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ABSTRACT. A plane graph is called symmetric if it is invariant under the reflection across
some straight line. We prove a result that expresses the number of perfect matchings of a
large class of symmetric graphs in terms of the product of the number of matchings of two
subgraphs. When the graph is also centrally symmetric, the two subgraphs are isomorphic
and we obtain a counterpart of Jockusch’s squarishness theorem. As applications of our
result, we enumerate the perfect matchings of several families of graphs and we obtain new
solutions for the enumeration of two of the ten symmetry classes of plane partitions (namely,
transposed complementary and cyclically symmetric, transposed complementary) contained
in a given box. We also consider symmetry classes of perfect matchings of the Aztec diamond
and we solve the previously open problem of enumerating the matchings that are invariant
under a rotation by 90 degrees.

0. Introduction

The starting point of this paper is a result [PS, Theorem 1] concerning domino tilings of
the Aztec diamond compatible with certain barriers. This result has also been generalized
and proved bijectively by Propp [Prop]. We present a further generalization, which allows
us to prove a basic factorization theorem for the number of perfect matchings of plane
bipartite graphs with a certain type of symmetry.

As a direct consequence, we obtain a counterpart of Jockusch’s squarishness theorem
[J, Theorem 1]. We then use the factorization theorem to give new solutions for the
enumeration of two of the ten symmetry classes of plane partitions contained in a given
box.

Motivated by the example of plane partitions, we consider the enumeration of perfect
matchings of the Aztec diamond that are invariant under certain symmetries. There are a
total of five enumerative problems that arise in this way. Two of them have been previously
considered (one of which corresponds to matchings invariant under the trivial group). We
present a solution for a previously open case and a new proof for the previously solved
non-trivial case.
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FiGcure 1.1 FIGURE 1.2

We conclude by presenting a simple proof of Stanley’s (ex)conjecture on the number of
spanning trees of the even and odd Aztec diamonds (in the case of odd orders) and by
enumerating the perfect matchings of three families of graphs that either generalize or are
concerned with the Aztec diamond.

1. A Factorization Theorem

A perfect matching of a graph is a collection of vertex-disjoint edges that are collectively
incident to all vertices. We will often refer to a perfect matching simply as @ matching.

Let G be a plane graph.. We say that G is symmetricif it is invariant under the reflection
across some straight line. Figure 1.1 shows an example of a symmetric graph. Clearly, a
symmetric graph has no perfect matching unless the axis of symmetry contains an even
number of vertices (otherwise, the total number of vertices is odd); we will assume this
throughout the paper.

A weighted symmetric graph is a symmetric graph equipped with a weight function
on the edges that is constant on the orbits of the reflection. The width of a symmetric
graph G, denoted w(G), is defined to be half the number of vertices of G lying on the
symmetry axis. '

For a vertex z on the symmetry axis ! (considered horizontal), define the cut above z
to be the operation of deleting all edges above [ incident to z. The cut below z is defined
similarly, as deletion of all incident edges below .

Let G be a weighted symmetric graph that is also bipartite. Suppose that the set
of vertices lying on ! is a cut set (i.e., removing these vertices disconnects the graph).
In such a case we say that [ separates G. Label the vertices on [ from left to right by
a1,by,az,bs,...,ak,bc. Color the vertices in the two bipartition classes black and white.
For definiteness, choose a; to be white.

Define two subgraphs G* and G~ as follows. Perform cutting operations above all
white a;’s and black b;’s and below all black a;’s and white b;’s. Note that this procedure
yields cuts of the same kind at the endpoints of each edge lying on I. Reduce the weight of
each such edge by half; leave all other weights unchanged. Since  separates G, the graph
produced by the above procedure is disconnected into one component lying above I, which
we denote by G*, and one below [, denoted by G~. Figure 1.2 illustrates this procedure
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for the graph pictured in Figure 1.1 (the edges whose weight has been reduced by half are
marked by 1/2).

The weight of a matching p is defined to be the product of the weights of the edges
contained in p. The matching generating function of a weighted graph G, denoted M(G),
is the sum of the weights of all matchings of G. The central result of this paper is the
following. :

THEOREM 1.1 (FACTORIZATION THEOREM). Let G be a bipartite weighted symmetric
graph separated by its symmetry azis. Then :

M(G) = 2* @ M(GH)M(G™).

The proof is combinatorial and consists of three steps. First, we reduce to the case
when the vertices on the symmetry axis form an independent set. Second, we show that
the 2% subgraphs of G obtained by independently performing cutting operations at the
a;’s have the same matching generating function. And third, we argue that for a special
choice of these cuts at the a;’s, the matchings of the corresponding subgraph are the same
as the matchings of G* UG™.

In case G has a second symmetry axis I perpendicular to [, and if the reflection across
I preserves bipartition classes, the graphs Gt and G~ are isomorphic. The factorization
theorem implies then that the number of matchings of such a graph is either a perfect
square or twice a perfect square.

This gives a combinatorial explanation for the fact, first proved by Montroll using
linear algebra (see [L, Problem 4.29] for an exposition), that the number of matchings of
the 2n x 2n grid graph has this “squarish” property. Moreover, we obtain a combinatorial
interpretation of the square root, answering thus the last question of [J,p.114].

2. Plane Partitions

A plane partition  is a rectangular array of non-negative integers with non-increasing
rows and columns and finitely many nonzero entries. We can also regard 7 as an order
ideal of N3, i.e., a finite subset of N3 such that (i, j, k) € = implies (¢, j', k') € 7, whenever
i>i,j>j and k> k.

By permuting the coordinate axes, one obtains an action of S3 on the set of plane
partitions. Let 7~ 7 and 7 — 7" denote the symmetries corresponding to interchanging
the z- and y-axes and to cyclically permuting the coordinate axes, respectively. For the set
of plane partitions 7 contained in the box B(a,b,¢) := {(¢,j, k) € N3:i<a,j<bk<c}
there is an additional symmetry

r— 7 :={(i,5,k)EN3:(a—i-1b—j—l,c—k-1) ¢},
called the complement.

These three symmetries generate a group isomorphic to the dihedral group of order 12,
which has 10 conjugacy classes of subgroups. These lead to 10 enumeration problems:
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determine the number of plane partitions contained in a given box that are invariant
under the action of one of these subgroups. The program of solving these problems was
formulated by Stanley [Sta] and has been recently completed (see [A1], [K] and [Ste]).

Using the factorization theorem and the interpretation of plane partitions contained in
a box as perfect matchings of suitable honeycomb graphs (see [DT], [R1] and [K]) we
relate two pairs of these ten problems.

Namely, we express the number of transposed complementary plane partitions (i.e, plane
partitions 7 with 7° = 7°) contained in a given box in terms of the total number of plane
partitions (with no symmetry requirement) contained in a box. Based on MacMahon’s
formula [M] for the latter number, we obtain a new proof of the transposed complementary
case, first solved by Proctor [Proc].

Similarly, we prove a formula that relates the number of cyclically symmetric (=" = =),
transposed complementary plane partitions to the number of cyclically symmetric plane
partitions that fit in a given box. Then, based on the formula for the latter proved by An-
drews [A2], we obtain a new proof of the cyclically symmetric, transposed complementary
case, first solved by Mills, Robbins and Rumsey [MRR2].

Let T'C(a, a, 2b) be the number of transposed complerhentary plane partitions contained
in B(a,a,2b). Let P(a,b,c) denote the number of plane partitions contained in B(a,b,c¢).

THEOREM 2.1.
P(a,a,2b)
(a+1,e+1,26-1)

Sketch of proof. Let H(a,b,c) denote the a x b x ¢ honeycomb graph. Using the above
mentioned interpretation of plane partitions as matchings of honeycombs, P(a,a,2b) can
be regarded as the number of matchings of H(a,a,2b), and T'C(a,a,2b) as the number
of such matchings that are invariant under reflection across the symmetry axis I of the
honeycomb perpendicular to the sides of length 2b (see Figure 2.1(a)).

TC(a,a,2b)=2-TC(a+2,a+2,2b—2)P
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By applying the factorization theorem to H(a, a, 2b) with respect to I, we obtain

P(a,a,2b) = 2°TC(a,a,2b)M(H(a,a,2b)7). (2.1)

On the other hand, the factorization theorem applied to H(a+ 1,a+ 1,2b— 1) yields (see
Figure 2.2(b))

Pla+1,a+1,2b—1)=2°*'TC(a +2,a +2,2b— 2)M(H(a,a,2b)7).  (2.2)
Relations (2.1) and (2.2) imply the statement of the theorem. O

Let CS(a) and CSTC(a) be the number of cyclically symmetric and cyclically sym-
metric, transposed complementary plane partitions contained in B(a, a,a), respectively.
Note that CST'C(a) is nonzero only for even a. Using ideas similar to those in the proof
of Theorem 2.1 we obtain the following result.

THEOREM 2.2.
CS(2a+1)

CS(2a)

It is interesting that Theorem 2.2 is also a consequence of relations (0.2) and (0.3) of
[Ste], relations that may be used to solve the totally symmetric case.

2.CSTC(2a +2) = CSTC(2a)

3. Symmetries of matchings of the Aztec diamond

The honeycomb graphs can be described as follows. Consider the tiling of the plane
by congruent regular hexagons. Let H; be one of these hexagonal tiles, and define H, for
n > 2 to be the union of the set of tiles sharing at least one edge with some tile contained
in Hno—1. Then H, is the n x n x n honeycomb graph.

Motivated by the simple product formulas that enumerate the symmetry classes of
matchings of honeycombs, it is natural to investigate symmetry classes of matchings of
the graphs arising by applying the inductive construction in the previous paragraph to the
tiling of the plane by squares. Moreover, these graphs are the Aztec diamonds AD,, and
their matchings have been the subject of a great deal of investigation. In particular, in
[EKLP] it is proved that M(AD,) = 2"(*+1)/2 (see [C1] for an alternative proof).

The symmetry group of the Aztec diamond is isomorphic to the dihedral group of
order 8. Let r and ¢ be the symmetries corresponding to rotation by 90° and reflection
across a diagonal, respectively (the diagonals of AD, are the two symmetry axes not
containing any vertex). Then r and ¢ generate the symmetry group of the Aztec diamond.
Since the elements rt and r3t act as reflections across lines containing vertices of the
Aztec diamond, there are no rt- or r3t-invariant matchings. Up to conjugacy, there are
five distinct subgroups of (r,t) not containing any of these two elements. Imposing the
condition that a matching is invariant under the action of one of these subgroups G leads
to five different enumeration problems.

Only one of these problems besides the case G = 1 has been previously solved: the case
G = (r?), which was solved by Yang [Y]. This case is also implicit in the unpublished work
of Robbins [R2].’
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n | (r?,t) —invariant | factorization
1 2 2
2 4 7
3 10 2.5
4 28 22.7
n | (t) — invariant | factorization 5 9 25.3
1 2 2 6 384 273
2 6 2-3 7 1848 23.3.7-11
3 24 2%.3 8 10432 26.163
4 132 22.3-11 9 70560 25.32.5.72
5 1048 23131 10 564224 210.19.29
6 11960 23.5.13-23 11 5386080 2%.3.5-72.229

TABLE 3.1. (t)-invariant and (r?,t)-invariant matchings of the Aztec diamond.

Using the factorization theorem, we obtain a new solution for this case and we solve
the case G = (r).

" The two problems that remain open are the enumeration of matchings invariant under
reflection across one or both diagonals (i.e.. invariant under (¢) or (r2,t)). For the first
few orders of the Aztec diamond the corresponding numbers and their factorizations are
shown in Table 3.1. Apparently these numbers do not all factor into small primes, so a
simple product formula seems unlikely in this two cases.

Our proofs involve the planar regions known as quartered Aztec diamonds defined
in [JP], which can be described as follows. Let us consider the planar region whose dual
is the Aztec diamond of order n. This region can be divided into two congruent parts by
a zig-zag lattice path that changes direction after every two steps, as shown in Figure 3.1.

By superimposing two such paths that intersect at the center of the region we divide it
into four pieces that are called quartered Aztec diamonds. Up to symmetry, there are two
different ways we can superimpose the two cuts. For one of them, the obtained pattern has
fourfold rotational symmetry and the four pieces are congruent (see Figure 3.2(a)); denote
the number of their domino tilings by R(n). For the other, the resulting pattern has Klein
4-group reflection symmetry and there are two different kinds of pieces (see Figure 3.2(b));
they are called abutting and non-abutting quartered Aztec diamonds and the numbers of
their domino tilings are denoted by K,(n) and K,q(n), respectively.

Denote by Q(n) and H(n) the number of (r)-invariant and (r?)-invariant matchings
of the Aztec diamond of order n, respectively (this notation is motivated by the words
“quarter-turn” and “half-turn,” which describe the corresponding symmetries). Using the
factorization theorem, we obtain the following results.
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FIiGURE 3.1

non-abutting

non-abutting

FIGURE 3.2(a) F1GURE 3.2(b)
THEOREM 3.1. Foralln > 1, we have
Q(n) = ol(n+1)/4] R(n).

Therefore, by [JP, Theorem 1] we obtain that Q(n) = 0 for n congruent to 1 or 2 (mod 4),

d
& 9% +2j — 1

Q(4k) = 25Q(4k — 1) = 2Gk-1/2 TT o

1<i<igk
THEOREM 3.2. For all n > 1, we have

H(n) = 2l +0/2 K () Kpo(n).
Therefore, by [JP, Theorem 1] we obtain that

2i+2j—-3 H 2i+25—1

H(4k) = 2% H(4k — 1) = 2¢-1) T Eyp T+ 1

1<i<j<k

)

1<i<i<k
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and
_ g 2% +2j-3 2i+2j—1
H(4k — 2) = 22k=1H (4k — 3) = 93k"—4k+2 il it atTral—a
(-9 = sk et

1<i<j<k 1<i<j<k-1

The matchings of the Aztec diamond are strongly connected to the alternating sign
matrices introduced by Mills, Robbins and Rumsey [MRR1] (see [EKLP] and [C1]). In
fact, using the ideas of [C1], we can phrase the results of the two theorems above in terms
of symmetry classes of alternating sign matrices. :

To be specific, define the 2-count of a symmetry class of alternating sign matrices as the
sum of the weights of the matrices of that symmetry class, where each matrix is weighted
by 2 raised to the number of orbits of -1’s. Then Theorem 3.1 provides a product formula
for the 2-count of quarter-turn invariant alternating sign matrices, a result that appears
to be new. On the other hand, Theorem 3.2 is then equivalent to a result stated (but not
proved) by Robbins [R2, Theorem 3.4].

4. Further applications

Consider a (2m+1) x (2n+1) chessboard with black corners. The graph whose vertices
are the white squares and whose edges connect precisely those pairs of white squares that
are diagonally adjacent is called the even Aztec rectangle of order m x n, and is denoted
ER,, ». The analogous graph constructed on the black vertices is denoted ORm, » and is
called the odd Aztec rectangle of order m x n.

Let k(G) denote the number of spanning trees of the graph G. Stanley conjectured
that ¥(ERn n) = 4k(OR, ) for all n > 1. This has been recently proved by Knuth by
an algebraic method, who showed that in fact k(ERm ) = 4k(ORm ) for all m,n >
1. A combinatorial proof of this is given in [C2]. It turns out that the factorization
theorem (together with a construction of Temperley that relates spanning trees to perfect
matchings) can be used to obtain a surprising geometric proof in case m and n are odd.
This proof also affords a weighted version of this result, with mn free parameters for the
rectangles of order (2m + 1) x (2n +1).

Finally, we present three families of graphs whose matchings we enumerate using the
factorization theorem. First, the “holey Aztec diamond” considered by Jockusch and
Propp is obtained by removing the central four vertices of the Aztec diamond. Jockusch
conjectured formulas for the number of its matchings, formulas that have been recently
proved [Prop)]. The factorization theorem yields a short proof in the case when the order
of the diamond is congruent to 2 or 3 modulo 4.

Second, we consider “holey Aztec rectangles,” i.e., subgraphs of Aztec rectangles ob-
tained by removing a suitable number of vertices from one of the symmetry axes of the
rectangle. Using the factorization theorem and ideas from [MRR1], we enumerate their
perfect matchings.

And third, we consider “quasi-quartered Aztec diamonds,” planar regions that differ
slightly from the quartered Aztec diamonds defined in the previous section, and we prove
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recurrences satisfied by the number of their domino tilings. We obtain that these numbers
are powers of 2. .
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