The Terwilliger Algebra of an Almost-Bipartite Graph and its Antipodal Cover

Benjamin V.C. Collins

Department of Mathematics; University of Wisconsin; 480 Lincoln Drive; Madison, Wisconsin, 53706. Electronic mail: collins@math.wisc.edu

Abstract

A distance-regular graph $\mathcal{G}=(X,\mathcal{E})$ with diameter \mathcal{D} is said to be *almost-bipartite* if the intersection numbers satisfy $a_i(\mathcal{G})=0$ ($0\leq i\leq \mathcal{D}-1$) and $a_{\mathcal{D}}(\mathcal{G})\neq 0$. In this case, we define a new graph, G=(X,E) by

 $X = X^+ \cup X^-$, where X^+ and X^- are two copies of X,

 $E = \{x^+y^- \mid xy \in \mathcal{E}\}.$

The graph G is a bipartite antipodal 2-cover with diameter $D=2\mathcal{D}+1$, and its quotient is \mathcal{G} . We investigate the relation between the Terwilliger algebras and their modules structures of two graphs related in this way.

Résumé

Un graphe G=(X, E) à distance-réguliere de diametre D est presque bi-partie si les nombres d'intersections est tel que $a_i(G)=0$ ($0 \le i \le D-1$) et $a_D(G)\neq 0$. Dans ce cas on définit un nouveau graphe G=(X, E) par

 $X = X^+ \cup X^-, X^+$ et X⁻ sont deux copies de X,

 $\mathbf{E} = \{\mathbf{x}^+\mathbf{y}^- \mid \mathbf{x}\mathbf{y} \in \mathcal{E}\}.$

Le graphe G est une bi-partie antipodale graphe qui est un recouvrement de degré 2, de diametre $D=2\mathcal{D}+1$, et son quotient est \mathcal{G} . Pour deux tels graphes, nous êtudions la relation entre leurs algebras de Terwilliger et leurs structures modulaires.

Extended Abstract

Let G=(X,E) be a distance-regular graph with dameter D. Define the *adjacency* matrix A of G to be the |X|x|X| matrix with rows and columns indexed by X, and yz entry: $(A)_{yz} = \begin{cases} 1 & \text{if } \partial(y,z)=1 \\ 0 & \text{otherwise} \end{cases} (x,y \in X).$

Fix a vertex $x \in X$. Define the *dual idempotents* $E_0^*, E_1^*, \dots, E_D^*$ of G with respect to x to be the $|X|_x|X|$ diagonal matrices with rows and columns indexed by X, and yy entry:

$$(E_i^*)_{yy} = \begin{cases} 1 & \text{if } \partial(x,y) = i \\ 0 & \text{otherwise} \end{cases} \qquad (y \in X).$$

The *Terwilliger Algebra* T = T(x) is the subalgebra of $Mat_X(l R)$ generated by A, E_0^* , E_1^* ,..., E_D^* . The *standard module* for G is the space $V = l R^{|X|}$ of column vectors. For each $x \in X$, we denote by \hat{x} the column vector with 1 in the xth position, and 0 elsewhere.

An irreducible T-module W is said to be *thin* whenever dim $E_i^*W \le 1$ for $0\le i\le D$. The graph G is said to be *thin with respect to x* if every irreducible T-module is thin. Let W be a thin irreducible T-module. By the *endpoint* of W, we mean the integer $r=min\{i | E_i^*W \neq 0\}$, and by the *diameter* of W we mean the integer $d=l\{i | E_i^*W \neq 0\}| - 1$. Let $a_i=a_i(W)$ denote the eigenvalue of $E_{r+i}^*AE_{r+i}^*$ on E_{r+i}^*W , and let $x_i=x_i(W)$ denote the eigenvalue of $E_{r+i-1}^*AE_{r+i-1}^*$ on E_{r+i-1}^*W . It is known that the isomorphism class of W as a T-module is determined by r, d and $\{a_i, x_i | 0\le i\le d\}$.

A distance-regular graph $G=(X, \mathcal{E})$ with diameter \mathcal{D} is said to be *almost-bipartite* if the intersection numbers satisfy $a_i(G)=0$ ($0\leq i\leq \mathcal{D}$) and $a_{\mathcal{D}}(G)\neq 0$. In this case, we define a new graph, G=(X,E) by

 $X = X^+ \cup X^-$, where X^+ and X^- are two copies of X,

$$\mathbf{E} = \{\mathbf{x}^+\mathbf{y}^- \mid \mathbf{x}\mathbf{y}\in\mathbf{E}\}$$

The graph G is a bipartite antipodal 2-cover with diameter $D=2\mathcal{D}+1$, and its quotient is G.

Let $\mathcal{G}=(\mathcal{X},\mathcal{E})$ be an almost-bipartite distance-regular graph with diameter \mathcal{D} , and let G=(X,E) denote the bipartite antipodal 2-cover of \mathcal{G} . Let $\pi: X \to X$ denote the quotient map.

Let Let ψ be the matrix with rows indexed by the elements of X, and columns indexed by the elements of X, and

 $(\Psi)_{yz} = \begin{cases} 1 & \text{if } \pi z = y \\ 0 & \text{otherwise.} \end{cases}$

Note that ψ acts as a map $V\!\!\rightarrow\!\mathcal{V}\!\!,$ and that

 $\psi(\hat{y}) = \hat{y}$, where $\pi y = y$.

We call ψ the quotient transformation.

Define matrices σ_n, σ_f with rows indexed by X and columns indexed by X by: $(\sigma_n)_{yz} = \begin{cases} 1 & \text{if } \pi y = z \text{ and } \partial(x, y) \leq \mathcal{D} \\ 0 & \text{otherwise,} \end{cases}$

and

 $(\sigma_{f})_{yz} = \begin{cases} 1 & \text{if } \pi y = z \text{ and } \partial(x, y) \ge \mathcal{D} + 1 \\ 0 & \text{otherwise.} \end{cases}$

Note that σ_n and σ_f act as maps $\mathcal{V} \to V$ as follows. Let $y \in \mathcal{X}$. Let y, y' be the antipodal vertices of X such that $\pi(y) = \pi(y') = y$. Assume that $\partial(x, y) < \partial(x, y')$. Then

 $\sigma_{n}(\hat{y}) = \hat{y}$

and

$$\sigma_{\mathbf{f}}(\hat{y}) = \hat{\mathbf{y}}'.$$

We call σ_n and σ_f the near and far transformations with respect to x.

We have the following results:

Theorem 1 Let G=(X,E) be an antipodal 2-cover with odd diameter $D=2\mathcal{D}+1$. Let $\mathcal{G}=(X,\mathcal{E})$ be the quotient graph. Fix $x \in X$, and let $\chi=\pi(x)$. Let ψ be the quotient transformation, and let σ_n and σ_f be the near and far transformations with respect to x. Let T=T(x), and let $\mathcal{T}=T(\chi)$.

(i) For any T-module W, $\psi(W)$ is a T-module.

(ii) For any T-module $\mathcal{W}, \sigma_n(\mathcal{W})+\sigma_f(\mathcal{W})$ is a T-module.

(iii) The maps $W \mapsto \psi(W)$ and $\mathcal{W} \mapsto \sigma_n(\mathcal{W}) + \sigma_f(\mathcal{W})$ are inverse bijections between the set of T-modules and the set of T-modules. **Theorem 2** Let G=(X,E) and G=(X,E) be as above. Let W be a T-module, and let $\mathcal{W} = \psi(W)$. The following are equivalent:

- (i) W is irreducible.
- (ii) \mathcal{W} is irreducible.

Theorem 3 Let G=(X,E) and G=(X,E) be as above. Let W,W' be T-modules. Let $\mathcal{W}=\psi(W)$, and let $\mathcal{W}=\psi(W')$. The following are equivalent:

- (i) W and W' are orthogonal.
- (ii) \mathcal{W} and \mathcal{W} are orthogonal.

Theorem 4 Let G=(X,E) and G=(X,E) be as above. Let W,W' be T-modules. Let $\mathcal{W}=\psi(W)$, and let $\mathcal{W}=\psi(W')$. The following are equivalent:

- (i) W and W' are isomorphic as T-modules.
- (ii) \mathcal{W} and \mathcal{W} are isomorphic as \mathcal{T} -modules.

Theorem 5 Let G=(X,E) and G=(X,E) be as above. Then G is thin with respect to x if and only if G is thin with respect to χ .

Theorem 6 Let G=(X,E) and G=(X,E) be as above. Let W be a thin, irreducible T-module with diameter d. Let $\mathcal{W}=\psi(W)$. Let $\Omega = \{\theta \mid \theta \text{ is an eigenvalue for } Al_W\}$. Let $\Phi = \{\theta \mid \theta \text{ is an eigenvalue for } Al_W\}$.

Suppose the elements of Ω_W are $\theta_0 > \theta_1 > ... > \theta_d$. Then exactly one of the following holds

(i) $\Phi = \{\theta_0, \theta_2, \dots, \theta_{d-1}\}$

(ii) $\Phi = \{\theta_1, \theta_3, \dots, \theta_d\}.$

Corollary 7 Let G=(X,E), G=(X,E), W, W, Ω , and Φ be as above.

Then $\Omega = \Phi \cup -\Phi$, where $-\Phi = \{-\theta \mid \theta \in \Phi\}$.

Theorem 8 Let G=(X,E) and G=(X,E) be as above. Let W be a thin, irreducible T-module with endpoint r and diameter d. Let $\mathcal{W}=\psi(W)$. Then \mathcal{W} is a thin, irreducible T-module with endpoint r and diameter \mathcal{D} -r.

Let $x_i = x_i(W)$ and $a_i = a_i(W)$, $(0 \le i \le d)$. Let $x_i = x_i(W)$ and $a_i = a_i(W)$, $(0 \le i \le D - r)$. Then: (i) $a_i = 0$ $(0 \le i \le D - r - 1)$ $a_{D-r}^2 = x_{D-r+1}$ (ii) $x_i = x_i$ $(1 \le i \le D - r)$.

By Theorem 4, the sign of a_{D-r} is determined by the isomorphism class of W. We will say that W has *positive type* if $a_{D-r}>0$, and that W has *negative type* if $a_{D-r}<0$. The next theorem gives criteria to determine whether a given W has positive or negative type. **Theorem 9** Let G=(X,E), G=(X,E), and W be as above. Let $\Omega = \{\theta \mid \theta \text{ is an eigenvalue for } Al_W\}$. Let $\Phi = \{\theta \mid \theta \text{ is an eigenvalue for } Al_W\}$.

The following are equivalent:

(i) W has positive type. (ii) $\nabla \theta > 0$

$$(\Pi) \sum_{\theta \in \Phi} 0 > 0.$$

(iii) $\Phi = \{\theta_0, \theta_2, ..., \theta_{d-1}\}$ (where the elements of Ω are indexed so that $\theta_0 > \theta_1 > ... > \theta_d$.)

References

Brouwer, A.E., Cohen, A.M., and Neumaier, A.: Distance-Regular Graphs, Berlin, Heidelberg, New York: Springer-Verlag 1989.

Collins, B.V.C.: The girth of a thin distance-regular graph, Graphs and Combin., to appear.

Collins, B.V.C.: The Terwilliger algebra of an almost-bipartite graph and its antipodal cover, in preparation.

Stoer, J., and Bulirsh, R., Introduction to Numerical Analysis, Second Edition, Berlin Heidelberg, New York: Springer-Verlag 1993.

Terwilliger, P.: The subconstituent algebra of an association scheme,

Part I, J. Alg. Combin. 1(4): 363-388, 1992.

Part II, J. Alg. Combin. 2(1): 73-103, 1993.

Part III, J. Alg. Combin. 2(2): 177-1210, 1993.