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Abstract

P. Hanlon has recently proved that the homology of a signed poset, whose as-
sociated poset is Cohen-Macaulay of rank n, is confined to the interval [n/2,n].
In this note we give a simple explanation, by Alexander duality, to this phe-
nomenon when the associated poset is acyclic Gorenstein. The results are
extended to general group actions on simplicial complexes.

1 Introduction

Signed posets, as defined by Reiner [8], form a generalization of the concept of a
partially ordered set. A homology theory for them; in terms of the simplicial homology
of a certain subcomplex of the chain complex of an associated poset, has been defined
by Fischer [4]. This homology has some interesting connections to the combinatorics
of the signed poset. Fischer also defined a signed poset to be EL-labelable if the
associated poset is EL-labelable, but noted that this condition fails to imply the
Cohen-Macaulay property, namely: An EL-labelable signed poset may have nonzero
homology in degrees below the rank of the associated poset. Motivated by Fischer’s
examples, Phil Hanlon [5] has recently shown that, nevertheless, if the associated
poset is Cohen-Macaulay of rank n (as in the EL-labelable case) then the homology
of the signed poset vanishes for degrees ¢ outside the interval [n/2] < ¢ < n. In
this note we intend to provide a simple topological explanation for this homology
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confinement phenomenon in the (special but important) case that the associated poset
is Gorenstein® (acyclic Gorenstein). This explanation provides, in such a case, an
alternative proof of Hanlon’s result which avoids the machinery of spectral sequences.
We also extend these results to more general group actions on simplicial complexes.

2 A Prototypical Result

Let us first recall a few definitions. An n-dimensional simplicial complex A is Cohen-
Macaulay if the (reduced) homology and local homology groups at each point of the
underlying topological space X := |A| vanish except, possibly, at the top dimension:

H(X) = H(X, X\ {}) =0  (Vi#n,Vz€X). (1)

A is Gorenstein™ (or acyclic Gorenstein) if, moreover, its top-dimensional global
and local homology groups are those of an n-sphere:

H.(X)=H.X,X\{z}))=2 (Vz€X). (2)

In other words, an n-dimensional Gorenstein* complex is simultaneously a homology
n-sphere and a homology n-manifold. Analogous definitions apply for coefficient
groups other than the integers. The above definitions can be rephrased entirely in
terms of simplicial homology (of the complex and of links of simplices in it), and
there are also equivalent definitions in terms of algebraic properties of the Stanley-
Reisner face ring of A [9]. The ubiquity of these concepts may be demonstrated by
the fact that every shellable simplicial complex is Cohen-Macaulay, and the boundary
complex of a simplicial convex polytope is Gorenstein®.

Recall also that a subcomplex A; of a simplicial complex A is full if every simplex
of A whose vertices are in A is itself in A;. (For 1-dimensional complexes, this is
the concept of induced subgraph.) Given A, a full subcomplex is determined by
its set of vertices, and the collection of all simplices disjoint from the simplices of any
subcomplex form the full subcomplex on the complementary set of vertices.

Theorem 1 (Alexander duality for Gorenstein® complexes)
Let A be a simplicial complex, and let A, and A, be full subcomplexes of A on
complementary nonempty vertex sets. If A is n-dimensional Gorenstein™ then:

Hi(A) = H YA, (Ve). (3)

Proof:

Under the given hypotheses, the underlying topological space |A;| is a deformation
retract of the complement [A|\ |A;| of |A]| (cf. [7, Lemma 70.1]). Our claim is
therefore a version of Alexander duality [7, Theorem 71.1] for complexes which are
homology n-spheres and homology n-manifolds instead of being genuine topological
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n-spheres. Careful examination of the proof of Alexander duality in [7, pp. 424-
425], using Poincaré and Lefschetz duality, shows that it applies to this more general
setting as well. O

Theorem 2 Let A be a simplicial complex with a (simplicial) involution o. Let
A, be the subcomplex of A consisting of all simplices not containing more than one
vertex from each o-orbit. If A is n-dimensional Gorenstein®, then

Hi(A) =0 (i < [n/2]). (4)

Proof:
We would like to find a “complementary” subcomplex A, in the sense of the preceding
theorem. Unfortunately, A; is not a full subcomplex of A, since an edge of A whose
vertices are interchanged by o does not belong to A; although its vertices do. This
problem can be overcome by forming the stellar subdivision of A with respect to these
edges with interchanged endpoints. This refined complex A’ is intermediate between
A and its first barycentric subdivision sd(A), and its vertices correspond to either
the original vertices of A or to the above-mentioned edges of A. A" has A, as the full
subcomplex on the original set of vertices of A. Let A; be the full subcomplex on the
complementary set of vertices of A’. The vertices in a simplex of A, correspond to
disjoint edges of A, each with endpoints interchanged by o, which are all contained
in the same simplex of A. Since a simplex of A has at most n + 1 vertices, it follows
that ‘
dimA,; < |[(n+1)/2] - 1.

Therefore, by the preceding theorem,

n—i—12>[(n+1)/2] = Hi(A;) = H(A;) = 0.

This range of values of i, where the homology of A; must vanish, may be writtert
equivalently
i<n—|(n+1)/2] = [n/2],

as claimed. O

The main result of [5] is a formulation of Theorem 2 for Cohen-Macaulay self-
dual posets. The proof uses spectral sequences, and proceeds by induction on the
size of the poset. These arguments can be extended rather easily to the case of an
arbitrary Cohen-Macaulay complex with an involution, by using a slightly different
filtration to define the spectral sequence. The proof given above provides a trans-
parent explanation of why such a result should be true, at least in the Gorenstein®
case. Extensions and analogues of this result, to be discussed in the next section,
may probably be proved in the general Cohen-Macaulay context (say by Hanlon’s
methods) after having been “identified” in the Gorenstein™ case. ‘

Note also that, in the specific application to signed posets, the duality involution
o on the associated poset may have fixed edges but cannot have fixed vertices, since
the poset associated to a signed poset has no self-dual elements. We shall come back

to this point in the following section.
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3 Extensions

We shall now use Theorem 1 to obtain various extensions and analogues of Theo-
rem 2. The common setup for the various cases will be a simplicial complex A with
a simplicial action of a finite group G. The complex A will be assumed to be n-
dimensional Gorenstein®, and will contain two “complementary” complexes A; and
A,. As in Theorem 2, A; and A, will be full subcomplexes of a suitable refinement
A’ of A, on complementary vertex sets.

3.1 No Edge in An Orbit

Assume that G is an arbitrary finite group which acts on A. Let A; be the set
of all simplices in A which contain at most one vertex from each G-orbit. Let A’
be the subdivision of A obtained by introducing a new vertex for each simplex of
A which is contained in a G-orbit and has more than one vertex. Two vertices
of A in the same G-orbit cannot be the endpoints of an edge of A’, and therefore
A; is (homeomorphic to) the full subcomplex of A’ on the original vertex set of A.
Consider the complementary full subcomplex A, of A’. Each vertex of A; can be
associated to one of the G-orbits of vertices in A. A k-simplex of A, all of whose
vertices are associated to the same G-orbit corresponds to a chain of non-singleton
A-simplices with vertices in that orbit. The maximal A-simplex in this chain has
therefore dimension at least k + 1. More generally, from each nonempty simplex s
of A, one can construct a simplex of A of larger dimension, where the dimension
difference is (at least) the number of G-orbits intersected by s. These larger simplices
are characterized by the property that they never intersect a G-orbit in a single vertex.
Since a maximal simplex in A contains n + 1 vertices, it is easy to deduce that if

n+l=gg+r (1<r<yg) (5)
then éach maximal A-simplex intersects at least ¢ + 1 distinct G-orbits. Therefore
| dimA —dimA; > ¢+ 1= [n/g] +1, (6)
and, by Theorem 1, the homology group Hi(A;) can be nonzero only if
» 1 >n—1-—dimA; > qg=|n/g]. )

This extends Theorem 2 (which is the special case g = 2), and answers, for Gorenstein*
complexes, the question posed by Hanlon at the end of his paper [5]. As mentioned
above, one may attempt to prove an analogous result for Cohen-Macaulay complexes

using the methods of [5].

3.2 No Complete Orbit

Let G be again a finite group acting on A, but let A; consist of all simplices in A
which do not contain a complete G-orbit. In this case, let A’ be the subdivision of
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A obtained by introducing a new vertex for each simplex of A which is a complete
G-orbit. Again, A, is the full subcomplex of A’ on the original set of vertices of A.
The complementary full subcomplex A, consists of all the points fixed under G in the
underlying space |A|, where the G-action is extended from A to |A| in a piecewise
linear fashion (i.e., linearly in each simplex). We can conclude that H;(A;) can be

nonzero only if
i > dimA — dim |A|¢ - 1. (8)

This bound can be meaningful when additional assumptions are imposed. For ex-
ample, if G acts freely on the vertices of A (i.e., all G-orbits of vertices have size
g := |G|), then obviously

dim|A|® +1 < |(n +1)/g] (9)

and the bound is
i >n—|(n+1)/g). (10)

For g = 2, this is the case of an involution having no fixed vertices in A. Thus we
arrive again at Theorem 2, this time with a restriction on the type of action. By the
remark at the end of Section 2, this restriction is always present in the motivating
example of signed posets.

In general, the fixed-point set |A,| = |A|C in this case is independent of the
specific triangulation of |A| by A. It is interesting to cite in this context the classical
result of P. A. Smith (see [3, p. 129]). Here all homology is taken with coefficients in
the field of order p.

Theorem 3 If G is a p-group (p prime) acting on a space X which is a Z, homology
n-sphere, then X€ is a Z, homology r-sphere for some —1 < r < n (wherer = —1
means X€ = 0). Moreover, if p # 2 then n —r is even.

3.3 Half Orbits

As an intermediate case between the preceding two extremes, let G be the cyclic
group of order 4 acting on A, and let A; be the set of all A-simplices which contain
at most half of the vertices of each G-orbit which is not a fixed vertex. In other words,
such a simplex contains at most two of the vertices in an orbit of size 4, and at most
one of the vertices in an orbit of size 2 (with no restriction on fixed vertices). Let
A’ be the subdivision of A obtained by introducing a new vertex for each simplex
s of A contained in a G-orbit Gv such that either |Gv| = 4 and 3 < [s| < 4, or
|Gv| = |s| = 2. Again, A, is the full subcomplex of A’ on the original vertex set of A,
and the complementary full subcomplex A; has the following property: A nonempty
simplex of A, contained in a G-orbit is either a single vertex or an edge, and gives
rise to a simplex of A with at least twice as many vertices. Therefore

dimA; +1 < |(n +1)/2], (11)
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and nonzero homology of A; may exist only for

i2n—[(n+1)/2] = [n/2). (12)

4 Final Remarks

It may be possible to extend the techniques of this paper beyond the context of
Gorenstein® complexes. A central ingredient in such an extension is an appropri-
ate generalization of Alexander duality, even in the modest form of zero/nonzero
dichotomy for homology groups. This, in turn, seems to depend on a hypothetical
extension of Lefschetz duality to (locally) Cohen-Macaulay complexes which are not
necessarily homology manifolds. In view of the proof [7, Sections 64 and 70] of Lef-
schetz duality, it seems reasonable to restrict the complex to have no “boundary”
(i.e., points where local homology vanishes in all dimensions). Perhaps such assump-
tions will suffice to produce some “inequalities” where one has “equalities” (i.e., group
isomorphisms) in current Lefschetz duality.

Finally, we should mention here some work that has been done on aspects of
Cohen-Macaulay simplicial complexes with a group action which are more combina-
torial, having to do with simplex-counting and A-vectors rather than with homology.
See the seminal paper [10], as well as [1] and [2].
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