The Terwilliger Algebra of an Almost-Bipartite Graph and its Antipodall Cover

Benjamin V.C. Collins
Department of Mathematics; University of Wisconsin; 480 Lincoln Drive; Madison, Wisconsin, 53706. Electronic mail: collins@math.wisc.edu

Abstract

A distance-regular graph $\mathcal{G}=(X, \mathcal{E})$ with diameter \mathcal{D} is said to be almost-bipartite if the intersection numbers satisfy $\mathrm{a}_{\mathrm{i}}(G)=0(0 \leq i \leq \mathcal{D}-1)$ and $\mathrm{a}_{\mathcal{D}}(\mathcal{G}) \neq 0$. In this case, we define a new graph, $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ by

$$
\begin{aligned}
& \mathrm{X}=X^{+} \cup X, \text { where } X^{+} \text {and } X^{-} \text {are two copies of } X, \\
& \mathrm{E}=\left\{\mathrm{x}^{+} \mathrm{y}^{-} \mid \mathrm{xy} \in \mathcal{E}\right\} .
\end{aligned}
$$

The graph G is a bipartite antipodal 2-cover with diameter $D=2 \mathcal{D}+1$, and its quotient is G. We investigate the relation between the Terwilliger algebras and their modules structures of two graphs related in this way.

Résumé

Un graphe $\mathcal{G}=(X, \mathcal{E})$ à distance-réguliere de diametre \mathcal{D} est presque bi-partie si les nombres d'intersections est tel que $\mathrm{a}_{\mathrm{i}}(\mathcal{G})=0(0 \leq i \leq \mathcal{D}-1)$ et $\mathrm{a}_{\mathcal{D}}(\mathcal{G}) \neq 0$. Dans ce cas on définit un nouveau graphe $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ par

$$
\begin{aligned}
& \mathrm{X}=X^{+} \cup X-, X^{+} \text {et } X^{-} \text {sont deux copies de } X, \\
& \mathrm{E}=\left\{\mathrm{x}^{+} \mathrm{y}^{-} \mid \mathrm{xy} \in \mathcal{E}\right\} .
\end{aligned}
$$

Le graphe G est une bi-partie antipodale graphe qui est un recouvrement de degré 2 , de diametre $D=2 \mathcal{D}+1$, et son quotient est G. Pour deux tels graphes, nous êtudions la relation entre leurs algebras de Terwilliger et leurs structures modulaires.

Extended Abstract

Let $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ be a distance-regular graph with dameter D . Define the adjacency matrix A of G to be the $|\mathrm{X}| \mathbf{x}|\mathrm{X}|$ matrix with rows and columns indexed by X , and yz entry:

$$
(A)_{y z}=\left\{\begin{array}{ll}
1 & \text { if } \partial(y, z)=1 \\
0 & \text { otherwise }
\end{array} \quad(x, y \in X) .\right.
$$

Fix a vertex $\mathrm{x} \in \mathrm{X}$. Define the dual idempotents $\mathrm{E}_{0}{ }^{*}, \mathrm{E}_{1}{ }^{*}, \ldots, \mathrm{E}_{\mathrm{D}}{ }^{*}$ of G with respect to x to be the $|X| \mathbf{x}|X|$ diagonal matrices with rows and columns indexed by X, and yy entry:

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=\mathrm{i} \\
0 & \text { otherwise }
\end{array} \quad(y \in X) .\right.
$$

The Terwilliger Algebra $\mathrm{T}=\mathrm{T}(\mathrm{x})$ is the subalgebra of $\operatorname{Matx}(1 \mathrm{R})$ generated by $\mathrm{A}, \mathrm{E}_{0}{ }^{*}, \mathrm{E}_{1}{ }^{*}, \ldots$, $E_{D}{ }^{*}$. The standard module for G is the space $V=\mid R^{|X|}$ of column vectors. For each $x \in X$, we denote by \hat{x} the column vector with 1 in the $x^{\text {th }}$ position, and 0 elsewhere.

An irreducible T-module W is said to be thin whenever $\operatorname{dim} \mathrm{E}_{\mathrm{i}}{ }^{*} \mathrm{~W} \leq 1$ for $0 \leq \mathrm{i} \leq \mathrm{D}$. The graph G is said to be thin with respect to x if every irreducible T-module is thin. Let W be a thin irreducible T-module. By the endpoint of W , we mean the integer $\mathrm{r}=\mathrm{min}\left\{\mathrm{i} \mid \mathrm{E}_{\mathrm{i}}{ }^{*} \mathrm{~W} \neq 0\right\}$, and by the diameter of W we mean the integer $d=\left\{\left\{i \mid E_{i}{ }^{*} W \neq 0\right\} \mid-1\right.$. Let $a_{i}=a_{i}(W)$ denote the eigenvalue of $\mathrm{E}_{\mathrm{r}+\mathrm{i}}{ }^{*} A \mathrm{E}_{\mathrm{r}+\mathrm{i}}{ }^{*}$ on $\mathrm{E}_{\mathrm{r}+\mathrm{i}}{ }^{*} \mathrm{~W}$, and let $\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}(\mathrm{W})$ denote the eigenvalue of $\mathrm{E}_{\mathrm{r}+\mathrm{i}-}$ $1^{*} \mathrm{AE}_{\mathrm{r}+\mathrm{i}}{ }^{*} \mathrm{AE}_{\mathrm{r}+\mathrm{i}-1}{ }^{*}$ on $\mathrm{E}_{\mathrm{r}+\mathrm{i}-1}{ }^{*} \mathrm{~W}$. It is known that the isomorphism class of W as a T -module is determined by r, d and $\left\{a_{i}, \mathrm{x}_{\mathrm{i}} \mid 0 \leq \mathrm{i} \leq \mathrm{d}\right\}$.

A distance-regular graph $\mathcal{G}=(X, \mathcal{E})$ with diameter \mathcal{D} is said to be almost-bipartite if the intersection numbers satisfy $\mathrm{a}_{\mathrm{i}}(\mathcal{G})=0(0 \leq \mathrm{i} \leq \mathcal{D})$ and $\mathrm{a}_{\mathcal{D}}(\mathcal{G}) \neq 0$. In this case, we define a new graph, $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ by

$$
\begin{aligned}
& \mathrm{X}=X^{+} \cup X, \text { where } X^{+} \text {and } X \text { - are two copies of } X, \\
& \mathrm{E}=\left\{\mathrm{x}^{+} \mathrm{y}^{-} \mid \mathrm{xy} \in \mathrm{E}\right\} .
\end{aligned}
$$

The graph G is a bipartite antipodal 2-cover with diameter $\mathrm{D}=2 \mathcal{D}+1$, and its quotient is G.
Let $\mathcal{G}=(X, \mathcal{E})$ be an almost-bipartite distance-regular graph with diameter \mathcal{D}, and let $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ denote the bipartite antipodal 2-cover of \mathcal{G}. Let $\pi: X \rightarrow X$ denote the quotient map.

Let Let ψ be the matrix with rows indexed by the elements of \mathcal{X}, and columns indexed by the elements of \mathbf{X}, and

$$
(\psi)_{y z}=\left\{\begin{array}{cc}
1 & \text { if } \pi z=y \\
0 & \text { otherwise } .
\end{array}\right.
$$

Note that ψ acts as a map $V \rightarrow \mathcal{V}$, and that

$$
\psi(\hat{\mathrm{y}})=\hat{y}, \text { where } \pi \mathrm{y}=y .
$$

We call ψ the quotient transformation.
Define matrices $\sigma_{\mathrm{n}}, \sigma_{\mathrm{f}}$ with rows indexed by X and columns indexed by X by:

$$
\left(\sigma_{\mathrm{n}}\right)_{\mathrm{y} z}=\left\{\begin{array}{lc}
1 & \text { if } \pi \mathrm{y}=z \text { and } \partial(\mathrm{x}, \mathrm{y}) \leq \mathcal{D} \\
0 & \text { otherwise },
\end{array}\right.
$$

and

$$
\left(\sigma_{\mathrm{f}}\right)_{\mathrm{y} z}=\left\{\begin{array}{lc}
1 & \text { if } \pi \mathrm{y}=z \text { and } \partial(\mathrm{x}, \mathrm{y}) \geq \mathcal{D}+1 \\
0 & \text { otherwise } .
\end{array}\right.
$$

Note that σ_{n} and σ_{f} act as maps $\mathcal{V} \rightarrow \mathrm{V}$ as follows. Let $y \in \mathcal{X}$. Let $\mathrm{y}, \mathrm{y}^{\prime}$ be the antipodal vertices of X such that $\pi(y)=\pi\left(y^{\prime}\right)=y$. Assume that $\partial(x, y)<\partial\left(x, y^{\prime}\right)$. Then

$$
\sigma_{\mathrm{n}}(\hat{y})=\hat{\mathrm{y}}
$$

and

$$
\sigma_{\mathrm{f}}(\hat{y})=\hat{y}^{\prime} .
$$

We call σ_{n} and σ_{f} the near and far transformations with respect to x.
We have the following results:
Theorem 1 Let $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ be an antipodal 2-cover with odd diameter $\mathrm{D}=2 \mathcal{D}+1$. Let $\mathcal{G}=(X, \mathcal{E})$ be the quotient graph. Fix $x \in X$, and let $\chi=\pi(x)$. Let ψ be the quotient transformation, and let σ_{n} and σ_{f} be the near and far transformations with respect to x . Let $\mathrm{T}=\mathrm{T}(\mathrm{x})$, and let $T=T(x)$.
(i) For any T-module $\mathrm{W}, \psi(\mathrm{W})$ is a \mathcal{T}-module.
(ii) For any \mathcal{T}-module $\mathcal{W}, \sigma_{\mathrm{n}}(\mathcal{W})+\sigma_{\mathrm{f}}(\mathcal{W})$ is a T-module.
(iii) The maps $W \mapsto \Psi(\mathcal{W})$ and $\mathcal{W} \mapsto \sigma_{\mathrm{n}}(\mathcal{W})+\sigma_{\mathrm{f}}(\mathcal{W})$ are inverse bijections between the set of T -modules and the set of \mathcal{T}-modules.

Theorem 2 Let $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ and $\mathcal{G}=(X, \mathcal{E})$ be as above. Let W be a T-module, and let $\mathcal{W}=$ $\psi(W)$. The following are equivalent:
(i) W is irreducible.
(ii) \mathcal{W} is irreducible.

Theorem 3 Let $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ and $\mathcal{G}=(X, \mathcal{E})$ be as above. Let $\mathrm{W}, \mathrm{W}^{\prime}$ be T-modules. Let $\mathcal{W}=\psi(\mathrm{W})$, and let $\mathcal{W}=\psi\left(\mathrm{W}^{\prime}\right)$. The following are equivalent:
(i) W and W^{\prime} are orthogonal.
(ii) \mathcal{W} and \mathcal{W} are orthogonal.

Theorem 4 Let $G=(X, E)$ and $G=(X, \mathcal{E})$ be as above. Let W, W^{\prime} be T-modules. Let $\mathcal{W}=\psi(W)$, and let $\mathcal{W}^{\prime}=\psi\left(W^{\prime}\right)$. The following are equivalent:
(i) W and W^{\prime} are isomorphic as T-modules.
(ii) \mathcal{W} and \mathcal{W} are isomorphic as \mathcal{T}-modules.

Theorem 5 Let $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ and $\mathcal{G}=(X, \mathcal{E})$ be as above. Then G is thin with respect to x if and only if \mathcal{G} is thin with respect to x.

Theorem 6 Let $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ and $G=(X, \mathcal{E})$ be as above. Let W be a thin, irreducible T-module with diameter d. Let $\mathcal{W}=\psi(W)$. Let $\Omega=\{\theta \mid \theta$ is an eigenvalue for $A \mid W\}$. Let $\Phi=\{\theta \mid \theta$ is an eigenvalue for $\mathcal{A} \mathcal{W}\}$.

Suppose the elements of Ω_{W} are $\theta_{0}>\theta_{1}>\ldots>\theta_{d}$. Then exactly one of the following holds
(i) $\Phi=\left\{\theta_{0}, \theta_{2}, \ldots, \theta_{\mathrm{d}-1}\right\}$
(ii) $\Phi=\left\{\theta_{1}, \theta_{3}, \ldots, \theta_{d}\right\}$.

Corollary 7 Let $\mathrm{G}=(\mathrm{X}, \mathrm{E}), \mathcal{G}=(X, \mathcal{E}), \mathrm{W}, \mathcal{W}, \Omega$, and Φ be as above.
Then $\Omega=\Phi \cup-\Phi$, where $-\Phi=\{-\theta \mid \theta \in \Phi\}$.

Theorem 8 Let $\mathrm{G}=(\mathrm{X}, \mathrm{E})$ and $G=(X, \mathcal{E})$ be as above. Let W be a thin, irreducible T-module with endpoint r and diameter d . Let $\mathcal{W}=\Psi(W)$. Then \mathcal{W} is a thin, irreducible \mathcal{T}-module with endpoint r and diameter \mathcal{D}-r.

Let $\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}(\mathrm{W})$ and $\mathrm{a}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}(\mathcal{W}),(0 \leq \mathrm{i} \leq \mathrm{d})$. Let $x_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}(\mathcal{W})$ and $a_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}(\mathcal{W}),(0 \leq \mathrm{i} \leq \mathcal{D}-\mathrm{r})$. Then:
(i) $a_{\mathrm{i}}=0$
($0 \leq \mathrm{i} \leq \mathcal{D}-\mathrm{r}-1)$
$a_{\mathcal{D}-\mathrm{r}}{ }^{2}=\mathrm{X}_{\mathcal{D}-\mathrm{r}+1}$
(ii) $x_{1}=\mathrm{x}_{\mathrm{i}} \quad(1 \leq \mathrm{i} \leq \mathcal{D}-\mathrm{r})$.

By Theorem 4, the sign of $a_{\mathcal{D}_{-r}}$ is determined by the isomorphism class of W. We will say that W has positive type if $a_{\mathcal{D}-\mathrm{r}}>0$, and that W has negative type if $a_{\mathcal{D}-\mathrm{r}}<0$. The next theorem gives criteria to determine whether a given W has positive or negative type.

Theorem 9 Let $\mathrm{G}=(\mathrm{X}, \mathrm{E}), G=(X, \mathcal{E})$, and W be as above. Let $\Omega=\{\theta \mid \theta$ is an eigenvalue for $\left.\left.A\right|_{W}\right\}$. Let $\Phi=\left\{\theta \mid \theta\right.$ is an eigenvalue for $\left.\mathscr{A l}_{\mathcal{W}}\right\}$.

The following are equivalent:
(i) W has positive type.
(ii) $\sum_{\theta \in \Phi} \theta>0$.
(iii) $\Phi=\left\{\theta_{0}, \theta_{2}, \ldots, \theta_{d-1}\right\}$ (where the elements of Ω are indexed so that $\theta_{0}>\theta_{1}>\ldots>\theta_{d}$.

References

Brouwer, A.E., Cohen, A.M., and Neumaier, A.: Distance-Regular Graphs, Berlin,
Heidelberg, New York: Springer-Verlag 1989.

Collins, B.V.C.: The girth of a thin distance-regular graph, Graphs and Combin., to appear.

Collins, B.V.C.: The Terwilliger algebra of an almost-bipartite graph and its antipodal cover, in preparation.

Stoer, J., and Bulirsh, R., Introduction to Numerical Analysis, Second Edition, Berlin Heidelberg, New York: Springer-Verlag 1993.

Terwilliger, P.: The subconstituent algebra of an association scheme,
Part I, J. Alg. Combin. 1(4): 363-388, 1992.
Part II, J. Alg. Combin. 2(1): 73-103, 1993.
Part III, J. Alg. Combin. 2(2): 177-1210, 1993.

