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1. INTRODUCTION

The vexillary permutations in the symmetric group have interesting connections with
the number of reduced words, the Littlewood-Richardson rule, Stanley symmetric func-
tions, Schubert polynomials and the Schubert calculus. Lascoux and Schiitzenberger [13]
have shown that vexillary permutations are characterized by the property that they avoid
any subsequence of length 4 with the same relative order as 2143. Macdonald has given
a good overview of vexillary permutations in [15]. In this paper we propose a definition
for vexillary elements in the hyperoctahedral group. We show that the vexillary elements
can again be determined by pattern avoidance conditions.

We will begin by reviewing the history of the Stanley symmetric functlons and es-
tablishing our notation. We have included several propositions from the literature that
we will use in the proof of the main theorem. In Section 2 we will define the vexillary
elements in the symmetric group and the hyperoctahedral group. Finally we state and
prove that the vexillary elements are precisely those elements which avoid 18 different
patterns of lengths 3 and 4. Due to the quantity of cases that need to be analyzed we
have used a computer to verify a key lemma in the proof of the main theorem. The
definition of vexillary can be extended to cover the root systems of type A, B, C, and
D; in all four cases the definition is equivalent to avoiding certain patterns. We conclude
with several open problems related to vexillary elements in the hyperoctahedral group.

Let S, be the symmetric group whose elements are permutations written in one-
line notation as [w;,ws,...,wy). S, is generated by the adjacent transpositions o; for
1 < i < n, where o; interchanges positions 7 and 7 + 1 when acting on the right, .e.,
[ ,wi,wi+1,...]a,- o= [ ,w,~+1,w,~,...].

Let B, be the hyperoctahedral group (or signed permutation group). The elements of
B, are permutations with a sign attached to every entry. We use the compact notation
where a bar is written over an element with a negative sign. For example [3,2,1] € Bs.
B, is generated by the adjacent transpositions o; for 1 < i < n, as in S,,, along with o
which acts on the right by changing the sign of the first element, i.e., [wy, w2, ... ,wy]oo =
(@7, ws, - - - W
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If w can be written as a product of the generators 0,04, - - - 0q, and p is minimal then
the concatenation of the indices a;a, .. -@p is a reduced word for w, and p is the length
of w, denoted I(w). Let R(w) be the set of all reduced words for w. The signed (or
unsigned) permutations [wy, ... ,w,] and [wy,... ,w,,n+1,n+2,.. .] have the same set
of reduced words. For our purposes it will useful to consider these signed permutations
as the same in the infinite groups So, = US, or B, = UB,,. )

In [19], Stanley gave a formula for the number of reduced words for a permutation
w € Seo in terms of f* the number of standard tableaux of shape )\, namely

#R(w) = oy f> (1.1)

where the sum is over all partitions A of /(w) and the coefficients o} are non-negative in-
tegers. Bijective proofs of (1.1) were given independently by Lascoux and Schiitzenberger
[12] and Edelman and Greene [4]. Reiner and Shimozono [17] have given a new interpre-
tation of the coefficients o) in terms of D(w)-peelable tableaux.

Stanley also conjectured that there should be an analog of (1.1) for B,. This conjecture
was proved independently by Haiman (7] and Kraskiewicz [8] in the following form:

#R(w) = Brg" ‘ (1.2)

where the sum is over all partitions of /(w) with distinct parts, g* is the number of stan-
dard tableaux on the shifted shape A, and the coefficients 3} are non-negative integers.
The coefficients o, and 3 in (1.1) and (1.2) can be used to define symmetric functions
which originally appeared in [19]. Let s, be the Schur function of shape A and let Q) be
the @-Schur function of shape A. See [14] for definitions of these symmetric functions.

Definition . For w € S, or B, respectively, define the Stanley symmetric function by
Gw = Z a,’),s,\
F, = Z ,B;\;QA

The Stanley symmetric functions can also be defined using the nilCoxeter algebra of S,
and By, respectively(see [5] and [6]). The relationship between Kraskiewicz’s proof of (1.2)
and B, Stanley symmetric functions are explored in [10]. See also [3, 11, 20] for other
connections to Stanley symmetric functions. The functions F,, are usually referred to as
the Stanley symmetric functions of type C because they are related to the root systems
of type C. The Weyl group for the root systems of type B and C are isomorphic, so we
can study the group B, by studying either root system. We extend the results of the
main theorem to the root systems of type B and D at the end of Section 2.

We will use these symmetric functions to define vexillary elements in S, and B,.
The Stanley functions F, can easily be computed using Proposition 1.1 below which
is stated in terms of special elements in B,. There are two types of “transpositions”
in the hyperoctahedral group. These transpositions correspond with reflections in the
Weyl group of the root system B,. Let t;; be a transposition of the usual type i.e.

(1.3)
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[..,wi...,wj,...]Jt;; = [...,wj,...,wi,...]. Let s;; be a transposition of two ele-
ments that also switches sign [... ,w;,... ,wj,...|s;j =[... ,T5,... ,T;,...]. Let 7, be
a transposition of either type. A signed permutation w is said to have a descent at r if
wr > Wr+1.

Proposition 1.1. [2] The Stanley symmetric functions of type C have the following
recursive formulas:

Fw = Z Fwt"t,',- + Z Fwt,-,,s.', (14)
o<ikr 0<i
l(wtrstir)=l(w) l(wtrssir)=l(w)

where T is the last descent of w, and s is the largest position such that ws < w,. The
recursion terminates when w is strictly increasing in which case F, = Q) where \ is the
partition obtained from arranging {|w;| : w; < 0} in decreasing order.

For example, let w = [4,1,2,3]. Then r = 2 since w, > w3 is a descent and ws < wy,

and s = 3 since w3 < wy < wy. This implies wt,, = [4,2,1,3] and (1.4) we have

Flan33 = Flaizsiste + Fla33)tsse = Fpans + Fasia) (1.5)
Continuing to expand the right hand side we see [4,3,1,2] is strictly increasing so
Figzig = Qua) and Fpaia = Fpaisess = F5a134 = Q2 Hence, Fliisq =
Q3 + Qs,2)- .

Note that {(wt,,) always equal [(w) — 1 in Proposition 1.1 because of the choice for 7
and s. If l(wt,s7ir) = l(w), then [(wt,s7ir) = l(wtrs)+1. The reflections 7;, which increase
the length of wt,; by exactly 1 are characterized by the following two propositions.
Proposition 1.2 ([16]). If w € So or B and i < j, then l(wt;;) = l(w) +1 if and only
if

e w; < Wj
and no k ezists such that

e 1 <k<jandw; <wg<wj.

Proposition 1.3. [2] If w € B, and i < j, then l(ws;;) = l(w) + 1 if and only if

o —w; < w; and —w; < w; ‘

e ifi# j, either w; <0 or w; <0,
and no k ezists such that either of the following are true:

e k<iand —wj < wg < w;

e k<jand —w; < wg < wj.

2. MAIN REsSULTS

In this section we give the definition of the vexillary elements in S, and B,. Then we
present the main theorem. The proof follows after several lemmas. '

Definition . If w € S, then w is vezillary if G, = s, for some shape A - {(w). Similarly,
if w € B, then w is vezillary if F, = Q) for some shape A - [(w) with distinct parts.
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It follows from the definition of the Stanley symmetric functions (1.3) that if w is
vexillary then the number of reduced words for w is the number of standard tableaux of
a single shape (unshifted for w € S, or shifted for w € B,).

For Sy, this definition is equivalent to the original definition of vexillary given by
Lascoux and Schiitzenberger in [13]. They showed that vexillary permutations w are
characterized by the condition that no subsequence a < b < ¢ <. d exists such that
wp < wy < we < wq. This property is usually referred to as 2143-avoiding. Lascoux and
Schiitzenberger also showed that the Schubert polynomial of type A, indexed by w is a
flagged Schur function if and only if w is a vexillary permutation. One might ask if the
Schubert polynomials of type B, C or D indexed by a vexillary element could be written
in terms of a “flagged Schur @-function.”

Many other properties of permutations can be given in terms of pattern avoidance. For
example, the reduced words of 321-avoiding [1] permutations all have the same content,
and a Schubert variety in SL,/B is smooth if and only if it is indexed by a permuta-
tion which avoids the patterns 3412 and 4231 [9]. Also, Julian West [21] and Simion
and Schmidt [18] have studied pattern avoidance more generally and given formulas for
computing the number of permutations which avoid combinations of patterns. Recently,
Stembridge [20] has described several properties of signed permutations in terms of pat-
tern avoidance as well.

We will define pattern avoidance in terms of the following function which flattens any
subsequence into a signed permutation.

Definition . Given any sequence a;a,...a; of distinct non-zero real numbers, define
fi(a1a; .. .ax) to be the unique element b = [b,... ,b] in By such that

e both a; and b; have the same sign.
e for all ¢, j, we have |b;| < |b;] if and only if |a;| < |a;|.

_ For example, 1(6,3,7,0.5) = [3,2,4,1]. Any word containing the subsequence
6,3,7,0.5 does not avoid the pattern 3241. :

Theorem 1. An element w € By, is vezillary if and only if every subsequence of length
4 in w flattens to a vezillary element in By. In particular, w is vezillary if and only if it
avoids the following patterns:

321 321 321 321 312
231 132 4123 4123 3412
3412 3412 3412 3142 2341
2413 2341 2143

(2.1)

This list of patterns was conjectured in [11]. Due to the large number of non-vexillary
patterns in (2.1) we have chosen to prove the theorem in two steps. First, we have verified
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that the theorem holds for Bg, see Lemma 2.1. Second, we show that any counter example
in B, would imply a counter example in Bs.

Lemma 2.1. Let w € Bs, then w is vezillary if and only if it does not contain any
subsequence of length 3 or 4 which flattens to a pattern in (2.1).

See the appendix for an outline of the code used to verify Lemma 2.1.

Lemma 2.2. Let w be any signed permutation. Suppose w;lwiz ... w;, s a subsequence
of w and let u = fi(w;, w;, . .. w;, ). Then the following statements hold:

1. If the last decent of w appears in position i, € {iy,... ,ix} then the last descent of
u will be in position r.

2. If in addition, w;, < w;, and i is the largest zndex in w such that this is true then
us < u, and s s the largest indez in u such that this is true.

3. If v =wry;, then fi(v;, ...v;) = fi(wy, ... wy,) - Tjx where 7,3, and Tj; are transpo-
sitions of the same type.

One can check the facts above follow directly from the definition of the flatten function.

Lemma 2.3. For any v € By and any 0 < ¢ < r, if [(vt;;) — l(v) > O then there ezists
an index k such that i < k < r, v; < v < v, and l(vy,) — l(v) = 1: Similarly, if
l(vsir) — I(v) > O then there ezists an inder k such that either

e k<r, —v; <v <, and l(vty,) — l(v) =1, or

e k<i, —v, <vg <, and l(vsir) — I(v) = 1.

Proof. If l(vt;;) —1l(v) > 0, pick k such that v is the largest value in {vy < v, : 1 < k <rT}.
Then no j exists such that k£ < j < r and vx < v; < vy, hence l(vt,) — I(v) = 1.

Say l(vs;r) — I(v) > 0. If there exists k < r such that vy < v,, chose k such that v
is the largest value in {vx < v, : k < r}. Then no j exists such that £ < j < r and
vk < vj < vy, hence I(vtg,) —I(v) = 1. On the other hand, if no such k exists, then choose
k be such that v is the smallest value in {vx > —v, : kK <i}. Then no j < r exists such
—vx < vj < v, and no j' < k exists such that —v, < vj < v, hence l(vsg,)—l(v) =1. O

Lemma 2.4. Given any w € By, and any subsequence of w, say w; w;, ... w;,, let v =
A(wywi, .. wy,) € By, If Ywty ;) — (w) = 1 then l(vty) — I(v) = 1. Similarly, if
Hwsi; i) — Uw) =1 then l(vsj) — l(v) = 1.

Proof. If l(wt;, ;,)—1(w) > 1 then w;; < w;, so v; < v since the flatten map preserves the
relative order of the elements in the subsequence and signs. Therefore, I(vt;x) —I(v) > 1.
If I(wt;; ;) — l(w) = 1 then no i; < m < 4, exists such that w;; < wm < w;,. This in
turn implies that no j < m < k exists such that v; < v, < vk, hence I(vtjr) — I(v) = 1.

If l(wsy; ;) — l(w) > 1 then —w;; < w;, and —w;, < w;; s0 —v; < v and —v; < v;
since the flatten map preserves the relative order of the elements in the subsequence
and signs. Also, if i; # i then either w;; < 0 or w;, < 0 so either v; < 0 or v < 0.
Therefore, I(vsjt) — I(v) > 1. If l(ws;;;,) — l(w) = 1 then no m < 14 exists such that
—w;; < Wy < Wj;, and no m < i; exists such that —w;, < wy, < w;;. This in turn
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implies that no m < k exists such that —v; < v, < v, and no m < j exists such that
—Vk < U < vj, hence (vsj) — I(v) = 1. O

Lemma 2.5. Given any w € By, if w is non-vezillary then w contains a subsequence
of length 4 which flattens to a non-vezillary element in By.

Proof. Since w is non-vexillary then either F,, expands into multiple terms on the first
step of the recurrence in (1.4) or else F,, = F, where v is again non-vexillary. Assume
the first step of the recurrence gives

Fy,= Fwt,m, + Fwt,,fj, + other terms

Let a : {1,2,3,4} — {¢,7,7,s,n + 1} be an order preserving map onto the 4 small-
est distinct numbers in the range. Let w' = fl(wa(1)Wa(2)Wa(3)Wa(s)). By Lemma 2.4
l(wl[ta—l(,.)a—l(s)][‘ra—l(i)a—l(r)]) = [(w') and l(w’[ta—l(.,-)a—l(s)][Ta—l(j)a—l(r)]) = [(w'). There-
fore, the recursion implies

Fw’ = Fw

Hence, w' € B, is not vexillary, and it follows that w contains the non—vexillary subse-
quence Weo(1)Wa(2)Wa(3)Wa(4)- :

If on the other hand the first step of the recursion gives F, = F, then v = wt,s7;r
and v is not vexillary. Assume, by induction on the number of steps until the recurrence
branches into multiple terms that v contains a non-vexillary subsequence say v,vpv.vg. If
i,7,s ¢ {a,b,c,d} then w,wyw, wy is exactly the same non-vexillary subsequence. So we
can assume the order of the set {a,b,c,d, 1,1, s} is less than or equal to 6. Let

¢:{1,2,...,6} = {a,b,c,d,i,r,s}U{n+1,n+ 2}

be an order preserving map which sends the numbers 1 through 6 to the 6 smallest distinct
integers in the range. Let w' = fl(wgq)we(2) - - - wee)) and v' = A(vga)vs2) - - - vo6))- By
construction, v’ € Bg contains a non-vexillary subsequence, hence v’ is not vexillary by
Lemma 2.1. We will use the recursion on F, to show that w' is not vexillary in Bg. From
Lemma 2.2 it follows that

c1y) T Fur 1) T other terms.

lta=1(ra=1(s)[Ta=1()a [ta=1(rya=1(s)l[Ta=1(j)a

V' = Wihgmr(r)e-1() Te1 (61 )
By Lemma 2.3, I(v) = l(wt,s) + 1 = l[(w) implies [(v') = I(w'). Therefore,
Fy = Fy + possibly other terms.

Irregardless of whether there are any other terms in expansion of Fy, w’ is not vexillary
since v’ is not vexillary. Again by Lemma 2.1, this implies w’ contains a non-vexillary
subsequence of length 4, say w,wwgw;,. Hence, w contains the non-vexillary subsequence

Wo(e)Wa(f) W(g) Wo(h)- L
This proves one direction of Theorem 1.

Lemma 2.6. Given any w € B, if w contains a subsequence of length 4 which flattens
to a non-vezillary element in By then w is non-vezillary.
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Proof. Assume w is vexillary then let w®,w® ... ,w® be the sequence of signed per-
mutations which arise in expanding F,, = F,a) = F, = ... = F_ ) using the recurrence
(1.4). This recurrence terminates when the signed permutation w(®) is strictly increasing,
hence w®) does not contain any of the patterns in (2.1). Replace w by the first w® such
that w® contains a non-vexillary subsequence and w(+?) does not, and let v = w(*1).

Say w,wywcwy is a non-vexillary subsequence in w. If 4,7, s ¢ {a,b,c,d} then v,vv.va
would be exactly the same non-vexillary subsequence. This contradicts our choice of v.
So we can assume that the order of the set {a,b,c,d, 1, s} is less than or equal to 6. As
in the proof of Lemma 2.5, let

¢:{1,2,...,6} = {a,b,c,d,i,r,s}U{n+1,n+2}

be an order preserving map onto the smallest 6 distinct numbers in the range. Let
w' = A(we)We(2) - - - We(e)) and v' = A(vgyvg(2) - - - vg(6)). To simplify notation, we also
let ¥/ = ¢~1(i), I’ = ¢7!(r), and s’ = ¢~'(s). By construction, w' € Bs contains a
non-vexillary subsequence hence w' is not vexillary by Lemma 2.1. As in 2.5 one can
show

F,, = F,, + other terms.

Since w' contains a non-vexillary subsequence and v’ does not there must be another
term in F,, indexed by a reflection 7j # Ty with l(w'tyg7jim) = l[(w'). One should
note that it is possible that i = j’ but then 7y~ and 7;,» must be different types of
transpositions. Let j = #(j'). By Proposition 1.3 and the definition of the flatten
function, we have [(wt,s7;;) — l(wt,;s) > 0. By Lemma 2.3 there exists a reflection 7%,
such that l(wt,s7kr) — l(wi,s) = 1.

We must have 7y, # 7;, since 7y, # Tjv. Hence,

F, = Fyt,,r, + Fut,,r,, + possibly other terms.

This proves w is not vexillary contrary to our assumption. O

This completes the proof of Theorem 1.

The definition of vexillary can be extended to Stanley symmetric functions of type B
and D. These cover the remaining infinite families of root systems. For these cases, we
define vexillary to be the condition that the function is exactly one Schur P-function. The
signed permutations which are B and D vexillary can again be determined by avoiding
certain patterns of length 4. :

Theorem 2. An element w € B, is vezillary for type B if and only if every subsequence
of length 4 in w flattens to a vezillary element of type B in By. In particular, w is vezillary
if and only if it avoids the following patterns:

21 321 2341
2341 3412 3412 (2.2)
3412 4123 4123
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An element w € Dy is vexillary for type D if and only if every subsequence of length
4 avoids the following patterns:.

132 132 321 321 321 321
2341 2341 2341 2341 3412 3412
3412 3412 3412 3412 3412 3412
4123 4123 4123 4123

(2.3)

Note, that the patterns that are avoided by vexillary elements of type D are not all
type D signed permutations but instead include some elements with an odd number of
negative signs. The proof of Theorem 2 is very similar to the proof of Theorem 1 given
above. We omit the details in this abstract.

3. OPEN PROBLEMS

The vexillary permutations in S, have many interesting properties. We would like to
explore the possibility that these properties have analogs for the vexillary elements in

By

1.

o

Is there a direct way to determine which shape A will appear in the equation F,, = Q,
if w is vexillary?

We can answer this when w is of the form where all w; have positive signs or all
have negative signs.

. Is there a relationship between smooth Schubert varieties in SO(2n + 1)/B and

vexillary elements? In particular, does smooth imply vexillary as in the case of S,?

. Is there a way to define flagged Schur Q-functions so that the Schubert polynomial

indexed by w of type B or C is a flagged Schur Q-functions if and only if w is
vexillary.

. Is there an efficient method for multiplying Schur Q-functions similarly to the rule

that Lascoux and Schiitzenberger have given for multiplying Schur functions [13]?
This question seems to have a partial solution. If there exits a permutation v € S,
which is vexillary of type C' and whose Stanley function is one of the two Schur Q-
functions then the answer is yes. However, it is not true that for any shifted shape
A there exists such a v € S,. In fact the only shifted shapes with this property are
the ones which are equivalent to a rectangle under jeu-de-taquin.
Are there other possible ways to define vexillary elements in B, so that any of the
above questions can be answered?

4. APPENDIX

Below is a portion of the LISP code used to verify Theorem 1 for Bg. The calculation
was done on a Sparc 1 by running (grind-patterns 6 ’c).
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(setf *avoid-patternsx
(1ist ’(-3 2 -1) (-3 21) ’(32-1) ’(321) °(3-12) ’(-231) ’(-132)
’(-4 -1 -23) (-41-23) (-3-4-1-2) ’(-3-41-2)
B3 -4-1+2) 7@3~41-2 (3142 (-2-34<+1) %2413
’(2-34-1) ’(2143)))

(defun grind-patterns (n type)
(flet ((helper (perm)
(if (not (eq (and (avoid-subsequences perm 3)
(avoid-subsequences perm 4))
(vex-p perm type)))
(format t "ERROR::NEW PATTERN: ~a ~J" perm)
(format t "."))))
(all-perm-tester n #’helper type)))

(defun avoid-subsequences (the-list size)
(let ((results t))
(catch ’foo
(flet ((helper (tail)
(when (member (flatten-seq tail) *avoid-patterns* :test #’equal)
(setf results nil)
(throw ’foo nil)
)))
(all-subsequences-tester (reverse the-list) size #’helper nil))
(throw ’foo t))
results))
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