2-Homogeneous Bipartite Distance-regular Graphs

BRIAN CURTIN

Department of Mathematics University of Wisconsin 480 Lincoln Dr. Madison, WI 53706

Curtin@math.wisc.edu

Let $\Gamma = (X, R)$ denote a bipartite distance-regular graph with diameter $D \ge 2$. For $x \in X$, write

$$\Gamma_i(x) = \{ y \in X | \partial(x, y) = i \} \qquad (0 \le i \le D).$$

A bipartite distance-regular graph $\Gamma = (X, R)$ of diameter D > 2 and valency k > 2 is said to be 2-homogeneous if for all integers $i \ (1 \le i \le D - 1)$ and all $x, y, z \in \Gamma_i(x)$ with $y, z \in \Gamma_i(x)$ and $\partial(y, z) = 2$ the scalar

$$\gamma_i = |\Gamma_{i-1}(x) \cap \Gamma_1(z) \cap \Gamma_1(y)|$$

is independent of the choice of x, z and y.

Our main result is the following.

Theorem 1 Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. Then the following are equivalent.

- (i) Γ is 2-homogeneous.
- (ii) For all integers $i \ (1 \le i \le D-1)$

$$(b_{i-1}-1)(c_{i+1}-1) = p_{2i}^{i}.$$

(iii) Either Γ is the k-cube, or there exists a real, nonzero scalar q such that for all $i \ (0 \le i \le D)$

$$c_i = \frac{(q^D + q^2)(q^{2i} - 1)}{(q^D + q^{2i})(q^2 - 1)},$$

$$b_i = \frac{(q^D + q^2)(q^D - q^{2i-D})}{(q^D + q^{2i})(q^2 - 1)}.$$

(iv) There exists a nontrivial eigenvalue θ of Γ such that

z

$$(\mu - 1)\theta^2 = (k - \mu)(k - 2).$$

(v) There exists a nontrivial primitive idempotent E of Γ and there exist $x, y \in X$ with $\partial(x, y) = 2$ such that

$$\sum_{\in \Gamma_1(x)\cap \Gamma_1(y)} E\hat{z} \in \operatorname{span} \left\{ E\hat{x}, E\hat{y} \right\}.$$

(vi) There exists a nontrivial primitive idempotent E of Γ such that for all $x, y \in X$ and all $i, j \ (0 \le i \le D)$

$$\sum_{z \in \Gamma_i(x) \cap \Gamma_j(y)} E\hat{z} \in \operatorname{span} \left\{ E\hat{x} + E\hat{y} \right\}.$$

(vii) Γ has a Q-polynomial structure for which $a_i^* = 0$ ($0 \le i \le D - 1$).

We can say more about the Q-polynomial structure of the graphs described in Theorem 1.

Corollary 2 Suppose the equivalent conditions of Theorem 1 hold. Let $\theta_0 > \theta_1 > \cdots > \theta_D$ denote the distinct eigenvalues of Γ , and let E_i denote the primitive idempotent of Γ associated with θ_i $(0 \le i \le D)$.

- (i) If D is odd, then E₀, E₁, ..., E_D is the unique Q-polynomial ordering. If D is even, then E₀, E₁, ..., E₀ and E_{D-1}, E₂, E_{D-3}, ... are the unique Q-polynomial orderings.
- (ii) With respect to any Q-polynomial ordering

$$p_{ij}^h = q_{ij}^h \qquad (0 \le h, i, j \le D).$$

(iii) With respect to any Q-polynomial ordering $a_i^* = 0$ $(0 \le i \le D)$.