SPECTRA OF BIPARTITE P-AND Q-POLYNOMIAL ASSOCIATION SCHEMES

JOHN S. CAUGHMAN, IV ${ }^{1}$
Extended Abstract. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq}\right)$ denote a P - and Q polynomial association scheme, with eigenvalues $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$ and dual eigenvalues $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{D}^{*}$. We want to find the permutations σ, τ of $0,1, \ldots, D$ for which

$$
\begin{aligned}
& \theta_{\sigma 0}>\theta_{\sigma 1}>\ldots>\theta_{\sigma D}, \\
& \theta_{\tau 0}^{\infty}>\theta_{\tau 1}^{\infty}>\ldots>\theta_{\tau D}^{\infty} .
\end{aligned}
$$

We focus on the case where Y is bipartite, and prove the following theorem.
0.1 Theorem. Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ denote a symmetric association scheme with $D \geq 3$, and assume Y is not an ordinary cycle. Suppose Y is bipartite P-polynomial with respect to the given ordering $A_{0}, A_{1}, \ldots, A_{D}$ of the associate matrices, and Q-polynomial with respect to the ordering $E_{0}, E_{1}, \ldots, E_{D}$ of the primitive idempotents. Then the eigenvalues and dual eigenvalues satisfy exactly one of (i) - (iv).
(i)

$$
\begin{array}{rll}
\theta_{0}>\theta_{1}>\theta_{2}>\theta_{3}> & \ldots \theta_{D-3}>\theta_{D-2}>\theta_{D-1}>\theta_{D}, \\
\theta_{i}^{*}=\theta_{i} & (0 \leq i \leq D) .
\end{array}
$$

(ii) D is even, and

$$
\begin{array}{ccc}
\theta_{0}>\theta_{D-1}>\theta_{2}>\theta_{D-3}> & \ldots>\theta_{3}>\theta_{D-2}>\theta_{1}>\theta_{D}, \\
\theta_{i}^{*}=\theta_{i} & (0 \leq i \leq D) .
\end{array}
$$

(iii) $\theta_{0}^{*}>\theta_{0}$, and

$$
\begin{aligned}
\theta_{0}>\theta_{1}>\theta_{2}>\theta_{3}>\ldots>\theta_{D-3}>\theta_{D-2}>\theta_{D-1}>\theta_{D}, \\
\theta_{0}^{*}>\theta_{1}^{e}>\theta_{2}^{*}>\theta_{3}^{*}>\ldots>\theta_{D-3}^{*}>\theta_{D-2}^{\circ}>\theta_{D-1}^{+}>\theta_{D}^{\circ} .
\end{aligned}
$$

[^0](iv) $\theta_{0}^{*}>\theta_{0}, D$ is odd, and
\[

$$
\begin{aligned}
& \theta_{0}>\theta_{D-1}>\theta_{2}>\theta_{D-3}>\ldots>\theta_{3}>\theta_{D-2}>\theta_{1}>\theta_{D}, \\
& \theta_{0}^{*}>\theta_{D}^{e}>\theta_{2}^{\circ}>\theta_{D-2}^{+}>\ldots>\theta_{D-3}^{+}>\theta_{3}^{*}>\theta_{D-1}^{+}>\theta_{1}^{*} .
\end{aligned}
$$
\]

For the remainder of this abstract, we review the standard definitions relevant to this theorem.

Association Schemes.

A D-class symmetric association scheme is a pair $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$, where X is a non-empty finite set, and where:
(i) $\left\{R_{i}\right\}_{0 \leq i \leq D}$ is a partition of $X \times X$;
(ii) $R_{0}=\{x x \mid x \in X\}$;
(iii) $R_{i}^{t}=R_{i}$ for $0 \leq i \leq D$, where $R_{i}^{t}=\left\{y x \mid x y \in R_{i}\right\}$;
(iv) there exist integers $p_{i j}^{h}$ such that for all $x, y \in X$ with $x y \in R_{h}$, the number of $z \in X$ with $x z \in R_{i}$ and $z y \in R_{j}$ is $p_{i j}^{h}$.
The constants $p_{i j}^{h}$ are called the intersection numbers of Y. By a scheme, we mean a symmetric association scheme with $D \geq 3$.
The Bose-Mesner Algebra M.
Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq 1}\right)$ be any scheme, and let $\operatorname{Mat}_{X}(R)$ denote the algebra of matrices over R with rows and columns indexed by X. Pick an integer $i(0 \leq i \leq D)$. By the $i^{\text {th }}$ associate matrix of Y we mean the matrix $A_{i} \in \operatorname{Mat}_{X}(\mathbb{R})$ with x, y entry

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{lc}
1 & \text { if } x y \in R_{i}, \tag{1}\\
0 & \text { otherwise }
\end{array} \quad(x, y \in X) .\right.
$$

From (1) we obtain the following relations:

$$
\begin{array}{rlr}
A_{0} & =I \\
A_{i}^{t} & =A_{i} & (0 \leq i \leq D) \\
A_{i} A_{j} & =\sum_{h=0}^{D} p_{i j}^{h} A_{h} & (0 \leq i, j \leq D) \\
A_{0}+A_{1}+ & \cdots+A_{D}=J & \tag{5}
\end{array}
$$

where I is the identity matrix, and J is the all 1 's matrix.

By (2)-(4), A_{0}, \ldots, A_{D} is a basis for a subalgebra M of $\operatorname{Mat}_{X}(\mathbb{R}) . M$ is known as the Bose-Mesner algebre for Y.

By [2, p.45], the algebra M has a second basis $E_{0}, \ldots, E_{\dot{D}}$ such that

$$
\begin{array}{rlr}
E_{0} & =|X|^{-1} J, & \\
E_{i}^{t} & =E_{i} & (0 \leq i \leq D), \\
E_{i} E_{j} & =\delta_{i j} E_{i} \quad(0 \leq i, j \leq D), \\
E_{0}+E_{1}+ & \cdots+E_{D}=I . & \tag{9}
\end{array}
$$

We refer to E_{0}, \ldots, E_{D} as the primitive idempotents of Y.
By the Krein parameters of Y, we mean the real scalars $\left\{q_{i j}^{h} \mid 0 \leq h, i, j \leq\right.$ D\} satisfying

$$
\begin{equation*}
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{D} q_{i j}^{h} E_{h} \quad(0 \leq i, j \leq D) \tag{10}
\end{equation*}
$$

where 0 denotes the entry-wise matrix product [$1, \mathrm{p} .64$].
Eigenvalues and Dual Eigenvalues.
Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be any scheme. By [7, pp.377,379], there exist real scalars $p_{i}(j), q_{i}(j)(0 \leq i, j \leq D)$ which satisfy

$$
\begin{array}{lr}
A_{i}=\sum_{j=0}^{D} p_{i}(j) E_{j} & (0 \leq i \leq D) \\
E_{i}=|X|^{-1} \sum_{j=0}^{D} q_{i}(j) A_{j} & (0 \leq i \leq D) \tag{12}
\end{array}
$$

We refer to $p_{i}(j)$ (resp. $\left.q_{i}(j)\right)$ as the $j^{\text {th }}$ eigenvalue (resp. $j^{\text {th }}$ dual eigenvalue) associated with A_{i} (resp. A_{i}^{*}).

The P-polynomial Property.

Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be any scheme. We say that Y is P-polynomial (with respect to the given ordering A_{0}, \ldots, A_{D} of the associate matrices) whenever for all $h, i, j(0 \leq h, i, j \leq D)$,
$p_{i j}^{h}=0$ if one of h, i, j is greater than the sum of the other two,
and
$p_{i j}^{h} \neq 0$ if one of h, i, j equals the sum of the other two.

If a scheme Y is P-polynomial, we set

$$
\begin{equation*}
\theta_{i}:=p_{1}(i) \quad(0 \leq i \leq D) \tag{14}
\end{equation*}
$$

The Q-polynomial Property.
Let $Y=\left(X,\left\{R_{i}\right\}_{0 \leq i \leq D}\right)$ be any scheme. We say that Y is Q-polynomial (with respect to an ordering E_{0}, \ldots, E_{D} of the primitive idempotents) whenever for all $h, i, j(0 \leq h, i, j \leq D)$,
$q_{i j}^{h}=0$ if one of h, i, j is greater than the sum of the other two,
and

$$
q_{i j}^{h} \neq 0 \text { if one of } h, i, j \text { equals the sum of the other two. }
$$

If a scheme Y is Q -polynomial, we set

$$
\begin{equation*}
\theta_{i}^{*}:=q_{1}(i) \quad(0 \leq i \leq D) . \tag{16}
\end{equation*}
$$

References

[1] E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes Benjamin/Cummings, London, 1984.
[2] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs. Springer-Verlag, Berlin, 1989.
[3] B. Curtin. Bipartite distance-regular graphs. Graphs and Combin. Submitted.
[4] C.D. Godsil. Algebraic Combinatorics. Chapman and Hall, New York, 1993.
[5] K. Nomura. Spin models and almost bipartite 2-homogeneous graphs. Preprint.
[6] P. Terwilliger. Eigenvalue multiplicities of highly symmetric graphs. Discrete Math., 61:295-302, 1982.
[7] P. Terwilliger. The subconstituent algebra of an association scheme. I. J. Algebraic Combir., 1(4):363-388, 1992.
[8] N. Yamazaki. Bipartite distance-regular graphs with an eigenvalue of multiplicity k. Preprint.

[^0]: ${ }^{1}$ Dept. of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706. Email: caughman@math.wisc.edu. AMS 1991 Subject Classification: Primary 05E30.

