed by Emile Mathieu in 1860 [16]. For more than 100 years
they were the only sporadic simple finite groups known; nowadays they stand
at the beginning of the famous list of 26 sporadic finite groups (see [ll], [9]).
For a more complete bibliography and more substantial information see [8].

The group Mis, as all the other Mathieu groups, has several dozens of
equivalent deiinitions (see, for example, [8], [9]). We have chosen the one
which is technically couvenient for us.

Definition 3. 1 The group M^ is the permutation group of degree 12 gen-
erated by the following three permutations:

a = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12),
13 = (1, 3, 5, 7, 9, 6, 11, 8, 10, 12, 4),
7 = (4, 8, 5, 11)(6, 7, 12, 9)

(see [II], section 2. 2; the numeration of elements is chauged).
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The order of the group Mi2 is 95040 =26x33x 5x11 =12x11x10x9x8.
It is 5-transitive, i.e., it can take any 5 elements (out of 12) to any other 5
elements. It is simple, i. e., it does not have any proper normal subgroups.

Proposition 3. 2 The group < o:, ,3, 7 > of Definition 31 coincides with
the group < a, cr >, the cartographic group of the map of Figure 2.

Proof

Script started on Bed Jul 27 16:53:25 1994
basht maple . . _. .

|\-/'| Maple V Release 2 (UniTersite de Bordeaux
,

l\'l' '1/1-. Copyright (c) 1981-1992 by the University of Vaterloo^
\ MAPLE 7 All rights reserved. MAPLE is a registered trademark of
<_-__ --> Waterloo Maple Software.

I Type ? for help.
> sith(group);

[DerivedS, LCS, SornalClosure, aandElenent, Syloff, areconjugate, center,
cantralizer, core, cosets, cosrep, derived, groupmember, grouporder,

inter, iuiTpern, isabelian, isnomal, issubgronp, mnlperms, normalizer,

orbit, pennrep, pros]

> alpha:=C[l, 2], [3, 4], [5, 6], [7, 8]. [9. 10], [ll, 12]];
alpha :» [[1, 2], [3, 4]. [5, 6] , [7, 8] , [9, 10], [11, 12]]

> beta:=[Cl, 3, 5, 7, 9, 6, ll, 8, 10, l2, 4]] ;

beta := [[1, 3, 5, 7, 9, 6, 11, 8, 10, 12, 4]]

> gamma:=[[4,3, S, ll], [6, 7, 12,9]];
gamna := [[4, 8, 5, II], [6, 7, 12, 9]]

> M:=pamgronp(12, {alpha,beta,ganma}) ;

M := permgroup(12,

{[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]],

[[1, 3, 5, 7, 9, 6, 11, 8, 10, 12, 4]], [[4, 8, 5, II], [6, 7, 12, 9]]}
)

> gronporder(M);

95040

> signa:=[[l,6, 2], [4, 11,8], [5, 7, 9]];.
sigma := [[1, 6, 2], [4, 11, 8], [5, 7, 9]]

> gToupmember(sigma, M) ;

true

> G:=permgToap(12, {alpha, aigma});

5 := permgroup(12, {[[1, 2] , [3, 4] , [5, 6] , [7, 8], [9, 10], [11, 12]],
[[1, 6, 2]. [4, 11, 8], [5, 7, 9]]} )

> grouporder(G);
95040

> quit
bytes used=1119364, alloc=786288, ttne=5. 4S
bash$ exit
exit

script done on Wed Jul 27 17:11:03 1994
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In this proof we first define the group M^ =< a, ,3, 7 > according to
Definition 3. 1 (and verify that its order is equal to 95040, just in case).
Then, using the groupmember function we verify that o- £ M^; hence the
group G ==< Q', O- > is a certain subgroup of Miz. Finally, the fact that
G'|=|Mi2[= 95040 implies that the group G coincides with M^.

Remark 3. 3 As is shown in [21], the least possible genus of a map that has
Mis as its group of automorphisms is 3169. This remark is made in order
to underline once more the difference between the notions of cartographic
group and group of automorphisms.

The most difficult part of the proof is hidden in the choice of the permu-
tation o". We may agree to label the ends of edges by successive numbers, i. e.,
to take a = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12). But even after this conven-
tion there still exist 6! x 26 = 46080 possibilities of different ends labellings,
and hence the choice of a is far from being unique. Among 46080 possible
choices of <7 the majority leads not to the group Mi2 as it is defined in Defi-
nition 3. 1 but to some of its conjugate copies inside S^. In such a case the
groupmember function will reply false and our proof will collapse. So the
question is, how to find an appropriate candidate for o-?

What we suggest is trying a random element o- £ Mi2 (the MAPLE func-
tion RaiidElement generates random elements of the permutation groups).
This method, strange as it may seem, produces unexpectedly good results.

Given the permutation a cis above, how many elements a G Mi2 are
there such that < Q:, (T >= Mis? The complete search was carried out by
N. Hanusse; it shows that there are 60960 such elements, i.e., more than
64%. Among them plane maps occur 12000 times, maps of genus 1 occur
29760 times, and maps of genus 2 occur 19200 times. But this huge work
was undertaken only in order to get the final approval of the previously
obtained results: in 20 minutes of computation we examined 500 randomly
chosen, elements of Mi2 and obtained more than 300 maps (in fact, twice as
much, because together with each (T we also considered y = acr and the
corresponding map). Thus we established the complete list of plane maps
having Mi2 as the cartographic group. This list consists of 50 maps. Here is
a small sample of theni:

OF=0

Figure 4: A sample of maps representing M^
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4 The group M:24

It goes without saying that the method described above works for many other
groups (for example, for the group PSL^I) mentioned in Section 2) Below
we give two "portraits" of the Mathieu group A/24, which is, according to
J. H. Conway [9], "the most remarkable finite group'7.

Q »
D

Figure 5: Maps representing M^4

By the way, the right-hand map shows that the group Mi4 admits (2, 3, 21)-
generation, which improves the upper bound for the minimal genus of amaP
with the group of automorphisms M^, given in [21], section 8, from 15079681
to 14572801. This does not, however, settle the question, the lower bound
being 5100481.

Remark 4. 1 The possibility of generating finite groups by only two elements
was studied by many authors; see, for example, [20], [2] and [15]. In [15] it
is shown that every non-abelian finite simple group can be generated by two
elements, one of which has order 2, so such a group is isomorphic to the
cartographic group of a map.

5 Theory of "dessins d'enfant"
To any map of genus g there corresponds a Riemann surface X of the same
genus together with a meromorphic function f : X ^C which has only 3
cr itical values, namely, 0, 1 and co, and all pre-images of 1 are critical points

of order 2. The map itself can be recovered as the pre-image of the segment
[l, oo] C C. The pair (X, /) is called a (pure) Belyi pair. For a given map
the corresponding Belyi pair is uniquely defined up to an isomorphism of
the Riemann surface X. In the planar case X =C, hence only one element
of the pair is to be found, the Belyi function f, which in this case is rational.
This correspondence was Introduced in a famous paper [3] in coimectioa
with Galois' theory. The relations to maps and cartographic groups were
indicated by Grothendieck [12]. For the later development of the theory see,
for example, [18], [17], [19].
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Both X and / are defined over the field ~Q of algebraic numbers. In a
naive language this means that "their coefficients are algebraic numbers". Let
r =_Ga[[Q | (^) be the absolute Galois group, i.e., the group ofautomorphisms
of Q. By acting on (X, /) this group acts also on maps. The action is faithful
([3]).

The main interest of the theory is to find combinatorial invariants of
this action. Some of the invariants are rather simple. For example, the set
of degrees of the vertices and the faces of a map is one of such invariants;
another one is the group of automorphisms of a map. The cartographic group
is one of the most powerful invariants of Galois group action (the theorem
that it is really an invariant is proved in [14]).

Computing a Belyi pair corresponding to a given map is sometimes an
extremely difficult task, incomparable with that of computing, say, the or-
der of its cartographic group. This may provide us with the information
inaccessible by other means.

Example 5. 1 Consider the family of plane maps with the vertex degrees
6, 3, 2, 1, and the face degrees also 6, 3, 2, 1. There are 11 maps with this
set of degrees. After several months of hard work, and in spite of using very
powerful specialized packages for computing Grobner bases (such as GB and
Macauley) we are still unable to compute the corresponding number fields.
As to the cartographic groups, it is a matter of several minutes for MAPLE
to find out that eight maps out of eleven have cartographic group Miz; two
of them have the group Aiz, the alternating group; and the remaining 11-th
map has a solvable group of order 648. Thus we may be sure that this family
of maps splits at least into three different orbits of the Calais group action

Example 5. 2 There are some hints that the relations of cartographic groups
to Galois theory are even closer than that. In the example of G. Malle
considered above, the set of vertex-face degrees is 3, 3, 3, 1, 1, 1 for vertices
and 11, 1 for faces. There are exactly two maps having this set of degrees.
Hence the field of definition (i. e. the field to which belong all the coefficients
of Belyi function) must be quadratic. We may even guess that it is imaginary
quadratic field, because one of the maps is axially symmetric to the other,
so Galois action must coincide with the complex conjugation. The actual
computation shows that this field is Q(^-ll'). Now, if we look into the
character table of the group M^ (see [8]), we will see that the only irrational
element of the table belongs to (^(^, -11).

By the way, there exists one more quadratic orbit with the cartographic
group Mi2, its set of degrees being 4, 4, 1, 1, 1, Ifor vertices and 11, 1 for
faces (see the right-most picture on Figure 4). And it turns out that its field
of definition is once again (^(V-TT)!

(The computations were carried out by N. Magot.)
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There exist many other common points between cartographic groups and
dessins d'enfant. For example, in [l] the operation of a composition of plane
trees is introduced, and it is shown that the monodromy group of a compo-
sition is impnrrutive.
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