
Lecture Hall Partitions

MlREILLE BOUSQUET-MELOU .
LaBRI, Universite Bordeaux 1
351 cours de la Liberation
33405 Talence Cedex, FRANCE
bousquet@labri. u-bordeaux. fr

KlMMO ERIKSSON f
Dept. of Mathematics
Stockholm University
S-106 91 Stockholm, SWEDEN
kimmo@nada. kth. se

Abstract

We prove a finite version of Euler's well-known theorem that says that any integer has as many
partitions into distinct parts as partitions into odd parts. Our version says that any integer has as
many "lecture hall partitions of length n" as partitions into small odd parts: 1, 3, 5,.._, 2n - 1. We give
two proofs: one via Bott's formula for the Poincare series of the aiBne Coxeter group Cn, and one direct
proof. This generalizes to a whole family of identities on partitions with conditions on the quotient of
consecutive parts.

1 Introduction

Ill 1748, Euler [7] published a pioneering result about integer partitions, saying that any integer has as
many partitions into distinct parts as partitions into odd parts. In other words, the generating function
for partitions ^ = (^j,.. ., /^m), with arbitrary m, such that ̂ , +1 > ^, for 1^ i'< m is

gi. i = n 1,,
, 2«+1

p .->0
(1)

where |/z| = /ii + ... + /im is the weight of ̂ . The standard way to perceive the condition ^, +1 > fii is
that the difference between two consecutive parts must be at least one. The famous Rogers-Ramanujan
identities and a score of other formulas (see Andrews's book [1]) are results of the same type, counting
partitions with conditions on the difference of consecutive parts. However, the condition in Euler's theorem
can equivalently be perceived as reqmring that the quotient of consecutive parts be greater than one. We
wiU prove that Euler's result is only one in a family of identities of this type.

Proposition 1. 1 Let k be an integer greater than or equal to 2^The generating function for integer
partitions ^ = (/2i,.. .,. /x^) wt(A arbitrary m, such that ff-u- > t+^ 4 /or 1 ^t < m, is

^Ml =]-[__
'M1-?"

where ei = 1, 62=^+1 and e,+i = fee, - e, -i /or z ^ 2.
'Partially supported by EC grant CHRX-CT93-0400 and PRO "Mathematiques et Informatique".
1PartiaUy supported by EC grant CHRX-CT93-0400.
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This result is a consequence of the enumeration of lecture hall partitions.
Suppose a lecture haK is to be biiilt with n rows of seats of heights Ai, Az,..., An placed at distances

ai, az,..., an from the speaker. If the people in the audience are of negligible height, then the condition
on the architecture for every seat to give a clear view of the speaker is that the slopes are increasing, that
is, ^- < ^2±i for !<: i < n. This justifies the following defimtion.

Definition 1. 2 Given a non-decreasing sequence of positive integers a = (01, 02,... ), an a-lecture hall
partition of length n is an n-tuple of integers \ = (Ai,..., An) satisfying

o<^<^<,.. <^.
fll 0.1 Qn

Assuming a given sequence a, we let Cn denote the set of a-lecture hall partitions of length n.

^

!_

^.

^. ^.

Figure 1: The design of a lecture haU of four rows at distances 1, 2, 3, 4 from the speaker, corresponding
to the lecture haU partition (1, 2, 4, 6).

It turns out that for the sequence a = (1, 2, 3,...), counting a-lecture haU partitions gives a "finite
version" of Euler's theorem. More precisely, for this sequence we wiU prove that a-lecture hall partitions
of length n are equinumerous with partitions into small odd parts: 1, 3,.. ., 2n - 1.

Theorem l.S For a = {1, 2, 3,...) the generating function for a-lecture hall partitions of length n is
n-1

gw = n \,..
,2«+1 .

A6£» .=0

In the limit (see Section 6 for the details), this theorem yields Euler's result. Our first proof of this
theorem, in Section 2, will be via Bott s formula for the Poincare series of the affine Coxeter group Cn-

We will then proceed with an alternative, more direct proof, which will actually give much more general
results: we will be able to enumerate a-lecture hall partitions of length n for an infinite famUy of sequences
a, taking into account the even and odd weights of the partitions, defined by

|A|e = An+An_2+An_4+... and |A|o= An_i+An_3+An_s+...,

where A, are zero for i ^ 0. Of course, \\\ = \\\e + |A|o.
In particular, we wiU prove the following refinement of Theorem 1.3:

^W.yW. = fj ̂ -L__.
.k3:""°y""°=uo i-^Ty7' (2)
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Setting x = tq and y = f-lg we obtain the following alternative formulation

l. -|A|o^A| ^ TT__1.
"q<"' = 11 1 - ta2i+1'

A £n .=0

If we introduce the new statistic s(A) = ]A|e - |A|<, and take the limit when n tends to infinity, we obtain
a refined version of Euler's identity:

^ t'Wq^ = ^ ̂ ^^"l,
It&V iiS.0

where P and 0 denote the sets of partitions with distinct parts and odd parts respectively, and £{fi) stands
for the length (the number of parts) of the partition p..

More generally, we will prove the following theorem.

Theoreni 1.4 Let a be the sequence defined by ao=0, fli = 1 and for n> 1,

02n = ^02n-l - 02n-2i
"2n+l = ka-in - 02n-l (3)

where t and k are two integers > 2. Then the generating functions for a-lecture hall partitions of even and
odd length are respectively given by

2n i 2n-l

^lAi. yiAi. _.[-]. x g^ y- 3. |A|. y|A|» ^^^^^^^^ ^ ^a:I^IAIO=yi -^^-, (4)

where the sequence a* is defined by the initial conditions a^=0, a^ = 1 and the recurrence relations (3).

Our proof works as foUows. In Section 3, we show that the enumeration of lecture haU partitions boils
down, via a certain reduction procedure, to the enumeration of reduced lecture hall partitions. In Section
4 we then describe a useful involution on the set of these reduced lecture haU partitions. The main result
is proved in Section 5, which is devoted to the sequences satisfying the relations (3) above. Finally, in
Section 6 we derive some liinit results containing Proposition 1. 1.

All proofs are omitted in this version. Details can be found in [3] and [4].

2 Bott's fonnula for Cn and lecture hall partitions

We will now presume some familiarity with Coxeter group theory (see Humphreys's book [8]), and in
particular with the finite group Cn- o----cA> and the affine Coxeter group Cn: cA>----c^o. By the
Poincare series of these groups one means the length generating functions,

CnW = E 9<(T)
»  "

and Cn(q) = ^ q1^.

»eCn

Bott [2] gave, as an application of Morse theory to the topology of Lie groups, a general formula for the
Poincare series of the affine groups in terms of the Poincare series of the finite groups and their "exponents".
For Cn this takes the following form.

Theorem 2. 1 (Bott's Formula, 1956) The Poincare series of Cn is

Cn(q)Cn(q) = (l-g)(l-g3)... (l-92n-1)'
61



Observe the similarity between the denominator and the generating function in Theorem 1.3. We wiU here
give a combinatorial argument for the equivalence between these two theorems.

The affine Coxeter group Cn can be represented by infinite permutations on 2Z as follows (see H.
Eriksson's thesis [5], or H. Eriksson and K. Eriksson [6]). Start with the real line and erect mirrors at
positions x = 0 and a; = n+ 1. Let So be the infimte set of transpositions generated by mirror images of
the transposition (-1, 1). Similarly, let s^ be the set of all mirror images of the transposition . (n, ra + 2),
and for i between 1 and n- 1, let 5, be the set of all mirror images of (t, i+1). Now Cn is the group of
infinite permutations generated by S = {5o, ^i,.. ., 5n}. Such an infinite permutation TT will be thought
of as a rearrangement of 7L written from left to right, .. . 7T(-2)7T(-l)7r(0)7T(l)7T(2). .., satisfying the two
mirror conditions 7r(-m) = -7r(m) and 7r(n +1 - m) = -7r(ra + 1 + m) for all integers m. Note that the
mirror conditions together imply the translative property T(?'+ 2n + 2) = v(i) +2n+ 2 for all i.

sl sl

U7
^1

^0 S4

Figure 2: The actions of 60, 51, 54    4 as transpositions on Z.

We will henceforth regard as mirrors also aU mirror images of mirrors, that is, the positions k(n + 1)
for integers k. A window is the set of positions between two adjacent mirrors. We wiU frequently refer to
the c/ass

{i) = {i + A(2n + 2), -?. + A;(2n +2) rfc   2Z}
of aU mirror images of a non-mirror number i. An inversion in a permutation TT is an unordered pair {i, j}
of non-mirror numbers such that i < j but i is to the right of j in TT (that is, v~l(i) > v~l(j)~). A cfass
inversion is the set of aU inirror images of an inversion {z, j},

{{i + k{2n + 2), j + k(2n + 2)}, {-t + k{2n + 2), -j + k{2n +2)} :A   Z),

and all these inirror images are also inversions. It is proved in [6] that the length of an element of Cn is
the number of its class inversions. Every class inversion can in a unique way be seen as the set of mirror
images of an inversion {i, j'} where l^j <. i <:n and j' is a member of (j), and we refer to it as an
(i, {j})-dass inversion. Thus, the length of an infinite permutation TT   Cn is

^)=EEJ'. (7r)'
1=1 J=l

where 2, j(n-) is the number of (i, (j"))-class inversions.
The finite group Cn is embedded in Cn as the subgroup of permutations such that there is no inversion

between any member of {-n, .. ., 0,.. ,, n} and any member of the complement of this set. The parabolic
quotient Cn/Cn can be viewed as the subset of permutations in Cn such that the numbers -n,.. ., 0,.. .,n
appear in that order in TT from left to right. Then every permutation TT in Cn has a unique factorization
as TTi o T2 where TTi   Cn/Cn and TT;   Cn, and its length is simply £(v) = ^(^1) + ̂ (^2); cf. Humphreys
[8, p. 123]. Thus, Bott's Formula is equivalent to

£
» C»/Cn

q1^ =
(l-g)(l-g3)... (i-g2n-i)- (5)

In order to show that Bott's Formula is equivalent to Theorem 1.3, it is therefore sufficient to iind a
bijection A from Cn/Cn to the set £" of lecture hall partitions of length n, such that (. [v) = |A(TT)|. Our
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candidate will be the n-tuple X(v) = (Ai,..., An) defined by

^=EJ... ('r)-
J=l

Clearly we have £(TT) = Ai +... +An = |A(?r)|.

Proposition 2. 2 The correspondence \ is a bijection from Cn/Cn to the set £,n of lecture hall partitions
of length n.

As observed above, this establishes equivalence between Bott's Formula and Theorem 1.3.

3 Reduction of lecture hall partitions

In, this section and the following one, fix a non-decreasing sequence a = (a,-), >i of positive integers, and
fix a positive integer n. We let C,n be the set of a-lecture haU partitions of length n, which will be called,
for short, lecture hall partitions. We will describe a way of splitting any A /^nasA=^+ i^."=i ki\w
(with partitions considered as members of an n-dimensional vector space), where ̂  belongs to a set T^n
of reduced lecture hall partitions, the X(i) constitute a natural basis of £n, and the fc, are nonnegative
integers. This implies that we can write the generating function for lecture haU partitions as

^i»i. yi«i. i-r 1
l_a;|A(->l. v|AO|o-

(igTCn »=1

We will compute in section 5 the two factors of this expression for some particular sequences a.
Given an n-tuple A = (Ai,.. ,, An)   IR", we define its D-scguence to be the n-tuple D(\) = (rii,..., rin)

given by
di = Ai and d. = A. - fal^l] for 2 ^ z^ n.

a,_i

The sequence D(X) completely defines X. Moreover, A  IN is a lecture hall partition if and only if d. ̂  0
for aU i.

For 1 ^ t< n, let
A(')=(0,..., 0, a., a.+i,..., ^) ]N".

Then D(\(<)} = (0,.. ., 0, a,-, 0,.. ., 0) and thus A<') is a lecture hall partition of length n, which wffl be
called standard. More generally, if A belongs to £", then the sum A + A(t) also belongs to £", and its
D-sequence is (di,..., d,-i, a; + d,, d,+i,..., dn) where (di,.. ., dn) = £>(A). The following lemma describes
for which A also the difference X - A(>) lies in £".

Lemma 3. 1 Let \ e Cn, and let (di,..., dn) be its D-sequence. Letl ̂ i <, n. Then X - \(i) belongs to
tin if and only if d, >. a,.

Definition 3.2 A lecture hall partition of length n is said to be reduced if its D-sequence (c?i,..., dn)
satisfies 0 <, d, < a, for 1 <, i ^ n.

Since the D-sequence completely defines the partition, there are exactly aiaa-'-On reduced lecture haU
partitions of length n. The set of reduced partitions of £n will be denoted by %". Iterating Lemma 3.1
leads to the following reduction result.
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(6)

(7)

Proposition 3.3 Let A be a lecture hall partition of length n with D-sequence (rii,..., dn). Then the map
A h-+ (/^, fci,..., An) ffiuen 6y A;,- = [d. /aj and

X=fi+^k, \W
1=1

is a bijection from £.n toTin x INn.
."Consequently, the generating function for lecture hall partitions of length n is

, |A|.,, |A[o ̂  p"(a;^)
^a" "r"u = nj=i (1 - .Fl^l. yl^-)l»)

where the polynomial Pn(a;, y) enumerates reduced lecture hall partitions:

Pn(x, y)= ^ x^'y^'.
/i6TC.

Computing this polynomial is the central problem one has to solve in order to enumerate lecture haU
partitions. In section 5, we compute it by induction on n for some particular sequences a, using the
involution on reduced lecture hall partitions described in the following section.

4 An involution on reduced lecture hall partitions
For //   %n, let ^* = (/z^,. .., ^) be the unique n-tuple such that

^-2* = ^"-2t for 71-2A; ^ 1
<-2t-l = [aSTtln-^ - ^n-2k-l for n-2A;-1 ̂  1,

where (df̂ ..., d^)is the D-sequence associated with p, '. The second equation is of course a short way to

define ^_^-r Indeed,
_ I an-2fc-l... | _ \an-2k-l

;n-2i;-l - |^---^r>-2ifc-2| = | " P'n-2k \ - P'n-2k-l-
ln-2t-2 I L On-2<;

In this expression, and always in this section, we have set /i," =^, =0ift ^ 0.
Proposition 4. 1 The correspondence ^ ^ fi* defines an involution on the set %".

We can extend the involution ̂  i-^ /i* into a bijection T from Tin x [0, an+i - 1] onto TZn+i, by defining

r^i)=(^..., ^a^-^]+i).
It is clear that T(^, i) is a reduced partition. M^oreover, as ̂  i-»- ̂ * defines a bijection on%n, Y is a
bijection from %" x [0, an+i - 1] onto T^n+i.

For convenience, let us denote the partition T(^, ?') by 77. We want to compute |r?|e and \rj\y. As
^"n-2k = l^n-'Sk, it is clear that \rj\o = |^|e. Moreover,

(8)

(9)

H, =i+\a^^\+ ^ ^_^
." ' n-2fc-l [l,n-l]

rcl"+i.. ] _^ Y- ^an-st-i.. 1 , | an-zt-i='+ IT""! +._,.£;,,,. ^IS:;"-»-21+ t::Sl^-»J -^-»-J c»)
1°;:T"-»1+ s. juz21-i'-. -»|-i"i..an-2k I n-sTTrs^L a"-2t

=. !"+ z
n-2Jb [l,n]' u"-2* ' n-2*i[2,n]

We cannot go further in this calculation without any additional assumptions on the sequence a. We study
in the next section some particular sequences for which the weight |T?[< can be very simply expressed in
terms of |^|e and |^[<,.
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5 The (fc, ̂ -sequences

{ (11)

By a (fc, ̂ )-sequence we mean a sequence a defined by the initial values a; and a; and the following
recurrence relations:

02n = ^2n-l - 02n-2 for n ^ 2
a2n+i = ka^ - azn-i for n > 1

where k, £>, 2 are two integers.
For such a sequence, and provided that an additional condition, stated later, is satisfied by the initial

value ai, we will be able to enumerate reduced lecture haU partitions. We will then compute the weights
of the standard partitions A(l), which wUl finally provide the generating function for lecture hall partitions
thanks to identity (6).

5. 1 Reduced lecture hall partitions

Let us return to the last equation of (10), and combine it with the following simple lemma for (k, l)-
sequences.

Lemma 5.1 Let i>2 and m> 0. Then

to^+1^1,
a, I L a.

We obtain

so that finally

i + k\fi\, - \fi\,
"". sii+[^1^ z

n-2t [3, n]

km if i is even,
£m otherwise.

if n is even, -

^n-tk - \lAo otherwise,

(12)

(13)

i + k\p, \, - |^|<, if n is even,
16 ~1 , 4. ^1, -|^|, if n is odd,

as soon as one of the following three conditions holds (remember that ^i   [0, ai - 1]):
GI = 1 or a; = a-^t - 1 or 03 = fli^.

Thus, we have described a bijection T : %" x [0, fln+i -1] -». TZn+i such that, if T? = T(/^, ?'), then |^|<, = |/A|,,
and \r]\e is given by (12). This implies that the polynomials Pn(2;, y), defined by (7), can be computed
inductively via the following recurrence relations:

P2n+i(z, y) = -Y^-P2n(xky, x-1) and P2n(a;, 2/) = ±Y-7--P2n-l(^y, 2-l),
with the initial condition Jo = 1- We thus obtain the following result on reduced lecture haU partitions
for (A;, ^)-sequences.

Proposition 5.2 Given a sequence a satisfying (11) and (13), (/ic generating functions for reduced a-
lecture hall partitions of even and odd length are given by:

and

^<-fll-^F

^.^n^%^
where the sequences b and b* are defined by bo = 0, 61 = 1, b\ = 0, b^ = 1, and the recurrence relations
(11).
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5.2 Standard lecture hall partitions

RecaU that the standard lecture hall partitions of length n are the A(l) = (0,.. ., 0, a,, a, +i,.. ., 0n), for
1 <:i < n. We will compute their even and odd weights thanks to the following lemma.

Lemma 5.3 For 1 <i <: n, let us define the sums E{n, i) and 0(n, i) by

£(n, t) = fl2n + 02n-2 + . . . + a2n-2<+2

and

0(n, i) = azn-i + 02n-3 + .. . + a2n-2, +l.
Then we have:

and

E(n, i) = fr. azn-. +i and 0(n, i) = b'^a-in^.

Thus the weights of standard lecture haU partitions of length 2n are given by

IA(2n-2i)le = a2"+---+a2"-2« = f;(n't+1) =6.+la2"-. for n<, <n_-iA(2"-2')j, = a^+... +a^_2, +, = 0(n, Q' = 6?+i^-. 
IOT u^ ^ n-1'

|A(2n-2'+l)|< = a^+--+a^^ = £(n, z) = &.. a2»_.. ^ ^^,
iA<2n-2'+l)|, = a2^i+... +^_2.. +i = 0(n, z) =&:+^_, 

Ior 1^^"'

and the weights of standard lecture haU partitions of length 2n - 1 are given by -

]^(2n-2. +i)|^ az^i+. -. +az^.+i = 0(n, z) =^1^-. ^i^,.
iA(2n-2'+l)|, = a2«_2+---+a2n-2.+2 = £'(n-l, t-l) =6i-ia2^_; 

Ior 1 ^^ "'

and

IA(2n-2t)le = °2n-l+---+a2n-2.+l = 0(", Q = ^i^-, for 1<. <n-JA(2»-2t)J, = ^-2+... +a2^. - = E(n-l\i) = ^:. _i Ior ^t^n-i-
Combining these results with Proposition 5.2 and Eq. (6), we obtain the generating function for lecture
haU partitions associated with these sequences.

Proposition 5.4 The generating functions for a-lecture hall partitions of even and odd length for a se-
quence a satisfying (11) and (13) are grwen 6y:

02»-t+l
2" . 1 _2" I - ixb-yt:3;iAi. yiAi. ^f7_J__ fj- l-{-c-y^

^/' "y"~=.UTr^t7 . ^i-^-+la-^-a>-1
and

2n^i i_ (a;^+>y6-1)2n-l 1 2n-l 1 _ ( a;(l«+i U"
3;|A|. y|A|. ^ 1-T ,.1 FT v:x' "y" = n i_3;i;+, yi, _, u^ i _ 3;i;»-. +, o,

;£^-i . =1 ^. -^ -y - - . =n+i J. -

°2n->

,i2n-.0-l

(14)

(15)
A ^n-i <=i i-^'+'r-1 .^>"(. i-i-- .r2 '*""1" y

where the sequences b and b' are defined bybo= 0, b^ = 1, b^ = 0, b'^= 1, and the same recurrence
relations as for a.
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Examples
1. I! k = £, then b^ = 6, for aU z > 0. The proposition above implies that the generating function for

lecture haU partitions of length n is

"rr 1 "TT l-(^+l^)<">-
,llo1 - xbl+ly1" ,, iLii i 

1 - (zo. +. yo. )4"- "=L£±iJ

For example, if we take k = 1=2, a^ =. 1 and a-s = 3, then property (13) is satisfied and we have
a, = 2z - 1, bi = z and 6,* = i-l for aU t". We obtain that the generating function for partitions (Ai,..., An)
such that

4 ^ ^2

IS

Q< -^. < -i<...<
1 - 3 - ""- 2n- 1

"^ 1 n^1 1 - (I'+ly')2"-2-1
.Vo 1 - a"+ly ^iL^ 1 - (3;2. +iy2-i)n- '

2. Ifai = 1 and az = t, we have a, = 6, for all i. Moreover, the recursive properties of the sequences
imply that if the integers i and j are equal modulo two, then

b'i+ibj =bib'j+r

This implies that all the terms occurring in the second product of (14) and (15) are equal to 1, and thus
Proposition 5.4 becomes Theorem 1.4.

6 Liniit theorenis

hi this section, we give two limit theorems corresponding to the identities (4). The sequence a is defined
by ay = 0, GI = 1, and the recurrence relations (3).

First, note that removing the empty parts of lecture hall partitions puts the set C,n in one-to-one
correspondence with the following set:

^=^(^,..., ^):m^nand0<-^-^-^-<... ^^n. j>.
"n-m+l On-m+2 an

The conditions on the partitions of Pn can be restated as

^«+1 .^ fln-m+i+1
fJ,i an-m+:

The following lemma implies that ?" C^?n+2 for aU n.

Lemma 6. 1 For i ^ 1, let us denote g, = a.+i/a,. Then the two sequences (92>)>>i ond (g2:-i):>i ore both
decreasing, and converge respectively towards 0, and 6g where

H + v/H(H - 4) __^ /> _ ^ + v/H(^ - 4)
ee = 

v 2£" and Bo = 
' v 

2fc 
-'.

Consequently, the sequence ?2n converges, when n tends to infinity, to the set D, of partitions (/KI, ..., /x^)
such that p, i > 0 and, for 2 ^ 1,

Mi+i ^ I ^e if m+!" is even,
^ ^ \ 0o if m+ i is odd.
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Similarly, the sequence 2?2n+i converges, when n tends to infinity, to the set .D, of partitions (/Xi,. .:, ^m)
such that ̂ i > 0 and, for i ^ 1,

l^i+i , I 0o if m+»' is even,
p, i \ 0e if m+ ! is odd.

Taking the Umit n -+ oo in the main theorem leads to the following result.

Proposition 6. 2 The generating function for the elements o/Pc is

3;l^l. yl^l. ^H 1x""°y""° = ^l-xa'va'''
y P. »>1

The generating function for the elements of V, is

^ a-l^l. yl^lo =yl^. =]-[:-/ .. .
l-a.., +, ^;-,-^ ' r^i-x^r

The sequences a and a' are defined by a^=l, 0-2 =t, a^ =0, a^= 1 and the recurrence relations (11).

When k = t, the two limits 6^ and Qy are equal. The sets P<; and Pg coincide, and are equal to the set of
partitions (/ii,.. ., /^m) such that ̂ -"- > <:+v^:i~4 for 1 ^t< m. We thus derive Proposition 1. 1 from the
proposition above.
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