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Summary.

Bjorner and Wachs recently generalized the definition of shellability by dropping the as-
sumption of purity; they also introduced the h-triangle, a doubly-indexed generalization of
the h-vector which is combinatorially significant for shellable (nonpure) complexes. Stanley
subsequently defined a (nonpure) simplicial complex to be sequentially Cohen-Macaulay if it
satisfies algebraic conditions that generalize the (pure) Cohen-Macaulay conditions, so that
a shellable (nonpure) complex is sequentially Cohen-Macaulay.

We show that algebraic shifting preserves the h-triangle of a simplicial complex K if
and only if K is sequentially Cohen-Macaulay. This generalizes a result of Kalai’s for pure
Cohen-Macaulayness. Immediate consequences include that shellable (nonpure) complexes
and sequentially Cohen-Macaulay complexes have the same set of possible h-triangles.

Pure complexes and nonpure generalizations.

A simplicial complex is pure if all of its facets (maximal faces, ordered by inclusion) have the
same dimension. Cohen-Macaulayness, algebraic shifting, shellability, and the h-vector are
significantly interrelated for pure simplicial complexes. We will be concerned with extending
some of these relations to nonpure complexes, but first, we briefly review the pure case.

A simplicial complex is Cohen-Macaulay if its face-ring is a Cohen-Macaulay ring (an
algebraic property), or, equivalently, if the complex satisfies certain topological conditions
(see, e.g., [St3, St6]). In particular, the complex must be pure. A pure simplicial complex
is shellable if it can be constructed one facet at a time, subject to certain conditions (see,
e.g., [Bjl, BW1]). A shellable (pure) complex is Cohen-Macaulay, and the h-vector of a
Cohen-Macaulay or shellable (pure) complex has natural combinatorial interpretations.
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Algebraic shifting is a procedure that defines, for every simplicial complex K, a new com-
plex A(K) with the same h-vector as K and a nice combinatorial structure (A(K)is shifted).
Additionally, algebraic shifting preserves many algebraic and topological properties of the
original complex, including Cohen-Macaulayness; a simplicial complex is Cohen-Macaulay if
and only if A(K') is Cohen-Macaulay, which, in turn, holds if and only if A(K) is pure. Thus,
it is easy to tell whether K is Cohen-Macaulay, if A(K) is known. (See, e.g., [BK1, BK2].)

Now we are ready for the nonpure case.

Bjorner and Wachs’ recent generalization of shellability to nonpure simplicial complexes,
made by simply dropping the assumption of purity [BW2], generated a great deal of interest,
and sparked the generalization of several other related concepts [SWa, SWe, BS, DR]. In
particular, Stanley introduced sequential Cohen-Macaulayness [St6, Section III.2], a non-
pure generalization of Cohen-Macaulayness, and designed the (algebraic) definition so that
a shellable (nonpure) complex is sequentially Cohen-Macaulay, much as a shellable (pure)
complex is (pure) Cohen-Macaulay. Meanwhile, joint work with L. Rose [DR] shows that
algebraic shifting preserves the h-triangle (a non-pure generalization of the h-vector) of
shellable (nonpure) complexes. These developments prompted A. Bjorner (private commu-
nication) to ask, “Does algebraic shifting preserve sequential Cohen-Macaulayness?” and
“Does algebraic shifting preserve the h-triangle of sequentially Cohen-Macaulay simplicial
complexes?”

Shifted complexes are shellable and hence sequentially Cohen-Macaulay, so A(K) is al-
ways sequentially Cohen-Macaulay. Thus, the “obvious” generalization, “K is sequentially
Cohen-Macaulay if and only if A(K) is sequentially Cohen-Macaulay,” is trivially false.
Bjorner’s first question may be restated as, “Can one use A(K) to tell if a simplicial com-
plex K is sequentially Cohen-Macaulay?”

Our main result is to answer both of Bjorner’s questions simultaneously, by showing that
algebraic shifting preserves the h-triangle of a simplicial complex if and only if the complex
is sequentially Cohen-Macaulay (Theorem 4). Two immediate corollaries, one involving
shellability and the other a nonpure generalization of homology Betti numbers, follow.

f-triangle and h-triangle.

A simplicial complex K is a collection of finite sets (called faces) such that F' € K and
G C F together imply that G € K. We allow K to be the empty simplicial complex 0
consisting of no faces, or the simplicial complex {#} consisting of just the empty face, but
we do distinguish between these two cases. A subcomplex of K is a subset of faces L C K
such that F € L and G C F imply G € L. A subcomplex is a simplicial complex in its own
right. An order filter of K is a subset of faces J C K such that F € Jand F C G € K
imply G € J.

. The dimension of a face FF € K is dimF = |F| — 1, and the dimension of K is
dim K = max{dim F: F € K}. The maximal faces of K (under the set inclusion partial
order) are called facets, and K is pure if all the facets have the same dimension.

Following [BW2], we define the degree of a face F' € K to be degg F' = max{|G|: F C
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G € K}. We further define the degree of K to be deg K = min{degy F: F € K}. Note
that K is pure if and only if all the faces have the same degree.
Bjorner and Wachs [BW2, Definition 2.8] define the subcomplex

K™) ={FeK:dimF <s, deggy F >r+1}

for =1 < r,s < dim K. We may extend this by defining K(™*) to be the empty simplicial
complex when r > dim K.

We will frequently make use of the following subcomplexes: K() = K(-19)  the s-
skeleton of K; K<™> = K(dimK) the subcomplex of all faces of K whose degree is at
least 7 + 1 (equivalently, the subcomplex generated by all facets whose dimension is at least
r); and K() the pure i-skeleton, the pure subcomplex generated by all i-dimensional
faces. Another interpretation of K(™*) then, is K™ = (K<7>)(),

Let K; denote the set of j-dimensional faces of K. Recall that the f-vector of K is the
sequence f(K) = (f-1,-.., fi-1), where f; = f;(K) = #K; and d — 1 = dim K, and that
the h-vector of K is the sequence h(K) = (ho,...,hq) where

b=y (1006 0siso 1)

4 d—s
fj=Z(j+1__s)h3a

s=0

so knowing the h-vector of a simplicial complex is equivalent to knowing its f-vector.

Definition (Bjorner-Wachs [BW2, Definition 3.1]): Let K be a (d — 1)-dimensional
simplicial complex. Define

fii(K)=#{F € K: degyx F =i, dimF = j —1}.

The triangular integer array (f;;)o<j<i<d is the f-triangle of K. Further define

hii(K) = i(—l)j" (Z - s)fi,s(K )- (2)

s=0 J - S
The triangular array h = (h;j)o<j<i<d is the h-triangle of K. O
-Inverting equation (2) gives
: 1—3$
i = : Ris, 3
s §(1+1—5) ®)

- so knowing the h-triangle of a simplicial complex is equivalent to knowing its f-triangle.
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If K is a pure (d — 1)-dimensional simplicial complex, then every face has degree d, so

ey ) fici(K), ifi=d
f"’(K)"{ 0, ifi#d’

and similarly for the A’s. Thus, when K is pure, the f-triangle and the A-triangle are zero
except for the last row (fz0(K) or hyo(K)), which consists of the f-vector or h-vector,
respectively.

Clearly,

fra (K1) me | (4)

p=i

for all 0 < j,z < d. Inverting equation (4), we get
fii(K) = fim(K<) = fima (K<) (5)

for all 0 < j < ¢ < d; this is essentially the same idea as [BW2, equation (3.2)]. In the case
i = d, equation (5) relies upon the tail condition f;_i(K<%) = f;_1(0) = 0.

Cohen-Macaulayness.

Cohen-Macaulayness is an important algebraic concept, but we will use the equivalent al-
gebraic topological characterizations as our definitions. For all undefined topological terms,
see [Mu]; for further details on Cohen-Macaulayness, see [St6].

The pair (K, L) will denote a pair of simplicial complexes L C K. Let k denote a field,
fixed throughout the rest of the paper. Recall that. H »(K) refers to reduced homology of
K (over k), and H,(K, L) denotes reduced relative homology of the pair (K,L) (over
k). For K a simplicial complex, H,(K,0) = H,(K); for a pair (K, L) with L non-empty,
Hy(K,L) = Hy(K,L).

The link of a face F in a simplicial complex K is defined to be the subcomplex

lkkF={GeK:FUGe K, FNG =0}.

If L C K are a pair of subcomplexes and F' € K, then define the relative link of F in L to

be
lktF={GeL: FUGEe L, FNG =0}

(see Stanley [St4, Section 5]). If F € L, this matches the usual definition of lkLF, but we
now allow the possibility that F' € L, in which case Ik  F' = §.

By [Re], a simplicial complex K is pure Cohen-Macaulay (over k) if K is pure and, for
every F € K (including F = 0), H,(lkxF) = 0 for all p < dimlkx F. By [St4, Theorem 5.3],
a pair of simplicial complexes (K, L) is relative Cohen-Macaulay (over k) if and only if,
for every F € K (including F = 0), H,(lkx F, lkpF') = 0 for all p < dimlkgF.

144



Definition (Stanley [St6, II1.2.9]): Let K be a (d — 1)-dimensional simplicial complex.
Then K is sequentially Cohen-Macaulay if the pairs

Q(K) = (KG9, g+19)

are relative Cohen-Macaulay for —1 < i < d — 1. In particular, when ¢ = d — 1, we
require Qq_;(K) = (K@14-1) @) to be relative Cohen-Macaulay, which is equivalent to
K<d-1> = [(d4-1.d-1) heing pure Cohen-Macaulay. O

Remark: This definition is stated slightly differently from the one given by Stanley [St6],
but it is easy to show that the two definitions are entirely equivalent. O

We will use the following new characterization of sequential Cohen-Macaulayness, whose

proof is omitted.

Theorem 1 Let K be a (d — 1)-dimensional simplicial complez. Then K is sequentially
Cohen-Macaulay if and only if K is pure Cohen-Macaulay for all -1 <:<d—1. O

Algebraic shifting.

Define the partial order <p on k-subsets of integers as usual: If S = {i; < --- < 4;} and
T = {j1 < -+ < jix} are two k-subsets of integers, then S <p T if ¢, < j, for all p. A
collection C of k-subsets is shifted if S <p T and T € C together imply that S € C. A
simplicial complex K is shifted if K is shifted for every j.

Given a simplicial complex K, algebraic shifting is a way to define a new complex A(K)
that is shifted, has the same f-vector, and has many of the same algebraic and topological
properties of the original complex (Kalai [Kal]; see also [BK1, BK2]). The following result
is the central property of algebraic shifting for our purposes.

" Proposition 2 (Kalai [Ka2, Theorem 5.3]) Let K be a simplicial complez. Then K is
pure Cohen-Macaulay if and only if A(K) is pure. O

Thus, it is easy to detect whether K is pure Cohen-Macaulay, if A(K) is known. We extend
Proposition 2 to the nonpure case as follows (the proof is omitted).

Theorem 3 Let K be a simplicial complez of dimension at least ¢ (t > —1). Then
AK)S> € A(K<>),

with equality if and only if KG9 is pure Cohen-Macaulay. O

Remark: The proof of Theorem 3 relies upon Proposition 2. O
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Main theorem.

We now sketch the proof of our main result.

Theorem 4 Let K be a (d — 1)-dimensional simplicial complez. Then K is sequentially
Cohen-Macaulay if and only if
hi;(A(K)) = hij(K)

forall0<j <1< d.

Proof: (sketch) We show that the following statements are all equivalent:
(a) K is sequentially Cohen-Macaulay; |
(b) KG9 = (K<) is pure Cohen-Macaulay for all =1 <z < d — 1;

(©) AK)<> = A(K<>)forall -1 <i < d— 1
(d) fi(A(K)<>) = fi(K<>)forall -1 < j,i <d -1
(e) fij(A(K)) = fi(K)forall0<j <:<d;and
(f) his(A(K)) = hij(K) forall 0 < j <i <d.

(a) & (b) & (c): These equivalences are Theorem 1 and Theorem 3, respectively.

(c) ¢ (d): By Theorem 3, A(K)<*> C A(K<*>), so A(K)<*> = A(K<*) if and only if
fi-1(A(K)<?) = fjm1(A(K<*)) for all j. But, algebraic shifting preserves the f-vector, so
firr(A(K <)) = fia(K<2).

(d) = (e): This follows immediately from equation (5) applied to A(K) and K, respec-
tively. (For the ¢ = d case, we also need that A(K)<®> = 0 = K<% so f;_1(A(K)<%) =
0= f;—1(K<%) for all 5.)

(e) = (d): This follows immediately from equation (4) applied to A(K') and K, respec-
tively.

(e) & (f): This follows immediately from equations (2) and (3). O

Shelling.

Bjorner and Wachs generalized the definition of shellability by dropping the assumption of
purity.

Definition (Bjorner-Wachs [BW2, Definition 2.1]): A simplicial complex is shellable
if it can be constructed by adding one facet at a time, so that as each facet is added, it inter-
sects the existing complex (previous facets) in a union of codimension 1 faces. Equivalently,
as each facet F is added, a unique new minimal face, called the restriction face R(F'), is
added. (Note that the dimension of R(F) is one less than the number of codimension one
faces in which F intersects the existing complex when it is added.) O
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The restriction faces are counted by the h-triangle [BW2, Theorem 3.4]: If K is a shellable
(d — 1)-dimensional complex, then

hij(K) = #{facets F € K: dimF =:-1, dimR(F) =j — 1},

for 0 < 7 < ¢ < d. This generalizes the well-known result that the restriction faces of a
shellable pure complex are counted by the h-vector.

Bjorner and Wachs’ generalization of shellability prompted Stanley to define sequentially
Cohen-Macaulay complexes, and to design the definition so that shellable complexes are
sequentially Cohen-Macaulay, generalizing the well-known pure case. Our first corollary to
Theorem 4 now follows easily.

Corollary 5 Let h = (ki ;)o<j<i<a be an array of integers. Then the following are equivalent:
(a) h is the h-triangle of a sequentially Cohen-Macaulay simplicial complez;
(b) h is the h-triangle of a shellable simplicial complez; and
(¢) h is the h-triangle of a shifted simplicial complez.

Proof: (c) = (b): A shifted complex is shellable [BW2, Theorem 11.3].

(b) = (a): A shellable complex is sequentially Cohen-Macaulay [St6, Section III.2].

(a) = (c): Let K be a sequentially Cohen-Macaulay simplicial complex. Theorem 4
implies that A;;(K) = hij(A(K)) for all 0 <z < 7 < d. Thus A(K) is a shifted complex
with the same h-triangle as K. O

The pure case of Corollary 5 is due to Stanley [St1, Theorem 6]. The proof of Corollary 5
is a generalization of Kalai’s proof of Stanley’s result [Ka2, Corollary 5.2]. It follows from
Corollary 5 that characterizing the h-triangle (equivalently, characterizing the f-triangle)
of sequentially Cohen-Macaulay simplicial complexes is equivalent to characterizing the h-
triangle of shellable complexes or even characterizing the h-triangle of shifted complexes.
(See [BW2, Theorem 3.6] and the remarks that follow it, and also Bjorner [Bj2].)

Iterated Betti numbers.

Another corollary to Theorem 4 involves iterated Betti numbers, a non-pure generalization of
reduced homology Betti numbers (8;—1(K) = dimj H;_1(K)) introduced in joint work with
L. Rose. Although they can be defined as the Betti numbers of a certain chain complex [DR,
Section 4], we will take the following equivalent formulation as our definition of iterated Betti
numbers. : ,

Definition ([DR, Theorem 4.1]): Let K be a simplicial complex. For a set F' of positive
integers, let init(F) = max{r: {1,...,7} € F} (so init(F) measures the largest “initial
segment” in F, and is 0 if there is no initial segment, i.e., if 1 € F'). Then define the rth
iterated Betti numbers of K to be

Bia[r)(K) = #{facets F € A(K): dimF =1 — 1, init(F) =r}.
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]
A special case is 7 = 0; then B;[0](K) = B;(K), the (ordinary) Betti numbers of reduced

homology.
Bjorner and Wachs [BW2, Theorem 4.1] showed that if K is shellable, then
| Biza(K) = hii(K), | (6)
for 0 < ¢ < d. Equation (6) is generalized in [DR, Theorem 1.2] to
Biaa[r)(K) = hii—r(K) (7)

for shellable K.
Theorem 4 allows us to generalize even further, by weakening the assumption on K in
equation (7) from being shellable to being merely sequentially Cohen-Macaulay.

Corollary 6 If K is sequentially Cohen-Macaulay, then Bi—y[r}(K) = hi;i-r(K).

Proof: By [DR, Theorem 5.4], Bi—1[r](K) = hii—-(A(K)), for all simplicial complexes K.
Then apply Theorem 4. O

Conjecture.

Finally, we present a conjecture inspired by collapsing, which is related to shelling.

Definition (Kalai [Ka2, Section 4]): A face R of a simplicial complex K is free if it is
included in a unique facet F'. (The empty set is a free face of K if K is a simplex.) If |R| = p
and |F| = g, then we say R is of type (p,q). A (p,q)-collapse step is the deletion from
K of a free face of type (p,q) and all faces containing it (i.e., the deletion of the interval
[R, F]). A collapsing sequence is a sequence of collapse steps that reduce K to the empty
simplicial complex. O

A shelling of K gives rise to a canonical collapsing (though not conversely): If F,..., F;
is a shelling order on the facets of K, then :

[R(F,), Fy)...[R(F1), Fi]

is a collapsing sequence of K [DR, Lemma 5.5], [Ka2, Section 4]. Since A(K) is shifted and
hence shellable, A(K) has a collapsing sequence whose types are given by A(A(K)). Kalai
has conjectured that K must have a decomposition into Boolean intervals of the same type
as a collapse sequence of A(K) [Ka2, Section 9.3]. This conjecture and Theorem 4 would
then imply the following conjecture.
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Conjecture 7 A sequentially Cohen-Macaulay complez K can be decomposed into a collec-
tion of Boolean intervals (indezed by the set A)

K = Ugea[Ra, Fo (8)

such that ,
hi;(K) = #{a € A: |F,| = j,|R.| = ¢} (9)

and every F, is a facet in K.

It is not hard to see that if K is sequentially Cohen-Macaulay and has the decomposi-
tion (8), then the decomposition satisfies equation (9) if and only if every Fj, is a facet.

This is the nonpure generalization of a conjecture made (separately) by Garsia [Ga, Re-
mark 5.2] and Stanley [St2, p. 149, that a pure Cohen-Macaulay complex can be decomposed
into Boolean intervals whose tops are facets (see also [St5, Du]). Conjecture 7 is equivalent
to being able to decompose a relative Cohen-Macaulay complex into Boolean intervals whose
tops are facets.
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