2-Homogeneous Bipartite Distance-regular Graphs

BRIAN CURTIN

Department of Mathematics

University of Wisconsin
480 Lincoln Dr.
Madison, WI 53706
Curtin@math.wisc.edu
Let $\Gamma=(X, R)$ denote a bipartite distance-regular graph with diameter $D \geq 2$. For $x \in X$, write

$$
\Gamma_{i}(x)=\{y \in X \mid \partial(x, y)=i\} \quad(0 \leq i \leq D)
$$

A bipartite distance-regular graph $\Gamma=(X, R)$ of diameter $D>2$ and valency $k>2$ is said to be 2-homogeneous if for all integers $i(1 \leq i \leq D-1)$ and all $x, y, z \in \Gamma_{i}(x)$ with $y, z \in \Gamma_{i}(x)$ and $\partial(y, z)=2$ the scalar

$$
\gamma_{i}=\left|\Gamma_{i-1}(x) \cap \Gamma_{1}(z) \cap \Gamma_{1}(y)\right|
$$

is independent of the choice of x, z and y.
Our main result is the following.
Theorem 1 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. Then the following are equivalent.
(i) Γ is 2-homogeneous.
(ii) For all integers $i(1 \leq i \leq D-1)$

$$
\left(b_{i-1}-1\right)\left(c_{i+1}-1\right)=p_{2 i}^{i}
$$

(iii) Either Γ is the k-cube, or there exists a real, nonzero scalar q such that for all $i(0 \leq i \leq D)$

$$
\begin{aligned}
& c_{i}=\frac{\left(q^{D}+q^{2}\right)\left(q^{2 i}-1\right)}{\left(q^{D}+q^{2 i}\right)\left(q^{2}-1\right)} \\
& b_{i}=\frac{\left(q^{D}+q^{2}\right)\left(q^{D}-q^{2 i-D}\right)}{\left(q^{D}+q^{2 i}\right)\left(q^{2}-1\right)}
\end{aligned}
$$

(iv) There exists a nontrivial eigenvalue θ of Γ such that

$$
(\mu-1) \theta^{2}=(k-\mu)(k-2)
$$

(v) There exists a nontrivial primitive idempotent E of Γ and there exist $x, y \in X$ with $\partial(x, y)=2$ such that

$$
\sum_{z \in \Gamma_{1}(x) \cap \Gamma_{1}(y)} E \hat{z} \in \operatorname{span}\{E \hat{x}, E \hat{y}\}
$$

(vi) There exists a nontrivial primitive idempotent E of Γ such that for all $x, y \in X$ and all $i, j(0 \leq i \leq D)$

$$
\sum_{z \in \Gamma_{i}(x) \cap \Gamma_{j}(y)} E \hat{z} \in \operatorname{span}\{E \hat{x}+E \hat{y}\}
$$

(vii) Γ has a Q-polynomial structure for which $a_{i}^{*}=0(0 \leq i \leq D-1)$.

We can say more about the Q -polynomial structure of the graphs described in Theorem 1.

Corollary 2 Suppose the equivalent conditions of Theorem 1 hold. Let $\theta_{0}>$ $\theta_{1}>\cdots>\theta_{D}$ denote the distinct eigenvalues of Γ, and let E_{i} denote the primitive idempotent of Γ associated with $\theta_{i}(0 \leq i \leq D)$.
(i) If D is odd, then $E_{0}, E_{1}, \ldots, E_{D}$ is the unique Q-polynomial ordering. If D is even, then $E_{0}, E_{1}, \ldots, E_{0}$ and $E_{D-1}, E_{2}, E_{D-3}, \ldots$ are the unique Q-polynomial orderings.
(ii) With respect to any Q-polynomial ordering

$$
p_{i j}^{h}=q_{i j}^{h} \quad(0 \leq h, i, j \leq D)
$$

(iii) With respect to any Q-polynomial ordering $a_{i}^{*}=0(0 \leq i \leq D)$.

