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Abstract

This article is a summary of the works [ANY1, 2] and [NY2]. We discuss Schur functions
with reduced variables arising in the basic representations of certain affine Lie algebras.

They are called reduced Schur functions. For our purpose it is convenient to employ the

notion of cores and quotients of the Young diagrams. We give a description of the linear

relations among reduced Schur functions, which gives an information of the decomposition

matrices of the symmetric groups and the Hecke algebras as well.

§1 The basic A(il)-module

In 1978, Lepowsky and Wilson [LW] constructed the basic representation of the affine

Lie algebra A\ ' by mdking use of the vertex operator. It is realized on the space of

polynomials of infinitely many variables Vw = [<i, <3, <5,... ] as follows. For any odd

natural number j, let aj = ^- and a_j = jtj. Then {aj (j ̂ , odd), 7<f} span the mfinite
dimensional Heisenberg algebra acting on VC2\ Let p be an indeterminate and put

a_,^t, p) = E ^'= E ^''
j>l, odd j>l, odd

1 a a,((S. P-) = , Ej^-'=,I:^p-'.
j>l.odd -I v''3 j>l,odd

The vertex operator is defined by

X(p) = -e2^^e-2«^-l\
Expanding X(p) as a formal Laurent series of p:

X{p)=^X,p-k^
fc 
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we have differential operators Xk (k e^) acting on V<-2^. It is proved that the operators aj

0 ^ocld), Xfe (A;  ̂  and identity give the basic representation of Aw.
The set of weights P is of the basic representation is known (see [K]) as

P= [^o-q8+pa^p, q^q >. p1}.

Here Ao is the highest weight and 6 denotes the fundamental imaginary root, i.e., 8 =

QQ+ a-i, where 0:0 and ai are simple roots. A weight A on the parabola q = p2 is said to

be maximal in the sense that A+ ̂  is no longer a weight. The weights on each parabola

q = p2 +n (n ^^ consist a single Weyl group orbit. The Weyl-Kac character formula

([K]) tells us that the weight multiplicity on this parabola equals p(n), the number of

partitions of n.

§2 2-reduced Schur functions

Our first problem is to write down the weight vectors of the basic Aw-module V^2\
To this end we recall the Schur functions ([M]). For any Young diagram A of size N, the
Schur function indexed by A is defined by

Sx(t) = E X>^)
ri+2f2+-=N

<r^...
l/l!i/2'---'

where )(\(v} is the character value of the irreducible representation A of the symmetric

group ©AT, evaluated at the conjugacy class of cycle type v = (1V12V2 .. . NVIf). The Schur

function S\(t) is obviously a weighted homogeneous (deg^ = j) polynomial of degree N.
We also define the 2-reduced Schur functions, which play an essential role in our argument:

Sw(t) = S^t)\^=... =o   V(2).

According to Murnaghan-Nakayama's formula ([J]), S\{t) = S['(t) if A does not have a
2-hook. Such a A is called a 2-core. It is easily seen that K, r := (r, r- 1,... , 2, 1) (r  <

exhaust all of 2-cores (/CQ = 0). In our realization the maximal weight vectors are given
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by S^rW for r = 0, 1, 2,... ([DJKM]). We denote by Ar the maximal weight whose weight

vector is 5'^(<).

To describe the weight vectors of other weights we recall the 2-quotient of a Young

diagram ([0]). The 2-quotient of A = (Ai,..., An) is a pair of Young diagrams (A°, A1)

defined as follows: let us insert hooklength in each square of A. The parts of \e (e = 0, 1)

are the number of even entries in i-th row if A, -i = e (mod 2). This procedure gives a

pair of Young diagrams.

Example. A = (5, 3, 2)
\i - i (mod 2)

0

1

1

^

The circled entries of the first row form A° = (3) and of the second and the third rows

A1 =(1, 1).
For any Young diagram A we uniquely determine a 2-core by removing 2-hooks suc-

cessively as many as possible and call it the 2-core of A. Any Young diagram A of size N

determines the triplet (Ac, A°, Al), where \c is the 2-core of A, (A°, A1) is the 2-quotient of
A and |AC | + 2(|A°| + |A1|) = N, and vice versa. We often identify A with (AC, A°, Al) by

this one-to-one correspondence.

By using the boson-fermion correspondence established by Date et al. [DJKM], we can
see the following.

Proposition 2. 1. The 2-reduced Schur function S\ (t) is a weight vector of weight Ar -

n6 z/A=(/c,, A°, Al) with |A°|+|Al|=n.

The above weight vectors satisfy certain linear relations in general since mult(Ar -

n6) = p(n). Therefore the next problem is to find a suitable basis for each weight space.
The following theorem gives an answer.

Proposition 2. 2. The 2-reduced Schur functions

[Sw(t); \ = {Kr, 0, Al) with |Al| = n}
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)

are linearly independent and hence constitute a basis for the weight space of weight A.r-n6.

Any weight vector S\ (t) can be expressed uniquely as a linear combination of the

basis vectors obtained above. We now focus on the coefficients of these expressions. The
2-sign S^X) = ^2(AC, A°, A1) is defined as follows (see [0]). If the 2-core \c is obtained

from A by removing a sequence of 2-hooks, where q of them are column 2-hooks and the

others are row 2-hooks, then

^(AC, A°, A1) =(-!)'.

It can be proved that <$2(AC, A°, A1) does not depend on the choice of 2-hooks being re-

moved. The following is our main result.

Theorem 2. 3. For such a Young diagram X that X = (AC, A°, A1) with n = |A°| + |Al|, we

have

SWW = (-l)WS^\)^8MLR^Sy\t),
^

where the summation runs over all Young diagrams p, of size n, the Young diagram /x
corresponds to (Ac, 0, /z1) and X01 denotes the transpose of \°. We also denote by LR the
Littlewood-Richardson coefficient.

§3 An application to the Hecke algebra at root of unity

By virtue of the formula in Theorem 2. 3 we can derive the following identity satisfied

by irreducible character values of the symmetric groups:

X>(^ = (-ifSM^SMLR^xM.

for the 2-regular classes i/, i.e., 1/2= ^4 = ... =0 if^= (lt/12'/2 . . . ). Denote by Cw the

2-regular character matrix of the ©n, i.e., columns are indexed only by 2-regular classes.

The formula gives the linear relations among rows of C^\ Let D^ be the decomposition

matrix of the Specht modules of ©n for the prime 2 (see [JK]). Then we know that
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D^B^ = C^\ where B^ is the matrix whose entries are the Brauer characters. Thus
we are led to the linear relations among rows of D^.

We can lift this situation to the Hecke algebra Hn(q) with q= -1. The Hecke algebra

Hn{q) \s defined over (9) by generators T-i,... , Tn-i and relations

(Ti+l)(T, -q)=0 (l^^n-1),

T. T.+iT; = T.+iT. r.+i (1 ̂  i ^n- 2),

T, r, =r, r. (\i-j\^2).

By the theory of Dipper and James [DJ] we know that the decomposition matrix Dy of
the Specht modules of Hn(q) forg = -1 is of the form

Dw = D^U^

where Un is a certain lower unitriangular matrix. Let S be the Specht module over

Hn(-l) corresponding to the Young diagram A, and [Sx] be the element of the Grothendieck
group of jyn (-l)-modules. Then we have the following:

[S>]=(-1)^W)^6MLR^W.
^

§4 Some other cases

The discussion in section 2 and 3 are valid to some other cases, namely A^. _\ and A^\

Here we just state our formula without precise definitions. For the case of A^. _\ we have

Theorem 4. 1. Let S^\t) be the r-reduced Schur function indexed by X. For any Young
diagram \ we have

S^t) = (-1)IAOI^(A) S ^(^)<'.. ^<^ . . . <:;^5ir)«),
^, l/l,..., I/r_l

where summation runs over Young diagrams fi and 1/1,..., i/r-i such that |^| = |A|, ̂ ° = 0
and the core of p, coincides with that of X.
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In the realization of the basic representation of A^) on the space of polynomials, the
weight vectors are expressed in terms of Schur's Q-functions Q\(t) ([NY1]). Accordingly
we obtain the linear relations for r-reduced (^-functions, where r =2t+l. We introduce

the new coefficients NY by

2-e^Q,(t)S, (t)=^NY^(t).
I/

Theorem 4. 2. Let \ be a strict partition, \c and (A°, A1,..., A() be its r-bar core and
r-bar quotient, respectively. Then

Q^^ ^ 2^A^AO)^(-1)IAOI<5, (A)

^ ^ 2-(^)/2]^-(^)Zfi;;,, ^,.. . NY^Q^\t\
^,1/1 ,.,., 1/t

where summation runs over the strict partitions i/i,..., i/( and (JL such that |^| = |A|,

^c = \c and //° = 0. Here LR denotes the linearization coefficient of the product of
Q-functions.
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