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Abstract

This paper presents a combinatorial study of the Chinese monoid, a ternary
monoid related to the plactic monoid and based on the rewritings cba = bca = cab.
An algorithm similar to Schensted’s algorithm yields a characterisation of the equiv-
alence classes and a cross-section theorem. For this work, we had to develop some
new combinatorial tools. Among other things we discovered an embedding of every
equivalence class in the greatest one.

1 Definition and first properties

1.1 Deﬁnition

Definition 1.1 (Duchamp, Krob, [3]) Let (A, <) be a totally ordered alphabet over n let-
ters. The Chinese congruence is the congruence defined by the relation

cha =cab=bca foreverya<b<ec (1)

The Chinese monoid CH(A, <) is the quotient monoid of A* by the Chinese congruence.

For instance, Figure 1 shows the congruence class of dcba.

1.2 Schiitzenberger’s Involution

Denote by CH(A,>) the Chinese monoid built over the alphabet A supplied with the
opposite order of <, denote by (A*)° the opposite monoid associated with A® and consider
the natural morphism f from A" into (A®)° that maps every word w to its mirror image.
This morphism is compatible with the Chinese monoid structure, namely u =¢ v if and
only if f(u) =5 §(v), i.e., i defines an isomorphism between CH(A,<) and (CH(A,>))°.
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,cbda

This is the congruence graph of dcba. Each edge stands for an elemen-
tary rewriting. The thick edge between dcba and dbca means that these
words are equivalent thanks to two elementary congruences, namely
deb = dbc and cba = bea.

Figure 1: The class of dcba where a< b< ¢ < d

If A=a,b,...,z let I: (A*,<) = (A", >) be defined by Z(a) = z,Z(b) = y,..., I(2) =
a. Then # = T o} is an isomorphism between CH(A, <) and (CH(A, <))°; considerered
as an involution of the set CH(A, <), it is called Schitzenberger’s involution of CH(A, <).
For instance, Figure 2 shows a simple example of classes that are equivalent under
Schiitzenberger’s involution. Note also the symmetry of Figure 1, since the class of dcba is
invariant under Schiitzenberger’s involution.
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Figure 2: Schiitzenberger-equivalent classes: facbde and bcedfa

1.3 Standardization

cbfdae

\| cbfade

cfbade

Let w be a word over the alphabet A. We associate with it a standard word! Std(w) over
the alphabet A x N obtained by numbering all occurrences of the same letter 1,2,3. ...

from right to left. For instance, we have:

1 A standard word is a word without repetition of letters.

Std(babbaacb) = b433b3b2828161b1 .
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This standardization process is compatible with the chinese congruence. Indeed:

u=v (CH(A,<)) = Std(u)=Std(v) (CH(AxN,<)), 2)

where the order over A x N is the natural lexicographic order.

2 A representation of the Chinese monoid

2.1 Chinese Staircases

A Chinese staircase is a Ferrers diagram of shape (1,2, ...,n) filled with nonnegative
integers,? that we draw in the following way:

3 2 2 - |e

2 1 1 |d

d c b a

We index the rows (resp. the columns) of the diagram with an initial segment of A
from top to bottom (resp. from right to left.). We denote by 0,4 the cell in row «, column

B, by o, the cell g44.
A word w is said to be a Chinese row of type z if and only if it has the following

structure
w = (za)"...(zy)™ (2)™

where a, b, . .., z denotes the initial segment of A ending with z, and where every n, belongs
to N. Now let o be a Chinese staircase. We associate to every row of o a Chinese row in
a natural way. Indeed, if the z*® row of ¢ has the form

Oz Ozy Oza

2 y a
then the associated Chinese row is just the word equal to
(za)7=2... (2y)7™ (2)°

A word w is a Chinese staircase word if and only if it can be written as w = [ ly... [,,
where the [, are Chinese rows of respective increasing types a,b,...,z.

Definition 2.1 The row-reading of a Chinese staircase o is the word w obtained by con-
catenating all Chinese rows associated with the rows of o from top to bottom.

We can also define the column-reading of a Chinese staircase as a dual notion.

2 We omit zeros for clarity.
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2.2 The lnsertion Algorithm

We shall now describe an algorithm that sends a word of A* to a Chinese staircase. This
is a simple adaptation of Schensted algorithm (Schensted, [12], Knuth, [5], Knuth, [6]).
The basic step builds upon a Chinese staircase o and a letter a a new Chinese staircase
denoted by o.a. Hence, starting with the empty staircase ¢, we build step by step a staircase
(---((e-a1).az) - - -).ax corresponding to the word a;az...ak.

Algorithm 2.2 (The insertion algorithm)
Let o be a staircase, a a letter to insert in o. Start with ¢ = (¢/, R;), where R, is the
~ bottom row of o, = the greatest letter of o.

R,
z a z a

1. fa > z, thenc.a =0.

2. If @ = z, then 0.a = (¢/, R)) where R] is obtained from R, by adding 1 to cell o,:
Ry R}

oz Cza — oz+1 Cza

z a z a

3. If & < z, let 3 be the greatest letter whose cell on R, does not contain 0 or if such a
B does not exist, set 3 = a. Three distinct cases appear:

3a. If o > 3, then g.a = (¢'.a, R,).
3b. If a < B < z, then 0.a = (¢’.3, R}), where R] is obtained from R, by adding
1 to cell 0., and substracting 1 from cell o.4:

R, R

0 — 0 | o:8 Oza — 0 — 0 | oz8-1 oza+l

z B8 a z B8 a

3c. If a < B = z, then .a = (¢/, R)), where R] is obtained from R, by adding 1
to cell 0., and substracting 1 from cell o.:

R ' R,

oz wee Cza aee —— cz—1 e Cza+l

=4 a z a

Example 2.3 On the alphabet a,b.c, words cba. cab, bca map to the same staircase:

a

1 b

1 c
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Basically, inserting a lettre o into a staircase can only modify some specific cells of the
staircase, based upon the set of exposed entries in the staircase.

Definition 2.4 Let o be a staircase. An exposed entry is a cell holding a non zero value
such that all cells to its west and to its south-west are empty (that is: a oap such that
Oap > 0, 045 =0 for vy >'a and § > 3, and 0,5 = 0 for § > o). An exposed letter is a
letter that indezes a column corresponding to an exposed entry.

Definition 2.5 Let & be the set of Chinese staircases over A. The insertion algorithm
defines an action A of the monoid A* on X: '

A: L x A" — z
(o, w) bt ow=(---((0.a1).a2) - -).a,
To further the analogy with Schensted algorithm, exhibiting a good Q-symbol and finding

a kindred of Robinson-Schensted correspondence looks enticing. Such a correspondence
exists, but this subject will not be broached here.

Definition 2.6 We denote by C(c) the set of words w of A* such that ew = 0. We also
denote by C(w) the Chinese classe of w. Theorem 2.7 fully justifies the use of a similar
notation.

2.3 The Cross-Section Theorem

Theorem 2.7 The Chinese staircase words form a cross-section of the Chinese monoid.
More precisely:

— Property 1: For any words v and w for which the insertion algorithm yields the same
staircase o, v and w are equivalent under the Chinese congruence.

— Property 2: For any words v and w equivalent under the Chinese congruence, for any
staircase o, o.v = O.W.

— Property 3: For any t and t' staircase words, t = t' implies t =1t'.

Let o be a staircase, v, w two words. By Property 2, if v = w, 0.v = o.w. So action A
is compatible with the Chinese congruence, and the quotient .A/= is well defined. Consider
o, another staircase. By Theorem 2.7, C(0,) is a Chinese class, so the staircase 0.0; = o.w
is constant for w € C(oy).This law defines an action of T on itself which is isomorphic to

A/= thanks to the isomorphism ¢ — C (o). Finally, (X,.) is isomorphic to the Chinese
monoid Ch(A, <).

3 Backtracking the Insertion Algorithm

We now consider the standard case, where all letters used in a given word are distinct.

3.1 Link Representation

Definition 3.1 Let o be a standard staircase. Use o to define a partial involution p of A:
for every non-empty 043, let p ezchange o and 3.
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The link representation A(o) of o is a representation of p that we obtain as follows:
dispose all letters involved in o in lezicographic order and link two letters whenever they
appear together in o. Link a letter on the diagonal with itself. For instance,

if o= 2 LA then \(o) = abcde.
: 3 el
1 e

e d c b a

Obuviously, the link representation (o), .the corresponding standard staircase o and the cor-
responding involution p are equivalent representations, the link representation being more
compact. For instance, recalling Figure 1 and Figure 2:

\(cbda) = abed, A(bcedfa) = abcdef, A(cbdefa) = abcdef.
(el Ly i
Definition 3.2 Let o be a standard staircase, p the corresponding involution.
A great letter a verifies p(a) < a, a small letter a verifies p(a) > @, and a neutral letter a
vertfies p(a) = a.
In the staircase representation, the great letters inder rows that contain a 1, the small
letters indez columns that contain a 1, and the neutral letters occur on the diagonal.

Example 3.3 Take the class of abdc, of link representation abcd. That is, a and b are
neutral, ¢ is small, d is great. hcw

3.2 A Converse of the Insertion Algorithm

In order to find all the words of C(c), we need to find back all the staircases that can occur
in the sequence €.a;..... ag.

Definition 3.4 Let o be a standard staircase. A deletable entry is a non empty cell such
that all cells to its south-west are empty. A deletable letter is a letter that indezes a column
corresponding to a deletable entry.

Algorithm 3.5 (Converse of the insertion algorithm 2.2)
Let o be a staircase, 0.; a deletable entry of o. The algorithm defines a set of rewriting
rules o —*Tas follows:

— Rule 1: if § is on the diagonal of o, T is the staircase derived from o by substracting
one from the deletable entry os.

— Rule 1’: if § is not on the diagonal of o, 7 is the staircase derived from o by sub-
stracting one from the deletable entry o.s and putting a 1 on the diagonal in o,.

— Rule 2;: let 5 be a deletable letter such that § > &. This implies that 4 is higher than §
in o, and that the deletable entry o.,5 satisfies ¥ > 0. Let & be the staircase obtained
from o by removing all the rows under row 7, inclusive. Choose 7 recursively by
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& — 7, and build 7 by adding at the bottom of 7, first the row obtained by putting
; :

a 1 in cell 0 ; and substracting 1 from the cell 0.5, then the rows of o of indices

greater than 7.

Formally, & is defined over A’ = {a € A| «a < v} by da3 = 0ap for any a < 7,
any 8. And similarly: 7,5 = 74p for any & < 7, any B; 7,5 = 0, for any 8 but 4, ;
Tys = Oy — 1; 7.5 = 1; Tap = 0Oap for @ =7, any B but 6, 4; Tap = 04p for any a'> 7,

any (3.
Figure 3 shows a graphic explanation of what is going on.

We define the set (o — .) as follows:

(o - ) ={reX| ch)T} if § is a deletable letter of o,

(o —3 ) =0 if o is not a deletable letter of o.
o ’ T
95§ _6..) 0';13—1
s ¥ 1 oys—1 ¥
z § ) a z § s a

Figure 3: How Rule 2; works.

Example 3.6 Consider the Chinese staircase word cbdfega. We display in Figure 4 the
staircases obtained from cbdfega by applying Algorithm 3.5.

This algorithm is a converse of the insertion algorithm. More precisely, we have the
following theorem. '

Theorem 3.7 Let o be a standard staircase over n letters. Define:

Alo) = {6€A| 3T ey, o=0"46},
cal! = {d€Z| Ja€eA oc=0a}.

Then
— A(o) is the set of deletable letters.

— o.a7 ! is equal to (a—a-> .) for any a.
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Figure 4: The cardinality of the class of cbdfega is 15.

3.3 Applications

Theorem 3.8 In the standard case, every class has an odd order.

Proposition 3.9 The row normal form of a staircase o is the minimal word in the class
of o for the lezicographic order.

Define o, to be the staircase obtained by applying Rule 1 or Rule 1’ to o for the highest
deletable element (depending whether the highest letter is on the diagonal or not).

Lemma 3.10 o, is the smallest staircase of . A™'.

4 The Great Class

We now focus on the largest standard class over a given alphabet. We first have to prove
that it is effectively the largest class—in fact it encompasses all other classes in a precise
sense. Trying to size it leads us to the construction of a bijection between the words of a
given class and Dyck words. An integer that we call the weight of a Dyck word appears in
a natural way.

Definition 4.1 Let w denote the mazimal standard word over an alphabet A on n letters
(for the lezicographic order): w = =y ...ba. The great class Gr(n) = Gr(A) is the Chinese
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class of w.

Note 4.2 Let p = [2]. In Gr(n), the great letters are the p greatest letters of the alphabet
and the small letters are the p smallest. If » is odd, the (p + 1)™ letter is neutral, if n is
even, there is no neutral letter. The i** letter is associated with the (n — i)th letter. The
non-zero entries occur precisely along the second diagonal of ¢ and are filled with 1.

4.1 Embedding other classes into the Great Class

We will now prove that the great class is the largest class of the Chinese monoid. In fact,
" it contains all the other subclasses in a very precise way.

Definition 4.3 Let u, v, w be three words. An elementary rewriting between u, v, w
is an elementary congruence of the Chinese relation: there ezists three letters a,b,c, two
words z,y such that {u,v,w} = {z.cba.y,z.cab.y,z.bca.y}. An embedding of a Chinese
class Cy into another Chinese class Cy is an injection 1 from Cy into C; that preserves
the congruence graph. Namely, for any elementary rewriting between words u, v, w of C,
there ezists an elementary rewriting between i(u), i(v), i(w). The embedding i is strict if
both elementary rewritings occur at the same position.

Here is the outline of the proof: the following algorithm yields an embedding of every
Chinese class which is not the great class into a greater class. Therefore, each class belongs
to a sequence of increasing classes that ends necessarily at the great class.

Algorithm 4.4 (Class Embedding)

Let o be a full standard staircase. Provided C(c) is not the Great Class, the algorithm
finds an embedding of C (o) into another Chinese class. Find 3 such that TB0(6) be the
right-most, non exposed entry. Let 4 be the successor of 3. The embedding is t}, the
elementary tranposition which exchanges 3 and v and leave other letters invariant.

Proposition 4.5 This algorithm is correct, namely 3 does ezist if and only if C(o) is not
a great class, in which case t} is a strict embedding.

We can rephrase this proposition as follows:

Theorem 4.6 For a given n, all classes have an order less or equal to the cardinality
of Gr(n). In fact, for any Chinese class, there ezists a permutation of A which is a strict
embedding of this class into Gr(n).

Example 4.7 Consider the class of abcdefijhkg of order 35. The algorithm embeds it suc-
cessively into the classes of

bacdefijhkg (order 35), beadefijihkg (105), bedaefjhkg (175),
bedeafijhkg (245), bedefaijhkg (315), bedegaijhkf (315),
bedehaijgkf (315), bedehiajgkf (329), bedehigjakf (399),
bedehigjfka (1 225), cbdehigjtka (1295), cdbehigjfka (4 165),
cdebhigjfka (7175), cdfbhigieka (7175), cdgbhifieka (7175),
cdghbifieka (7 725), cdghfibjeka (10607), cdghfiejbka (60 037),
dcghfiejbka (67 597), ecghfidibka (67 597), fegheidjpka (67 597),
fgcheidibka (92 323), fgehcidjbka (228 305), °

and finally fgehdigibka (3705075) ! The embedding sends abcdefgh/jk to kajblcdefgh
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4.2 Dyck words

We begin by studying Gr(n) where n = 2p is an even number.

Definition 4.8 Let D = {z,Z} be the alphabet over two letters z and Z.
— The height of a word w over D is h(w) = |w|; — |w]s.

— A word w € D* is a Dyck word if every prefiz word u of w verifies h(u) > 0 and if
h(w) =0.

— A word w is a proper Dyck word if every proper prefizx word u of w verifies h(u) >0
and if h(w) = 0.

— If w is a Dyck word, and u a prefiz of w, we say that u is a return to zero of w
if h(u) = 0 (Therefore, a proper Dyck word is a Dyck word with just one return to
zero.)

Definition 4.9 Let A be an alphabet. We denote by m the monoid morphism defined on
A by:
T A —

B
N Lue {x if a is a great letter of Gr(A)

Z if a is a small letter of Gr(A).

Theorem 4.10 Fiz an alphabet A over 2p letters. Denote by c and ¢’ the median letters
of A; model Gr(2p — 2) over A\ {c,c’}. Then the great class Gr(2p) is characterized as
follows:

— if w belongs to Gr(2p), if w' is obtained by deleting c and ¢’ from w, then w' does
belong to Gr(2p — 2).

— if w' belongs to Gr(2p —2), if w is obtained by inserting ¢ and ¢’ in such a way that
the image m(w) is a Dyck word, then w does belong to Gr(2p).

- if w' belongs to Gr(2p —2), if w is obtained by inserting ¢ and ¢’ in such a way that
the image m(w) is not a Dyck word, then w does not belong to Gr(2p).

For example, faeb € Gr(4) and n(faeb) = zZzZ € D4. Insert ¢ and d to obtain fadebc whose
" image by 7 is £ZzzZZ which is a Dyck word, hence fadebc belongs to Gr(6). Insert ¢ and d to
obtain facebd whose image by 7 is ZZzZz which is not a Dyck word, and correspondingly,
facebd does not belong to Gr(6).

We now describe a procedure to compute the order of the great class.

Definition 4.11 A Dyck word of length 2p, p > 0, can be reduced to a Dyck word of length
2p—2 in a variety of ways by deleting one z and one Z. Each of these ways will be called
a Dyck reduction. We define the weight of a Dyck word inductively:

~ — Weight(zz) = 1.

— The weight of a Dyck word of length 2p is the sum of all the weights of Dyck words
obtained by all possible Dyck reductions.

Example 4.12 Since zzzZ reduces as ¥z, ¥zI¥, z¥¥Z, and z¢T¥, Weight(zzzz) =
4. On the other hand, zZzZ reduces as ¥#zZ, zZ¥Z, and zZ¥¥, so Weight(zZzzZ) = 3.
Similarly the reader can check that Weight(zzzZZz) = 36.

78



Theorem 4.13 For every Dyck word w of length n, Weight(w) verifies:

Weight(w) = |{u € Gr(n), m(u) = w}|.
Proof — By definition, Wéight(w) = [v~H(w)|. | r
Corollary 4.14 The sum of the weights of all Dyck words of n letters is equal to the

cardinality of Gr(n).

Let us now assume that n is odd, n = 2p + 1. A similar argument yields the follo-wing
theorem.

Theorem 4.15 Fiz an alphabet A over 2p+ 1 letters. Denote by c the median letter of A;
model Gr(2p) over A\ {c}. Then the great class Gr(2p + 1) is characterized as follows:

— if w belongs to Gr(2p+1), if w' is obtained by deleting c from w, then w' does belong
to Gr(2p).

— if w' belongs to Gr(2p), if w is obtained by inserting ¢ in w, then w does belong to
Gr(2p+1).

Corollary 4.16 Ifn is an odd integer. Then |Gr(n)| = (n)|Gr(n—1)|.

Example 4.17 For n = 11, we have |Gr(11)| = 3705075 =11 x 336825 = 11 |Gr(10)).
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