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Abstract

We define or redefine new Mahonian permutation statistics, caUed MAD, MAK and ENV.
Of these, ENV is shown to equal the classical INV, that is the number of inversions, while
MAK has been defined in a slightly diflferent way by Foata and Zeilberger. It is shown that
the triple statistics (des, MAK, MAD) and (exc, DEN, ENV) are equidistributed over Sn. Here
DEN is Denert's statistic. In particular, this implies the equidistribution of (ea;c, lNv) and
{des, MAD). These bistatistics are not equidistributed with the classical Euler-Mahonian
statistic (des,MAJ). The proof of the main result is by means of a bijection which is
essentially equivalent to several bijections in the literature (or inverses of these). These
include bijections defined by Foata and ZeUberger, by Fran^on and Viennot and by Biane,
between the symmetric group and sets of weighted Motzkin paths. These bijections are
used to give a continued fraction expression for the generating function of (exc, INV) or
{des, MAD) on the symmetric group. All of the main results extend to the rearrangement
class of an arbitrary word with repeated letters.

{The entire paper can be obtained at http://www. math. chalmers. se/~eineLT/)

1 Introduction

The subject of permutation statistics, it is frequently claimed, dates back at ledst to
Euler [5]. However, it was not until MacMahon's extensive study [15] at the turn of
the century that this became an established discipline of mathematics, and it was
to take a long time before it developed into the vast field that it is today.

In the last three decades or so much progress has been made in discovering and
analyzing new statistics. See for example [7, 8, 9, 10, 11, 13, 17, 18, 19]. Inroads have
also been made in connecting permutation statistics to various geometric structures
and to the classical theory of hypergeometric functions, as in [6, 12, 14, 16, 18].

MacMahori considered four different statistics for a permutation TT: The number
of descents {desv), the number of excedances (ea-cff), the number of inversions
(iNVTr), and the major index (MAJff). These are defined as follows: A descent in a
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permutation TT = aiaz .. . an is an i such that a; > a,+i, an excedance is an i such
that a, > i, an inversion is a pair (i, j) such that i < j and a, > Gj, and the major
index of TT is the sum of the descents in TT. In fact, MacMahon studied these statistics
in greater generality, namely over the rearrangement class of an arbitrary word w
with possibly repeated letters. All of our present results except those of section 4
can be generalized to words, and this will be done in a subsequent publication [4].
In this abstract we mention these generalizations, but the presentation is centered
on permutations. Moreover, there is a further generalization, to words in which the
letters are divided into two classes, small and large. This is treated in a forthcoming
paper [3j.

In the present paper, we define some new Mahonian statistics and redefine many
of the existing ones, with an eye to illuminating their common properties and thus
also their differences. Doing this allows us to recover some of the known instances
of equidistribution among Euler-Mahonian pairs, and to prove the equidistribution
of two new pairs introduced, cis well as that of some similiai, but not equal, pairs of
bistatistics. We do this simultaneously for all the statistics involved, by means of a
single, simply described bijection.

All of our constructions, and some of our statistics, have appeared previously,
in the work of several authors and in many different guises. They have involved
Motzkin paths, binary trees, and even more exotic structures. As we will show, the
bijections in the literature pertaining to these statistics, those of Foata-Zeilberger,
Frangon-Viennot [12], de Medicis-Viennot [16], Simion-Stanton [18] and Biane [I],
defined in different ways and for different purposes, are all essentially the same, or
inverses of each other. These bijections are equivalent to the bijection of this paper,
but their relationships with each other have not before been elucidated. Moreover,.
the extensions of the above statistics and bijections to words have not appeared
before.

Perhaps the most interesting fact to emerge is the equidistribution of the two bis-
tatistics (rfes, MAD) and (ea;c, !NV), where MAD is one of our new statistics. The lat-
ter bistatistic, whose components are classical, is not equi distributed with (des, MAJ)
and might therefore, together with its equidistributed mates, be classified as an
"Euler-Mahonian pair of the second kind."

2 Definitions and main results

We consider the set SA of all permutations TT = a^a^- . . On on a totally ordered
alphabet A. Although it is not necessary, we always take A to be the interval
[n] = {1, 2,..., n}. Thus, we consider permutations in <?".

The biword associated to a permutation TT is TT = _ , where id is the identity
permutation id = 123 . . . n. In what follows, TT will always have this meaning.
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Definition 1 Let TT   <Sn. A descent in TT is an integer i with 1 <:i < n such that
a, > Oi+i. ^Tere a, is called the descent top and a,+i 25 called the descent bottom.
An excedance in w is an integer i with 1 ^i <; n such that and a, > i. Here a, is
called the excedance top. The number of descents in TT is denoted by des TT, and the
number of excedances is denoted by CXCTT.

The descent set of TT, D(v), is the set of descents. The excedance set of TT, E^v),
is the set of excedances.

Given a permutation TT = aia^ ... an, we separate TT into its descent blocks by
putting in dashes between a, and a,+i whenever a, <: a.+i. A maximal contiguous
subword of v which lies between two dashes is a descent block. A descent block is an
outsider if it has only one letter, otherwise it is a proper descent block. The leftmost
letter of a proper descent block is its closer and the rightmost letter is its opener.
A letter which lies strictly inside a descent block is an insider. For example, the
permutation 185267934 has descent block decomposition 1-852-6-7-93-4,
with closers 8, 9, corresponding openers 2, 3, outsiders 1, 6, 7, 4 and insider 5.

Let B be a proper descent block of the permutation T and let c{B) and o(B)
be the closer and opener, respectively, of B. If a is a letter of w, we say that a is
embraced by B if c(B) > a > o(B).

Definition 2 Let v = a-^a-i ... an be a permutation. The (right) embracing numbers
O/TT are f/ie numbers ei, £2,..., Cn, wAere e, !5 the number of descent blocks in TT that
are strictly to the right o/a, and that embrace a,. The right embracing sum O/TT,
denoted by Res TT, is defined by

Res 7T = Ci+62 + ... +Cn.

For instance, the embracing numbers of 7r=41-7-82-5-63 are 20-1-
0 0- 1-0 0, so 7?e5w=4.

Definition 3 The descent bottoms sum of a permutation TT = a-ia-s- .. On, denoted
by Dbotv, is the sum of the descent bottoms of v. The descent tops sum of TV,
denoted Dtopv, is the sum of the descent tops of v. The descent difference O/TT is

Ddif v = Dtop TT - Dbot v.

Otherwise expressed, Ddifv is the sum of closers minus the sum of openers of
descent blocks. As. an example, for7r=41-2-653-7, Dbot w=l+5+3=9,
Dtop w =4+6+5 = 15 and Ddif w= 15-9= (4+6) - (1 +3) = 6.

a.n, de-Definition 4 The excedance bottoms sum of a permutation TT = a-ia^
noted by Ebot-jr, is the sum of the excedances O/TT. The excedance tops sum O/TT,
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denoted Etopw, is the sum of the excedance tops O/TT. The excedance difference of
7T IS

Edif v = Etop TT - Ebot TT.

The excedance subword of TT, denoted by VB, is the permutation consisting of all the
excedance tops of TT, in the order induced by v. The non-excedance subword of TT,
denoted by TT},, consists of those letters of -K that are not excedance tops.

For example, let7r= 6 543 7 1 2, sou; =
2
5

3
4

4

3
5

7

6
1

; then TB =
654 7and7T^ =3 1 2. Also, Ebot TT = 1+2+3+5 = 11, Etopv = &+5+4+7 =22

a.ndEdifv=22-ll =11.

Definition 5 An inversion in a permutation TT = 0102 ... an is a pair (i, j) such
that i < j and a, > aj. The number of inversions in TT is denoted by INVTT.

The reason we spell INV with all capital letters is that INV is a Mahonian statistic.
We do this consistently throughout the paper, that is, all Mahonian statistics are
spelled with uppercase letters. The two Eulerian statistics, exc and des, are spelled
with lowercase letters, while "partial statistics" (such as Res), used in the deilnitions
of Mahonictn statistics, are merely capitalized.

Definition 6 Let v == aiaz'-'an be a permutation and i an excedance in TT. We
say that a, is the bottom of d inversions if there 'are exactly d letters in w to the
left o/a; that are greater than a,-, and we call d the inversion bottom number of i.
Similarly, if i is a non-excedance in TT and there are exactly d letters smaller than a,
and to the right of a, in TT, then we say that d is the inversion top number of i. The
side number of i in v is the inversion bottom number or the inversion top number
of i in TT, according as i is an excedance or not in TT. The sequence of side numbers
of TT is the sequence 51, 53,... , 5n where s, zs ̂ e side number of i.

For example, let7T=6543712as before, with TT^ =65 4 7 and TT^ =3 1 2.
Then the inversion bottom numbers of the excedances in TT are 0, 1, 2, 0 and the
inversion top numbers of the non-excedances in TT are 2, 0, 0. Hence the sequence of
side numbers of TT is 0, 1, 2, 2, 0, 0, 0.

Note that if i is an excedance of the permutation TT, then any letter in TT that
is to the left of a, and greater than a, must also be an excedance. Hence, the sum
of the inversion bottom numbers of the letters in WE equals the total number of
inversions in WE, that is, INVwg. Similarly, the sum of the inversion top numbers of
the letters in w^ equals INVwjv.

Definition 7 Let TT be a permutation. Then IneTT = INVTT^; + iNVTTjv.
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Hence, from the remark preceding definition 7, we have

Inew = si+... + Sn- (1)

We now define the four Mahonian statistics central to this paper.

Definition 8 MAK TT = Dbot v + Res TT.
MAD TT = Ddifv + Res TT.
DEN TT = Ebotv + Inev.

ENVTT = Edifv + Inev.

As it turns out, our statistic ENV equals the classical INV. It may seem superflu-
ous to redefine INV in this way, but it turns out that ENV's similarity in definition
to MAD is crucial in proving our main results.

Theorem 1 For any permutation IT = 0103 ... an, we have ENV TT = INV TT.

We now describe the main results of the paper, the proofs of which are omitted
in this abstract.

In section 3 we will define a mapping $ on Sn and prove the following result.

Proposition 2 For any permutation w, we have

(des, Dbot, Ddif, Res) TT = (exc, Ebot, Edif, Ine}^{Tr),
(de5, MAD, MAK) TT = (ea;c, INV, DEN) $(7r).

By showing that $ is a bijection, we deduce the following theorem.

Theorein 3 The quadristatistics

{des, Dbot, Ddif, Res) and (exc, Ebot, Edif, Ine)

are equidistributed over the symmetric group <?n. That is,
fdesTT DbotTT DdifTT^ResTT ^ y^ ^excTT ̂ EbotTT Edif TT IneTT

T 5n lr£5"

Hence the (np/e (<fes, -MAD, MAK) is equidistributed with (ea-c, INV, DEN) over Sn.

In section 4, we shall make evident the relation between our bijection $ and
some well-known bijections between the symmetric group Sn and weighted Motzkin
paths. As a by-product, we will obtain a continued fraction expansion (equation 6)
for the ordinary generating function of

^(^g)=Ea;'"T9MADT.
VCSn
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3 The bijection  >

We now describe the construction of a bijection $ :<?n -^ <?" which takes a permu-
tation TT to a permutation r such that the set of descent tops in v equals the set of
excedance tops in T and the set of descent bottoms in TT equals the set of excedances
in r. Moreover, the embracing numbers of TT are preserved in a way that we now
describe.

Observe that, since the letters of a permutation are distinct, we can refer to the
i-th embracing number e, of the permutation ?r as the embracing number of the
letter a, in TT, and we will then denote e. by e(a;). Similarly, we may if we wish
denote the i-th side number of TT by c?(a, ).

We will construct r = $(?T) in such a way that the embracing number of a letter
a, in TT is the side number of a, in r.

Given a permutation TT, we first construct two biwords, f ̂ , ) and ( g, }, and then

form the biword T/ = ( f, ̂ i ) by concatenating / and g, and // and g', respectively.
The permutation / is defined as the subword of descent bottoms in TT, ordered
increasingly, and g is defined as the subword of non-descent bottoms in TT, also
ordered increasingly. The permutation // is the subword of descent tops in TT, ordered
so that the inversion bottom number of a letter a in /' is the embracing number of
a in TT, and ̂  is the subword of non-descent tops in TT, ordered so that the inversion
top number of a letter b in g is the embracing number of 6 in TT. Rearranging the
columns of r , so that the top row is in increasing order, we obtain the permutation
r = $(x) as the bottom row of the rearranged biword.

Example 1 Let 7r=4 1-2-7-965-83, with embracing numbers 1, 0, 0, 2,
0, 1, 1, 0, 0. Then

f\ fl356\ fg\ Y24789^ _. /135624789'
, f'j={S469}' {g'}=\. 12753}' T = ^8469 1 2753.

and thus $(7r) =r=814269753. It is easily checked that the descent tops and
descent bottoms in v are the excedance tops and excedances in T, respectively, and
that the embracing number of each letter in TT is the side number of the same letter
in T.

Remark In the case of words with repeated letters, presented in [4], the definitions
of Ddif, Edif, Res and Ine are slightly modified. A word w is then "coded" into a
permutation TT by replacing the occurrences of equal letters with distinct integers in
an increasing order from left to right. (As an example, the word 23221312 is coded
into 37451826). Then $ is applied to TT and the resulting permutation "decoded"
to obtain a word w/ such that (c?e5, Dbot, Ddif, Res) w == (ezc, £'6o<, Edif, Ine) w'.
This map is a bijection, which proves the equidistribution of (de6, MAD, MAK) and
(e2;c, !NV, DEN) over the rearrangement class of an arbitrary word w.
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4 Motzkin paths and a continued fraction expan-
sion

In this section we shall make evident the relation between our bijection $ and some
well-known bijections between the symmetric group <?n and weighted Motzkin paths.
As a by-product we get the continued fraction expansion for the generating function
of <?n with respect to some of our statistics.

Informally, a Motzkin path is a connected sequence of n line segments, or "steps,"
in the first quadrant of R2, starting out from the origin in R and ending at (0, n)
(see Figure 1 for an example).

Definition 9 A Motzkin path is a word w = CiCz . . . Cn on the alphabet {Ar, S, E, dE}
such that for each i the level hi of the i-th step, defined by

hi = #{]\J < z, c, =N}- #{j\j < i, c, = 5},
is non-negative, and equal to zero ifi=n.

Definition 10 A weighted Motzkin path of length n is a pair (c, c?), where c =
ci . . -Cn is a Motzkin path of length n, and c? = (c?i,... , rin) is a sequence of integers
such that

0<d, <(hl . t/ct w%
^". ^l/i. -l ifc^{S, dE}.

The set of weighted Motzkin paths of length n is denoted by Tn-

Fran^on and Viennot [12] gave the first bijection ̂ Spv between Sn and Tn- Here
we describe one variant of this bijection.

Definition 11 Let v = ar'-an   <?n and set OQ = 0 and a^+i = n + 1. For
1 <^i ̂ n we say that a, is a

. linear double ascent (outsider) t/a. -i < a, < a,-+i;

. linear double descent (insider) if ai-i > a, > a,+i;

. linear peak (closer) t/"a, _i < a, > a,+i;

. linear valley (opener) if a,-i > a, < 0, 4. 1.

THE BUECTION ̂ FV OF FRAN<;ON AND VlENNOT

Given a permutation TT   <Sn, determine the right embracing number e, for each
i   [n\. Form the weighted Motzkin path (c, d) = ^Fv(Tr) by setting d, = e; and by
defining c, as follows:

. if z is a linear double descent, then c, = dE;

. if i is a linear double ascent then c, = £";

. if i is a linear peak then c, = 5;

. if i is a linear valley then c, = N.
For example, if 7r=61-8742-5-93, then the corresponding weighted Motzkin
path ^^v(7T) = (c, c?) is shown in Figure 1.
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Figure 1

THE BUECTION fpz OF FOATA AND ZEILBERGER

In [11] Foata and Zeilberger gave another bijection from Sn to Fn, which can be
described by the following example. Let ?T=947612853, so

7T =
123456789
947612853 ).

As in section 3, separate w into two biwords corresponding to VE and TT^V to get

f\_fl 2 3 4 7
W ~ V9 4 7 6 8

9\- 5689
1253

Form the weighted Motzkin path (c, <f) = ^pzW as follows: Let 5i, 52,..., Sn be
the sequence of side numbers of TT (see Definition 6) ajid put

d^(i) =Si for i =1, 2,..., n. . (2)

Let

Ci =

f dE, if?   -F n F',
E, ifi   G' n G",
S, if ie F'D G,
N, if?   F n G'.

Here we have d = (0, 0, 0, 1, 1, 2, 1, 1, 0) and

FnF'={4, 7}, GnG"={5}, F'nG = {6, 8, 9}, FnG" = {1, 2, 3}.

Definition 12 For TT   <?n and i   [n], we say that i is a
. cyclic double ascent z/7T-I(z") < i < Tr(i);
. cyclic double descent if v~l(i) ^. i >. ̂ (i};
. cyclic peak !/'7T~l(t) < i > TT(!');
. cyclic valley ifT ~'l(i) > i < 7r(i).
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Note that the four sets FnF/, GnG", F'nG and FnG" correspond respectively
to cyclic double ascents, cyclic double descents, cyclic peaks and cyclic valleys of TT.
The corresponding weighted Motzkin path is the same as in Figure 1. We note that
^FV = ^pz 0 $.

BlANE'S BUECTION

In [I], Biane gave a bijection similar to ̂ pz which we now describe.

Definition 13 A labeled path of length n is a pair (c, <^), where c = Ci ... Cn is a
Motzkin path of length n, and ̂  = (^i,.. ., ^n) is a sequence such that

. {A}, ifc, =N,
^e{ {0,..., h,}, ifa=dE orE,

{0,..., /i, -l}2, ifa=S.

Biane's bijection is from the labeled paths of length nioSn . Using the same notation
as in the description of '9pz'> the inverse of Biane's bijection can be summarized as
follows. Let di, d-i,..., dn be the sequence of numbers calculated using equation (2)
from the side numbers of TT. Note that Biane gave a recursive algorithin to compute
these numbers but did not point out that they are actually the side numbers of TT,
that is the inversion bottom and inversion top numbers in /' and g respectively.
Form the labeled path (c, ^) thus:

. ifieFf^G' (valley), let c, = N and ^ = A;

. ifi   Fn F/ (double ascent), let c, = dE and ^, = c?.;

. ifieGCtG' (double descent), let c. = E and ̂  = dy^);

. ifz   F/n G (peak), let c, = 5 and ̂  = (^(i), ri. ).
The path is the same as for ̂ pz-i the only difference being the distribution of the
side numbers associated to each step of the path.

In [II], Foata and Zeilberger's purpose with the bijection ̂ pz was to code the
DEN statistic by weighted Motzkin paths, in order to show that (e3-c, DEN) was
equidistributed with (<fes, MAJ). That ̂ pz also keeps track of the INV statistic was
first remarked by de Medicis and Viennot [16, Proposition 5. 2]. They proved that

WVv=^hi+Y^di.
t=l t=l

(3)

In Biane's bijection, on the other hand, the INV statistic is seen to satisfy

INV7T=^(^+|^|),
t=l

where |^] = r+z/ if^ = (a;, y) and |^| = Oif^ = A. This is clearly equivalent to (3).
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The proof of (3) given in [16] was based on a new definition of INV, similar to
that of ENV. This statistic of de Medicis and Viennot's, which we denote INV^i, can
be defined in our notation by

INVMV7T=INV7T£ + INV7T^+#{(?, J')|^J <7T(t), 7T(j)>j}
+ #{(iJMi)<7r(j)^i^(j)^j}. (4)

However, their proof that INV equals INVj^v is fairly complicated, and can be com-
pared to that of the equivalence of the two definitions of DEN given in [11]. In [2],
Clarke gave a short proof of the equivalence of the two definitions of DEN. Actually,
the identity proved in [2 can also be used to prove the equivalence of the three
definitions of INV mentioned above.

Using the connections between Motzkin paths and permutations we have de-
scribed, we now give a continued fraction expansion for the generating function
Dn(x, q)=^^nXdesvqM AD7r.

Fom^01et[nL=l+?+... +9n-landlet/n(3:, p, g)= ^ a;"CVii/Vne7r.
7T <?n

Then, by Theorem 3, we also have fn (x, p, g) = ^ ^.^TT^A/TT^TT ^he follow-
7T 5n

ing theorem now follows by applying a result of Flajolet [6, Theorem 1].

Theorem 4 The ordinary generating function of fn {x, p, q) has the following Jacobi

continued fraction expansion:

^fn(x^p, q)tn=
1

n>0 1-bot-
Ai*2

l-b^t-
A^2

l-bnt- An+1*2

where bn = qn {x[n]p +[n+ l]p) and An+i = ^2n+l([n + l]p)2 for n^O.

Corollary 5 We have

^Ux^q)tn= -^- -. (5)
Tl>0 1-

1 -

1-

xqt

qn-l[n},t
xqn[n^t1-
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In particular, if Dn(x, q) = ^ xdes'!rqM ADV, then it follows from Corollary 5, by
7T 5n

putting p = q in the above equation, that

^Dn(x^q)tn= D (6)
n>0 1-

1- xqt

1- qn-l[n},t
xqn[n]gt

1-

Note that the continued fraction expansion of the generating function of
E?T 5n xdes'"'qlvvT can also be derived from [16, Theorem 6. 5].

2^F^ we AaveCorollary 6 For Q<, k<, n-\ and 0 ^ m ^ n^f

[xkqk+m}D^q} = [xn-l-kqn -l-k+m}Dn{x^
where [xkqm }Dn(x, q) is the coefficient of xkqm in the polynomial Dn(x, q).

(7)

References

[1] P. Biane: Permutations suivant Ie type d'excedance et Ie nombre d inversions et
interpretation combinatoire d'une fraction continue de Heine, Europ. J. Com-
binatorics 14 (1993), 277-284.

[2] R. J. Clarke: A short proof of a result of Foata and Zeilberger, Adv. Appl.
Math. 16 (1995), 129-131.

[3] R. J. Clarke, E. Steingrimsson and J. Zeng: The fc-extensions of some new
Mahoniaji statistics, Europ. J. Combinatorics, to appear.

[4] R. J. Clarke, E. Steingrimsson and J. Zeng: New Euler-Mahonian statistics on
permutations and words, Adv. Appl. Math., to appear.

[5] L. Euler: Institutiones calculi diflferentialis, in Opera Omnia, Series Prima, vol.
X, Verlag von B. G. Teubner, Leipzig, 1913.

[6] P. Flajolet: Combinatorial aspects of continued fractions, Disc. Math. 41
(1982), 145-153.

[7] D. Foata: Distribution Euleriennes et Mahoniennes sur Ie groupe des permu-
tations, in M. Aigner (ed. ), Higher Combinatorics, 27-49, D. Reidel, Boston,
Berlin Combinatorics Symposium, 1976.

105



[8] D. Foata: Rearrangements of words, in M. Lothaire, Combinatorics on Words,
(ed. ) G. -C. Rota, Vol. 17, Encyclopedia of Math. and its Appl., Addison-Wesley
Publishing Company, 1983.

[9] D. Foata and M. -P. Schutzenberger: Theorie geometriques des polynomes
euleriens. Lecture Notes in Math., vol. 138, Springer-Verlag, Berlin, 1970.

[10] D. Foata and M. -P. Schutzenberger: Major index and inversion number of
permutations, Math. Nachr. 83 (1978), 143-159.

[11] D. Foata and D. Zeilberger: Denert's permutation statistic is indeed Euler-
Mahonian, Studies in Appl. Math. 83 (1990), 31-59.

[12] J. Fran^on and X. G. Viennot: Permutations selon les pics, creux, dou-
bles montees, doubles descentes, nombres d'Euler, noinbres de Genocchi, Disc.
Math. 28 (1979), 21-35.

[13] J. Galovich and D. White: Recursive statistics on words, Disc. Math., to appear.
(Presented at the FPSAC 1994).

[14] A. M. Garsia and I. M. Gessel: Permutations statistics and partitions, Adv. in
Math. 31 (1979), 288-305.

[15] P. A. MacMahon: Combinatory Analysis, vols. 1 and 2. Cdmbridge Univ. Press,
Cambridge, 1915 (reprinted by Chelsea, New York, 1955).

[16] A. de Medicis and X. G. Viennot: Moments des ̂ -Polynomes de Laguerre et la
bijection de Foata-Zeilberger, Adv. Appl. Math. 15 (1994), 262-304.

[17] D. Rawlings: Permutation and multipermutation statistics, Europ. J. Comb.,
2 (1981), 67-78.

[18] S. Simion and D. Stdnton: Specializations of generalized Laguerre polynomials,
SIAM J. Math. Anal. 25 (1994), 712-719.

[19] R. Stanley: Binomial posets, Mobius inversion and permutation enumeration,
J. Comb. Theory, A, 20 (1976), 712-719.

Clarke: Pure Mathematics Department, University of Adelaide, Adelaide, South Australia
5005.
Steingrimsson: Matematiska institutionen, CTH & GU, 412 96 Goteborg, Sweden.

Zeng: Departement de mathematique, Universite Louis-Pasteur, 67084 Strasbourg Cedex,
France.

106


