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0. INTRODUCTION

ID his thesis [Scl] and a subsequent paper [Sc2] Schur proved that there is an action
of the symmetric group Sk on the tensor space V9k (V = Cn) by place permutations
which commutes with the actioD of the complex general Imear group GL(n, C) on V9k.
This fundamental result, often referred to as Schur-WeyI duality, links in a critical way
the combmatorics and representation theories of the symmetric and general Imeai groups.
Brauer [Br] generalized this picture to show that there is an action of an algebra Bk(n),
which is now called the Brauer algebra, on V9k which commutes with the action of the
orthogoaal group 0(n, C). For the symplectic group 5p(n, C) (n even) a similar result
holds7 the centralizer algebra of the Sp(n, C)-action on V9k is given by the action of the
Brauer algebra Bk(-n).

When V is Zz-graded, the action of the syinmetric group Sk on V9k by "graded" place
permutations determines the centralize! of the general linear Lie superalgebra on that space.
Berele and Regev [BR] and Sergeev [Se] exploited this action to study certain modules for
the superalgebra and their characters, which are hook Schur functions. hi [FM], Fischman
and Montgomery generalized their work to cotriangiilar Hopf algebras which arise from
enveloping algebras of geDcral Imear Lie color algebras.

In this paper we describe an orthogonal-symplectic version of the superalgebra theory.
More specifically, we
(1) briefly discuss the orthosymplectic Lie color algebras »po(V, i3); (The orthosymplectic

Lie superalgebras are just a particular example of such a Lie color algebra fipo(V,,0).)
(2) describe an action of the Brauer algebra on tenser space which commutes with the

action of the orthosymplectic Lie color algebra spo(V, 0);
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(3) use the action of the Brauer algebra to construct a fainilyofapo(Vr, /?)-maxunsd vectors
of Ve>k and produce a decomposition of V®k into the direct sum of submodules TA
naturally indexed by partitions;

(4) present expressions for the characters of the spo(V, ^)-modules TA and give a combi-
natorial description of these characters in terms of tableaux; and

(5) describe a Robinson-Schensted-Knuth type of insertion scheme for the tableaux which
modek the decomposition of the tenser space mto the modules Tx.

The detailed proofs of the results described here can be found in our paper [BLR].

Some remarks on the results

(i) To our knowledge orthosymplectic Lie color algebras were first introduced in [B], which
discusses the Brauer algebra action but does not prove that this action coinmutes
with spo(V, 0). The notion of an orthosymplectic Lie color algebra allows us to give
a uniform proof that the Brauer algebra action on tensor space commutes with the
action of the orthogonal Lie algebra, the symplectic Lie algebra, the orthosymplectic
Lie superalgebra as well as more general group graded orthosymplectic algebras, hi
[BLR] these results are derived m the context of braided monoidal categories, which
provides a convenient framework for studying conamutmg actions. It is shown in [BLR]
that there is a centralizing action of an algebra (which has a diagram-type basis like the
Brauer algebra) on tensor space for any kind of "Lie like" algebra or quantum group
for which the category of finite-dimensional modules has a braided monoidal structure
and a special isomorphism between V and V*.

(ii) Our derivation of the maxima! vectors in the orthosymplectic case extends the work in
[BBL], which computes all the maximal vectors for the orthogonal and symplectic Lie
algebras. The modules TA which we are considermg are the same as the ones studied by
Bars and Balantekin [BB]. They gave Jacobi-Trudi type formulas for their characters,
but did not derive a combinatorial description of the characters in terms of tableaux
nor did they provide an insertion scheme to model the decomposition of V®* into the
TA's. In their paper [BB], Bars and Balaatekin seem to indicate that the modules T
are irreducible, but this is not clear to us, either from their work or from ours. In fact,
R.C. King in personal communication has told us that he has found explicit examples
of TA which are not irreducibk.

(iii) There are other papers, notably [FJ] and [CK], which describe how to index representa-
tions of the orthosymplectic Lie superalgebra by partitioiis, but to our knowledge none
of them has given an interpretation for their characters in terms of tableaux. The main
ingredient for the tableau description is identity (8) m Theorem 4.5 below. The very
siimlar identity in Theorem 4. 5 (9) is given in the work of Cummins and King [CKj.
This identity could be used in combination with results of Sundaram [Su2] to produce
another combinatorial interpretation for these characters. See [Ki] for a survey of the
use of tableaux in the study of representatioiis of Lie superalgebras.

(iv) Berele and Regev [BR] provided a combmatorial description of the characters of the
modules for the general linear Lie superalgebra fll(m, n) which appear in the decom-
position of tensor space by describing them as hook Schur functions, (that is, hybrid
Schur functions which correspond to tableaux which have both a column-strict and a
row-strict part). ID a similar fashion we give a combmatorial description of the charac-
ters of the modules Tx as hybrid symplectic-ordinary Schur functions corresponding to
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tableaux which have both a symplectic and a row-strict part. The symplectic part is a
symplectic tableau of the kmd first introduced by King [Kil] to describe the characters
of symplectic groups.

Open questions
(a) There is an extensive literature of papers by Bernstein and Leltes [BLe]'[j-'el~Le2], Kac

[K1-K2], van der Jeugt, Hughes, King, and Thierry-Mieg [JHKT1-JHKT3], Penkov
and Serganova [PS1-PS3], [P] [Sr], Kac and Wakimoto [KW], and others which studies
representations of Lie superalgebras using Lie theoretic and geometric methods. These
approaches also yield character formulas, the most general of which is the Weyl-Kac
character formula. We have not made any effort to understand our character formulas
in this other setting, although the formulas must be equal m many cases. Even for
the superalgebra gf(m, n), the connection between the results of [BR] and [Se], the
Sergeev-Pragacz character formula, and the Weyl-Kac character formula needs to be
better understood. King and others have done some work in this direction, (see [Ki2]).
The relationship between the centrahzer approach to the representation theory of Lie
superalgebras amd the approach via Kac modules and typical weights also needs to be
better explamed.

(b) In determining the character of the module Tx we have shown that it is equal to the
polynomial scx(xi, x^l,..., Xr, x^l, yi, y^l,..., y., yTl, l) which appears as the coeffi-
cient of the Schur function s\(zi,..., 2r+, ) in the identity

. n;^(i + ^-)nj^ n;=i(i+^-)(i+y.-1^)
^^~Z'1')"'~"TWT^^W-T^ ' (o. l)

='^scx(xi, x'[l,..., Xr, x^l, yi, y'i'l,..., y., yTl, l)s\(zi,..., Zr+,).
A

There are two classical identities of Littlewood [Li] and Weyl [We] for the characters
of the symplectic group 5p(2r, C) and the special orthogonal group S0(2s + 1, C) (see
[Sul, Su2]):

.,5J1 ~ 2t2;)n;=in^(i-^)(i-<12. ) 
(0.2)

= S sp^xi, x^l,..., Xr, x^'l)s^(zi,..., Zr), and
f, tw^

. »

n (i-^-)r[(i+^)nn(i+^)(i+y. -^)
Ki<]^f 3=1 ]=li=l

= ^ so^(yi, yrl,..., !/,, y7 , l)^(zi,..., z, ),
". <(")$'

(0. 3)

where sp», is the character of the symplectic group SpCir, C) labeled by the partition ^
having no more than r parts; and so,, is the character of the special orthogonal group
S0(2s + 1, C) labeled by the conjugate i/ of the partition i/ which has no more than
s parts. When the orthogonal part is zero, the numerator in (0. 1) is 1, and (0. 1) gives
the classical identity in (0.2). If instead the symplectic portion is zero, identity (0. 1)
reduces to (0. 3). Is there a combinatorial interpretation for sex which expresses it as
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a hybrid object built from symplectic and orthogonal characters? Our combmatorial
description of sc^ is as a hybrid symplectic-general linear character rather thsin a hybrid
symplectic-orthogonal character.

(c) We have not included proofs of the analogues of the Schur-Weyl duality m [BLR], i.e.
we have not shown that the actions of the Brauer algebra and the Lie color algebra
spo(V, 0) each generate the full ceatralizer of the action of the other. We have succeeded
m proving various parts of both halves of the duality in the orthosymplectic - Brauer
algebra setting, but do not have a proof that works in all cases.

1. LIE COLOR ALGEBRAS AND Spo(V, 0)
Let K denote a field of characteristic zero. Let GI be a finite abeUan group with identity

element 1c. A symmetric bicharacter on G is a map /3-. G xG -* K' into the multiplicative
group of the field such that

(1) 0(ab, c)=i3(a, c)0(b, c),
(2) /9(a, 6c)=^(a, 6)/?(a, c), aDd
(3) /3(a, 6)/?(6, a) = 1 for aU a, fr e G.
A K-vector space V is G-graded if it is the direct sum V = Qaec va °^ subspaces

mdexed by the elements of G. If v   Va for some a   G, then v is homogeneous of degree a.
Assume ^ is a fixed symmetric bicharacter on a group G. A Lie color algebra (g, G, 0)

is a G-graded vector space 0 = ©ago 8a with a K-bilinear bracket [, ]:fl x fl- g such that
(1) [8<,, 8t]C8^, foraUa, 66G,
(2) [a-, y]=-^(6, a)[y, i], aDd
(3) [a, [y, z]] = [[x, y}, z] + 0(b, a)[y, [x, z]\, for r   fla, !/   0», and aUz  8.
When the group is the cyclic group of order 2, G = {±1} = {(-l)a | a = 0, 1}, and

i5((-l)a, (-l)t) = (-1)06, then fi is a Lie svperulgebru.
Let g((Vr, <0) = End(V) denote the K-vector space of K-linear maps from V to V with

the G-grading assigned by fll(V, ^)<, = {a-   End(V) | xVi, C V^ for aU fc   0} and with
the bracket [x, y] = xy - 0(b, a)yx for aU i   S^V, 0)^y   fl((V, ^)k. Then Ql(V, 0) =
®a6<? 8I(y'^)a wit^1 t^lts multiplication is a Lie color algebra, the so-called general linear
Lie color algebra.

A 0-skew-symmetric bilinear form is a K-bilinear map {, }:V xV -^ K such that
(1) the form (, ) on V is nondegenerate,
(2) (lo, Vt)=Oifa^6-l, aDd
(3) (v, w} = -0(b, a){w, v), for all v  Va, u  Vt.

For each a   G, define

spo(V, 0)a ={x  9l(V, 0)a | {xu, v}+0{b, a){u, xv) =OforaU u  V» and t»   V}.

Then sfo(V, 0) = ©agcBpo(V, ^)fl is a simple Lie color subalgebra of the Lie color algebra
S^V, 0).

2. THE BRAUER ALGEBRA ACTION ON TENSOR SPACE

A k-diagram is a graph with two rows of k vertices each, one above the other, and k
edges such that each vertex is incident to precisely one edge. Let »?   K. The product of
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two A-diagrams di and dy is given by placing di above d; and identifying the vertices in the
bottom row of di with the corresponding vertices in the top row of d;. The resulting graph
contains k paths and some number 7 of closed loops. Let d be the A-diagram with edges
given by the paths in the graph (with the loops removed). Then the product d^dy is given
by did: = r{'1d. The Brauer algebra Bk(r)) is the x-span of the Jb-diagrams. The K-lmear
extension of the diagram multiplication makes Bk(ri) into an associative K-algebra.

Let g = spo(V, 0), the orlhosymplec-tic Lie color alyebra. The bilinear form affords a
g-module isomorphism F-. V - > V, v i-<. (v, -) between V and its dual space V. Let
B = {vi,..., Vf{} be a homogeneous basis of V, i.e. for each 1 <:i ̂  N, v, ^. Ve, for some
c,   G. Let {v1,... ,v//} be the dual basis in V. Assume

FB=(Fij)i<ij^N, where (v,, v, }=F^, (2. 1)
is the matruc of the form (, } with respect to the basis B. Sometimes we will write Fv.,v,
instead of Fij. Let Fg1 = (^jl)i$«j$Ar be the inverse of the matrix FB. Then

N . N

^.)=EF<^'' aDd F~1(VJ')=E^:'.1U- (2-2)
}=1 «=1

Let d be a Jk-diagram. Label the top vertices (left to right) with a sequence a =
(ai, a2,..., afc) of basis elements a,   B and the bottom vertices (left to right) with a
sequence b=(bi, by,..., bk)of basis elements &,   5. Assign a weight to each edge and each
crossing of this labeled fc-diagram according to the followmg:

(1) If a horizoDtal edge (a, a') on the top has a to the left of a/, assign the weight Fa,a'
to it.

(2) If a horizontal edge (6, b') on the bottom has b to the left of b', weight it by F^,.
(3) Weight each vertical edge (a, 6) by 6^1, (Kronecker delta),
(4) Weight each crossing by -/3(£},, £y), where ̂ i is a vertex adjacent to the first edge,

and £y is a. vertex adjacent to the second edge in the crossing. Of the four vertices
adjacent to the two edges that cross, £1 and £-t should be chosen to be the last
two vertices (in order) when counting off the vertices in a counterclockwise fashion
beginning from the bottom left corner of the diagram. (Our convention is 0{v, w) =
0(c, c')wbenv Ve, w V^.)

The weight of the labeled A'-diagram, which we denote d^, is the product of the weights
over all the edges and crossings.

For a fc-diagram d, we define

(ai®...®at)»<f= ^ ^. »<>i ®---®^t,
ti,..., »»6B

where (f^» is the weight of the Jfc-diagram d with top vertices labeled by ai,... ,at and
bottom vertices labeled by ti,. .., &*.

Theorem 2.3. The map ̂  extends to a Aomomorpliism

<ir:Bt(n - m) ̂  Hom, (^0t, V8t)
of algebras where m = dimV(o), V(o) = Scec,^(c, c)=i yc ' 

and " = dim ^(
E

d)' vwv^ =

c6<7,^(c, e)=-l vc-
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3. MAXIMAL VECTORS

Let dimV(o) =m = 2r and dunV(i) = n=2s or 2s+ 1. Assume

Bo ={<i, <L<2, <;,..., <r, <;} Bi={ui, u!, U2, uS,..., u,, u;, (u.+i)}, and B= Bo UBi
(3. 1)

are bases of V(Q), V(i), and V, respectively, such that

<t», w) = (v*, w*) =0, and (v, w') =-0(w" ,v){w', v} = S^^,

for aU v, w   {<i, <2, ... , <r, ui, U2,.. ., u., (u. +i)}. It is to be understood that u, +i occurs
only when n = 2s+l and in that case u;+i = u, +i. We extend the definition of * so
that [t', )' = ti and (u*)* = Uj forall 1 < i S''and aU_l ^J $ s- Note foT aU v   .S
that v'   Va-1 whenever v   14. The matrbc units Ev,w, for v, w   B, deterinine a
homogeneous basis of fll(^, ^) with £»,»   0l(^>^)<i»-1 whenever u  Va and u/ 6 Vi. The
elements , 1., = £", » - Ev-,v, v   {<i,. .., fr, ui,..., u. } belong to spo(V, 0)^, and they
span the space f) of diagonal matrices in spo(V, /3). Let {(»} be the dual basis m f)* and
for convenience set c, =  (; and 6j = Cu, foil $ i^ r and 1 ^j ^ s. Define elements
a;, spo(y, /3), i= l,..., r+s, by

l^t$r-1,Xi = ^<., <.+l - /?(<.. > f. +l)^t;+,, t:,
Xr = ^t,,ui +i9(tr, Ul )£'";,(;,

Zr+j = 5u,, u,+, +^(Uj, Uj-+i)£u^,, u;,
' £u., u. +i + ^(U., U. +l)£'u^,, u; , ifn = 2s.

a:r+'=l^., ":., +^(":>^-i)£". -i,":' if "= 2s.

l^J ̂  s- 1,
ifn= 2s+l,

(3. 2)

The elements a;,,. r^, (i = 1,... , r+s), where t is the ordinary transpose, generate spo(V, 0)
as a Lie color algebra.

Suppose that Cp,, denotes the diagram in Bt(n - m) with a horizontal edge connecting
the pth and qth nodes on both the top and bottom, and with every other top node connected
to the one directly below it. Let p = {pi,.. ., pj-} and g = {gi,.. ., gj} be disjoint ordered

subsets ofA: = {1,. .., *}, and assume that (p, g) = {(pi, gi),..., (pj, ?, )}. Denote by -PU)
the set of all such (p, g). We assume c», » is the identity diagram, and for each (p, q)   ̂>(j"),
we let cp,, = Cp,,,, ." .'cp,,,, for j = 1,..., L*/2J. Let T? = U, P(j) where ̂ (0) = {(0, 0)}.
Theorem 3. 3. Suppose A = (Ai,..., A^, 0,... ) is an (r, s)-book shape partition (i. e.
Ar+i ̂ s)ofk- 2j for some j such that 0 ^ j $ L*/2J . Assume (g, g)   T(j) and fix a
standard tableau r ofsAape A with entries in (pUg)c. Let T<-^ and rW be the correspondmg
subtableauxofr ofsAapesA(1) = (Ai,..., Ar) and A^ = (Ar+i,... , A^)' = (A^i,. .., A^,)
respecti'veJy, where' denotes the coojug&te partition. Let \ = \i i+- . .+Ar£r+A{. +i5i+- - .+
>'r+, 6,   V denote the weight deterzmned by X. Then ff = 0r,p,, Cp,, yr is a maxunai vector
of weight X where yr is the Young syinmetrizer corresponding to T and 0r,p, g = wi ®- . .®Wjfc
is the simple tenser defined by

<i ift'ep
t'l ifi q
tj if i   (pUg)c and i is ID jtb row ofT<1)

Uj ifi   (p U q)c and t" is is j th row of r^2).
u, =

30



TENSOR REPRESENTATIONS FOR ORTHOSYMPLECTIC LIE SUPERALGEBRAS

Ifn = 2s and £(\W) = s, then ff" = ^^, ^yr is a maxunaJ vector of weight A0 =
A - 2X^. 6, where /??p , is the simple tensor obtained from 0r,^ by repl&cing each factor
u, with u^.

Theorem 3.4. Suppose that r+s'^k. Tbea

{Pr,p_^p_iyr I (£>?)   7', r   W5T.,. ((pUg)c)}

is a lisearly independent set of maximal vectors where 'HSTr,. ((pU q)c) is the set of all
standard tableaux with (r, s)-book shape and entries ID (p\Jq)e.

In these theorems the Young symmetrizer yr is constructed from the row and column
groups of r as in [BL]. What is meant by a maximal vector is a common eigenvector for
t) with eigenvalue given by A = Aifi + .. . + ArCr + A^+^i + . .. + >'r+, 6,   y which is
kUled by all the elements a:., » = 1,. .., r+s in (3. 2). An u-reducible spo(V, ̂ -module has a
unique (up to scalar multiple) maximal vector, so finding the maximal vectors helps locate
the irreducible components of V®k.

4. THE flpo(V, ^)-MODULES TA AND THEIR CHARACTERS
Suppose that |n - m| ̂  k. Then by the work of Wenzl [W] we know that the Brauer

algebra Bjk(n - m) is semisimple and has simple summands indexed by the partitions m the
set

Bt={Ahfc-2A|A=0, l,..., Lfc/2J}.
More specifically, there is an isomorphism

F:Bt(n-m)- ® MdjK),
A B»

where M^(K) denotes the full matruc algebra of d\ x dx matrices with entries m K.
For each A   Bt and 1 ^ P, Q <, d\, let E^>Q denote the matrix unit in the Ath block

of @^^ M^(K) which has a 1 as its (P, Q) entry and zeros everywhere else. Suppose
^P, Q = r~l(^, <?) and define

Txl = V^e^ (4. 1)

where A' denotes partition conjugate to X. The space T>' is an sfo(V, 0)-modu\e since the
action of apo(V, 0) on V®* coinmutes with the action of e^, Q   Bt(" - m); however, the
module Tx' may be (0).

Let us recaU the definitions of certain symmetric functions. If Y = {yi,... ,yg} is a
set of commuting variables ordered by yi <y^ < ... < y,, then a column-strict tableau of
shape \lp, is a fiUing of the boxes in the Ferrers diagram of A with y, 's such that the y's are
weakly mcreasug (left to right) along rows and strictly increasmg down columns. GiveD a
column-strict tableau T of shape A define yr to be the product over all boxes of \ of the
elements y, in the boxes. Then the skew Schur function is given by

^(Y)=^yT,
T

where the sum is over all column-strict tableaux T of shape A//i. The (ordinary) Schur
function s\(Y) is the skew Schur function S), /^Y) with p = 0.
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The hook Schvr functions defined in [BR] and [Se] (see also [M], I §3, Ex. 23-24
and I §5, Ex. 23) describe the characters of the ureducible gt(m, n)-modules appearing in
V9k (and also the fl((V, ^)-iireducibles in V9k see [Mo]). Assume as in (3. 1) that Bo =
{ti, <L<2, <*2,..., <r, t?} ("»= 2r), Bi = {ui, uI, U2, u;,..., u., u:, (u,+i)} (n= 2^ or 25+1),
and B = Bo U Bi are bases of V(Q), V(^ and V, respectively. Order the variables z»,
6  B= BoUBi by

Z(, <Z«^ < -.. < Z«, < 2«; <^u, <2u^ < ... < 2u, < ^u: < (^u. +i).
A bitableav of shape A is a filling of the Ferrers diagram of A with elements of B such that
(1) the portion of the diagram filled with z<'s is the diagram of a partition /< C A;
(2) the 2('s are weakly increasmg (left to right) along rows and strictly increasing down

columns; and
(3) the 2u 's are weakly increasing down the columns and strictly increasing across the rows.
Given a bitableau T of shape A, let ZT be the product of the elements z» in all the boxes of
A. Then the hook Schur function is given by

S^Z)=^ZT,
T

where the sum is over all bitableaux T of shape A.
Let Zo= {zi, \ be Bo}. A sympleciic tableau of shape A is a filling of the boxes in the

Ferrers diagram of A with Zt's, b e BQ, such that
(1) the z»'s are weakly increasing (left to right) along rows and strictly increasing down

columns; and
(2) the elements z<, and Zf never appear m a row with number greater than i.
For a symplectic tableau T of shape A define ZT to be the product of the elements z» in all
the boxes of A. The symplectic Schvr function is the sum,

SPA(ZO)=EZT- (4-2^
T

over all the symplectic tableaux T of shape A.
Assume q = Card(y) is sufficiently large, i.e. q » r, and define functions sc^(Zo) by

the identity
_ 

ni <.<j<?(l-y'!/j)
^ sc, (ZMY) = n^^i:^)- (4-3)

When A is a partition such that the number of parts £(\) <: r, then sc\(Zo) = sp\(Zo},
and these polynomiaJs describe the characters of the symplectic group Sp(2r, C). The
combinatorics of these functions is discussed in [Sul].

Analogoiisly, ifZi = {z» |6e J3i) and g » s, there are functioiis sb\(Zi) defined by
the identity

^^(Z^(Y)=^-^-^^^ H (l-y.-%). (4. 4)
T iit Biiij=i^-ziy^i<r<7<,

When Card(Bi) isodd and A is a partition such that £(\) < s, then the polynomials sbx(Zi)
describe the characters of the orthogonal group 50(2s+l, C) and its Lie algebra so (2s+1).
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Theorem 4.5. Let Z be the set of variables {zi,} indexed by the elements b§B= BoUBi.
Tbea the followmg identities give equivalent defmitions of polysomials sc\(Z):

(1) sc^Z) = ^ ( S;(-l)t"/2c^ ) s, (Z),
'C£A

where s,, (Z) denotes the book Scbur fuactioD labeled by ̂ , aad c^ is the Littlewood-
JlicAardsoD coe&cient. The inDer sum is over aU partjtjons of the form v =
(ri - l,..., rp - 1 I ri,..., rp), ri $ g- 1, ui Frobenius Dotatioo.

(2) sc^Z) = S ( E(-1)IPI/2C^ I ST'(Z)'
rCA' \ p

where the inner sum is over all partitions of the form p = (*"i + 1,.. ., *'p +
1 I ri,..., rp) , ri ̂  g-1, in Frobeaius notation.

^E.^<n=t;5J:^:;;A. <I-w>'
^^^^^^^-^
(5) SCA(Z) = 5 det (A^. -, -, +2(Z) + /»A. -+i(^)).

where A<(Z) = S(<)(^), and (t) is the partition oft with just one part.

(6) .

1^J(CA;-^+2(Z)-C^-J(Z))SCA(z)=5detl"""" '+(e^(Z)-e^-. ^(Z))J'
where e<(Z) = 5(i<)(Z), and (li) is the partition of £ with aH parts equal to 1.

(7) scx(Z) = det (e^-. +j. (Z) - e^-, (^)).
(8) scx(Z) =^sc^Zo)sx'f^'(Zi),

CCA
where syi^(Z\) is the skew Scbur functioD in the variables z», t   Bi.

(9) scx(Z) = ^ sb^'(Zi)sA/^(^o),
ItCX

where s^/^Zo) is the skew Scbur fuaction in tbe variables Zt, be Bo.

Assume now that 2». = z^ for 6   B, (in particular, 2u.+i = 1). Then using bichar-
acters that involve weighted traces of diagrams from Bt(n - m) together with Theorem 4.5
we prove

Theorem 4.6. Assume |r» - m| >, k, and for X\-k- 2h, A = 0, 1,..., L*/2j, let Tx be
tbesfo(V, 0)-module V9ke^Q (compare (4. 1)). Then the character ofTX is the functioo
sc\(Z) defined m Tbeorem 4. 5.
Remark 4. 7. It foUows immediately from the defimtion of the skew-Schur functions, the
definition of scx(Zo), and Theorem 4.5 (8) that the functions sc^Z) can be expressed as
a sum over monomiais corresponding to certain tableaux which have a symplectic part and
a row-strict part. It is this mterpretation which allows us to develop an insertion scheme
modeling these functions.
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5. AN INSERTION SCHEME FOR SPO-TABLEAUX

An vp-down tableau of length k and shape A is a sequence A = (A°, A1,..., A*) of
partitions such that A° = 0 and A* = A and A* is obtamed from A* ~l by either adding or
removmg a box for each i" = 1,... , fc. An up-doum (r, n)-tableau (or when r and n are fixed,
simply an vp-down tableau) is an up-down tableau A = (0 = A°, Al,..., At = A) of length k
and shape A such that each A* is an (r, n)-hook shape partition (i.e. A^^ $ n).

Let Bo = {fi, ^,..., <r, <;} and Bi = {ui,..., Un} and let B = BoUBi. Here we do
not need to distmgiiish between the cases that n is even or odd. Order B as follows:

B={<1 <^ «2 «S < ... <tr <^ < ul <... <""}.

An fipo(m, n)-siandard tableau of shape A is a filling of the boxes in the Ferrers diagram of
A with entries from B such that

(spo. l) the subtableau U of T consistmg of all the boxes with entries from Bo is a
column-strict tableau of partition shape, and the entries in row »' are ̂  f, for each row m U,

(spo.2) the skew tableau T/U is row-strict.
Let Wt be the set of words of length k in the alphabet B and Pk the set of pairs (T, A)

consisting of an spo(m, n)-standard tableau T of shape A and an up-down (r, n)-tableau
A = (A°, Al,..., At) of length k and shape A. ID [BLR] we prove that there is a bijection
between Wt and Pk which can be described as follows:

Let T be an fipo(m, n)-standard tableau, and assume a   B. We define an algorithm
consisting of a sequence of steps which inserts a into T to yield a tableau (a -> T).

(1) Start with 6 = a and i= j =1.
(2) If 6   Bo, then insert b into the tth row of T as follows: If there is an entry m

row i which is greater than 6, then displace the leftmost such entry and insert 6
into its box except in the following case. If 6 = f, and there is an t^ in the zth
row, then replace the leftmost f* m the row with (». and remove the entry in the
(i, Imposition (which is necessarily a <, ) making it an empty box. If there is no
entry m the t'th row which is greater than 6, then adjoin b to the end of the row.
If 6   Bi, then insert b mto the jtb column as follows: If there is an entry in
the jth column which is greater than 6, then displace the topmost such entry and
msert b into its position. If there is no entry m the j th column which is greater
than b, then adjoin 6 at the end of the column.

(3) Set b equal to the displaced entry and change f to p+ 1 and j to q+1 where (p, q)
was the position of the displaced entry. Repeat step (2) until an entry is adjomed
to the end of a row or a column, or an empty box is created.

(4) Let (a -* T)' be the result of steps (1)-(3). Set (a^T) = (a ̂  T)' if (a -»T)' is
a tableau, and (a -> T) = jeu((a -» T)/) if(a -> T)' is a tableau with an empty
box where "j'eu" is the "jea de iaquin".

For each k, define maps fipO t: Wt -<. 'P* by

(1) Bp0 y(w) = (0, (0)), where w is the emptyword;
(2) Ifw= wr--WtisawordoflengthA;, thenspO t(w)= (Ti, (A°, A1,.. -, At)) where,

ifap0 t. i(wi... wt-i) = (Tt-l, (A°, Al,..., At-1)), then T* = (w* -Tt-1) and

Xk is the underlying partition of Tk.
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Theorem 5. 1. Tbe map spo,, : Wt -r 7:>t is a bijection.
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