# Algebraic Shifting and Sequentially Cohen-Macaulay Simplicial Complexes 

Art M. Duval<br>University of Texas at El Paso<br>Department of Mathematical Sciences<br>El Paso, TX 79968-0514<br>artduval@math.utep.edu

## Summary.

Björner and Wachs recently generalized the definition of shellability by dropping the assumption of purity; they also introduced the $h$-triangle, a doubly-indexed generalization of the $h$-vector which is combinatorially significant for shellable (nonpure) complexes. Stanley subsequently defined a (nonpure) simplicial complex to be sequentially Cohen-Macaulay if it satisfies algebraic conditions that generalize the (pure) Cohen-Macaulay conditions, so that a shellable (nonpure) complex is sequentially Cohen-Macaulay.

We show that algebraic shifting preserves the $h$-triangle of a simplicial complex $K$ if and only if $K$ is sequentially Cohen-Macaulay. This generalizes a result of Kalai's for pure Cohen-Macaulayness. Immediate consequences include that shellable (nonpure) complexes and sequentially Cohen-Macaulay complexes have the same set of possible $h$-triangles.

## Pure complexes and nonpure generalizations.

A simplicial complex is pure if all of its facets (maximal faces, ordered by inclusion) have the same dimension. Cohen-Macaulayness, algebraic shifting, shellability, and the $h$-vector are significantly interrelated for pure simplicial complexes. We will be concerned with extending some of these relations to nonpure complexes, but first, we briefly review the pure case.

A simplicial complex is Cohen-Macaulay if its face-ring is a Cohen-Macaulay ring (an algebraic property), or, equivalently, if the complex satisfies certain topological conditions (see, e.g., [St3, St6]). In particular, the complex must be pure. A pure simplicial complex is shellable if it can be constructed one facet at a time, subject to certain conditions (see, e.g., [ $\mathrm{Bj} 1, \mathrm{BW} 1]$ ). A shellable (pure) complex is Cohen-Macaulay, and the $h$-vector of a Cohen-Macaulay or shellable (pure) complex has natural combinatorial interpretations.

Algebraic shifting is a procedure that defines, for every simplicial complex $K$, a new complex $\Delta(K)$ with the same $h$-vector as $K$ and a nice combinatorial structure ( $\Delta(K)$ is shifted). Additionally, algebraic shifting preserves many algebraic and topological properties of the original complex, including Cohen-Macaulayness; a simplicial complex is Cohen-Macaulay if and only if $\Delta(K)$ is Cohen-Macaulay, which, in turn, holds if and only if $\Delta(K)$ is pure. Thus, it is easy to tell whether $K$ is Cohen-Macaulay, if $\Delta(K)$ is known. (See, e.g., [BK1, BK2].)

Now we are ready for the nonpure case.
Björner and Wachs' recent generalization of shellability to nonpure simplicial complexes, made by simply dropping the assumption of purity [BW2], generated a great deal of interest, and sparked the generalization of several other related concepts [SWa, SWe, BS, DR]. In particular, Stanley introduced sequential Cohen-Macaulayness [St6, Section III.2], a nonpure generalization of Cohen-Macaulayness, and designed the (algebraic) definition so that a shellable (nonpure) complex is sequentially Cohen-Macaulay, much as a shellable (pure) complex is (pure) Cohen-Macaulay. Meanwhile, joint work with L. Rose [DR] shows that algebraic shifting preserves the $h$-triangle (a non-pure generalization of the $h$-vector) of shellable (nonpure) complexes. These developments prompted A. Björner (private communication) to ask, "Does algebraic shifting preserve sequential Cohen-Macaulayness?" and "Does algebraic shifting preserve the $h$-triangle of sequentially Cohen-Macaulay simplicial complexes?"

Shifted complexes are shellable and hence sequentially Cohen-Macaulay, so $\Delta(K)$ is always sequentially Cohen-Macaulay. Thus, the "obvious" generalization, " $K$ is sequentially Cohen-Macaulay if and only if $\Delta(K)$ is sequentially Cohen-Macaulay," is trivially false. Björner's first question may be restated as, "Can one use $\Delta(K)$ to tell if a simplicial complex $K$ is sequentially Cohen-Macaulay?"

Our main result is to answer both of Björner's questions simultaneously, by showing that algebraic shifting preserves the $h$-triangle of a simplicial complex if and only if the complex is sequentially Cohen-Macaulay (Theorem 4). Two immediate corollaries, one involving shellability and the other a nonpure generalization of homology Betti numbers, follow.

## $f$-triangle and $h$-triangle.

A simplicial complex $K$ is a collection of finite sets (called faces) such that $F \in K$ and $G \subseteq F$ together imply that $G \in K$. We allow $K$ to be the empty simplicial complex $\emptyset$ consisting of no faces, or the simplicial complex $\{\emptyset\}$ consisting of just the empty face, but we do distinguish between these two cases. A subcomplex of $K$ is a subset of faces $L \subseteq K$ such that $F \in L$ and $G \subseteq F$ imply $G \in L$. A subcomplex is a simplicial complex in its own right. An order filter of $K$ is a subset of faces $J \subseteq K$ such that $F \in J$ and $F \subseteq G \in K$ imply $G \in J$.

The dimension of a face $F \in K$ is $\operatorname{dim} F=|F|-1$, and the dimension of $K$ is $\operatorname{dim} K=\max \{\operatorname{dim} F: F \in K\}$. The maximal faces of $K$ (under the set inclusion partial order) are called facets, and $K$ is pure if all the facets have the same dimension.

Following [BW2], we define the degree of a face $F \in K$ to be $\operatorname{deg}_{K} F=\max \{|G|: F \subseteq$
$G \in K\}$. We further define the degree of $K$ to be $\operatorname{deg} K=\min \left\{\operatorname{deg}_{K} F: F \in K\right\}$. Note that $K$ is pure if and only if all the faces have the same degree.

Björner and Wachs [BW2, Definition 2.8] define the subcomplex

$$
K^{(r, s)}=\left\{F \in K: \operatorname{dim} F \leq s, \operatorname{deg}_{K} F \geq r+1\right\}
$$

for $-1 \leq r, s \leq \operatorname{dim} K$. We may extend this by defining $K^{(r, s)}$ to be the empty simplicial complex when $r>\operatorname{dim} K$.

We will frequently make use of the following subcomplexes: $K^{(s)}=K^{(-1, s)}$, the $s$ skeleton of $K ; K^{<r>}=K^{(r, \operatorname{dim} K)}$, the subcomplex of all faces of $K$ whose degree is at least $r+1$ (equivalently, the subcomplex generated by all facets whose dimension is at least $r$ ); and $K^{(i, i)}$, the pure $i$-skeleton, the pure subcomplex generated by all $i$-dimensional faces. Another interpretation of $K^{(\tau, s)}$, then, is $K^{(\tau, s)}=\left(K^{\langle\tau\rangle}\right)^{(s)}$.

Let $K_{j}$ denote the set of $j$-dimensional faces of $K$. Recall that the $f$-vector of $K$ is the sequence $f(K)=\left(f_{-1}, \ldots, f_{d-1}\right)$, where $f_{j}=f_{j}(K)=\# K_{j}$ and $d-1=\operatorname{dim} K$, and that the $h$-vector of $K$ is the sequence $h(K)=\left(h_{0}, \ldots, h_{d}\right)$ where

$$
\begin{equation*}
h_{j}=\sum_{s=0}^{j}(-1)^{j-s}\binom{d-s}{j-s} f_{s-1} \quad(0 \leq j \leq d) . \tag{1}
\end{equation*}
$$

Inverting equation (1) gives

$$
f_{j}=\sum_{s=0}^{d}\binom{d-s}{j+1-s} h_{s}
$$

so knowing the $h$-vector of a simplicial complex is equivalent to knowing its $f$-vector.
Definition (Björner-Wachs [BW2, Definition 3.1]): Let $K$ be a ( $d-1$ )-dimensional simplicial complex. Define

$$
f_{i, j}(K)=\#\left\{F \in K: \operatorname{deg}_{K} F=i, \operatorname{dim} F=j-1\right\}
$$

The triangular integer array $\left(f_{i, j}\right)_{0 \leq j \leq i \leq d}$ is the $f$-triangle of $K$. Further define

$$
\begin{equation*}
h_{i, j}(K)=\sum_{s=0}^{j}(-1)^{j-s}\binom{i-s}{j-s} f_{i, s}(K) . \tag{2}
\end{equation*}
$$

The triangular array $\mathbf{h}=\left(h_{i, j}\right)_{0 \leq j \leq i \leq d}$ is the $h$-triangle of $K$.
Inverting equation (2) gives

$$
\begin{equation*}
f_{i, j}=\sum_{s=0}^{i}\binom{i-s}{j+1-s} h_{i, s}, \tag{3}
\end{equation*}
$$

so knowing the $h$-triangle of a simplicial complex is equivalent to knowing its $f$-triangle.

If $K$ is a pure ( $d-1$ )-dimensional simplicial complex, then every face has degree $d$, so

$$
f_{i, j}(K)= \begin{cases}f_{j-1}(K), & \text { if } i=d \\ 0, & \text { if } i \neq d\end{cases}
$$

and similarly for the $h$ 's. Thus, when $K$ is pure, the $f$-triangle and the $h$-triangle are zero except for the last row ( $f_{d, \mathrm{o}}(K)$ or $h_{d, \mathrm{o}}(K)$ ), which consists of the $f$-vector or $h$-vector, respectively.

Clearly,

$$
\begin{equation*}
f_{j-1}\left(K^{<i-1>}\right)=\sum_{p=i}^{d} f_{p, j}(K) \tag{4}
\end{equation*}
$$

for all $0 \leq j, i \leq d$. Inverting equation (4), we get

$$
\begin{equation*}
f_{i, j}(K)=f_{j-1}\left(K^{\langle i-1>}\right)-f_{j-1}\left(K^{<i>}\right) \tag{5}
\end{equation*}
$$

for all $0 \leq j \leq i \leq d$; this is essentially the same idea as [BW2, equation (3.2)]. In the case $i=d$, equation (5) relies upon the tail condition $f_{j-1}\left(K^{<d>}\right)=f_{j-1}(\emptyset)=0$.

## Cohen-Macaulayness.

Cohen-Macaulayness is an important algebraic concept, but we will use the equivalent algebraic topological characterizations as our definitions. For all undefined topological terms, see [ Mu ]; for further details on Cohen-Macaulayness, see [St6].

The pair ( $K, L$ ) will denote a pair of simplicial complexes $L \subseteq K$. Let $k$ denote a field, fixed throughout the rest of the paper. Recall that. $\widetilde{H}_{p}(K)$ refers to reduced homology of $K$ (over $k$ ), and $\widetilde{H}_{p}(K, L)$ denotes reduced relative homology of the pair ( $K, L$ ) (over $k$ ). For $K$ a simplicial complex, $\widetilde{H}_{p}(K, \emptyset)=\widetilde{H}_{p}(K)$; for a pair $(K, L)$ with $L$ non-empty, $\widetilde{H}_{p}(K, L)=H_{p}(K, L)$.

The link of a face $F$ in a simplicial complex $K$ is defined to be the subcomplex

$$
l k_{K} F=\{G \in K: F \cup G \in K, F \cap G=\emptyset\}
$$

If $L \subseteq K$ are a pair of subcomplexes and $F \in K$, then define the relative link of $F$ in $L$ to be

$$
l k_{L} F=\{G \in L: F \cup G \in L, F \cap G=\emptyset\}
$$

(see Stanley [St4, Section 5]). If $F \in L$, this matches the usual definition of $l k_{L} F$, but we now allow the possibility that $F \notin L$, in which case $l k_{L} F=\emptyset$.

By [ $\mathrm{Re} \mathrm{]}$, a simplicial complex $K$ is pure Cohen-Macaulay (over $k$ ) if $K$ is pure and, for every $F \in K$ (including $F=\emptyset$ ), $\widetilde{H}_{p}\left(l k_{K} F\right)=0$ for all $p<\operatorname{dim} l k_{K} F$. By [St4, Theorem 5.3], a pair of simplicial complexes ( $K, L$ ) is relative Cohen-Macaulay (over $k$ ) if and only if, for every $F \in K$ (including $F=\emptyset), \widetilde{H}_{p}\left(l k_{K} F, l k_{L} F\right)=0$ for all $p<\operatorname{dim} l k_{K} F$.

Definition (Stanley [St6, III.2.9]): Let $K$ be a ( $d-1$ )-dimensional simplicial complex. Then $K$ is sequentially Cohen-Macaulay if the pairs

$$
\Omega_{i}(K)=\left(K^{(i, i)}, K^{(i+1, i)}\right)
$$

are relative Cohen-Macaulay for $-1 \leq i \leq d-1$. In particular, when $i=d-1$, we require $\Omega_{d-1}(K)=\left(K^{(d-1, d-1)}, \emptyset\right)$ to be relative Cohen-Macaulay, which is equivalent to $K^{<d-1>}=K^{(d-1, d-1)}$ being pure Cohen-Macaulay.

Remark: This definition is stated slightly differently from the one given by Stanley [St6], but it is easy to show that the two definitions are entirely equivalent.

We will use the following new characterization of sequential Cohen-Macaulayness, whose proof is omitted.

Theorem 1 Let $K$ be a (d-1)-dimensional simplicial complex. Then $K$ is sequentially Cohen-Macaulay if and only if $K^{(i, i)}$ is pure Cohen-Macaulay for all $-1 \leq i \leq d-1$.

## Algebraic shifting.

Define the partial order $\leq_{P}$ on $k$-subsets of integers as usual: If $S=\left\{i_{1}<\cdots<i_{k}\right\}$ and $T=\left\{j_{1}<\cdots<j_{k}\right\}$ are two $k$-subsets of integers, then $S \leq_{P} T$ if $i_{p} \leq j_{p}$ for all $p$. A collection $\mathcal{C}$ of $k$-subsets is shifted if $S \leq_{P} T$ and $T \in \mathcal{C}$ together imply that $S \in \mathcal{C}$. A simplicial complex $K$ is shifted if $K_{j}$ is shifted for every $j$.

Given a simplicial complex $K$, algebraic shifting is a way to define a new complex $\Delta(K)$ that is shifted, has the same $f$-vector, and has many of the same algebraic and topological properties of the original complex (Kalai [Kal]; see also [BK1, BK2]). The following result is the central property of algebraic shifting for our purposes.

Proposition 2 (Kalai [Ka2, Theorem 5.3]) Let $K$ be a simplicial complex. Then $K$ is pure Cohen-Macaulay if and only if $\Delta(K)$ is pure.

Thus, it is easy to detect whether $K$ is pure Cohen-Macaulay, if $\Delta(K)$ is known. We extend Proposition 2 to the nonpure case as follows (the proof is omitted).

Theorem 3 Let $K$ be a simplicial complex of dimension at least $i(i \geq-1)$. Then

$$
\Delta(K)^{\langle i\rangle} \subseteq \Delta\left(K^{<i>}\right)
$$

with equality if and only if $K^{(i, i)}$ is pure Cohen-Macaulay.

Remark: The proof of Theorem 3 relies upon Proposition 2.

## Main theorem.

We now sketch the proof of our main result.
Theorem 4 Let $K$ be a (d-1)-dimensional simplicial complex. Then $K$ is sequentially Cohen-Macaulay if and only if

$$
h_{i, j}(\Delta(K))=h_{i, j}(K)
$$

for all $0 \leq j \leq i \leq d$.
Proof: (sketch) We show that the following statements are all equivalent:
(a) $K$ is sequentially Cohen-Macaulay;
(b) $K^{(i, i)}=\left(K^{\langle i\rangle}\right)^{(i)}$ is pure Cohen-Macaulay for all $-1 \leq i \leq d-1$;
(c) $\Delta(K)^{\langle i\rangle}=\Delta\left(K^{\langle i\rangle}\right)$ for all $-1 \leq i \leq d-1$;
(d) $f_{j}\left(\Delta(K)^{\langle i\rangle}\right)=f_{j}\left(K^{\langle i\rangle}\right)$ for all $-1 \leq j, i \leq d-1$;
(e) $f_{i, j}(\Delta(K))=f_{i, j}(K)$ for all $0 \leq j \leq i \leq d$; and
(f) $h_{i, j}(\Delta(K))=h_{i, j}(K)$ for all $0 \leq j \leq i \leq d$.
(a) $\Leftrightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c})$ : These equivalences are Theorem 1 and Theorem 3, respectively.
(c) $\Leftrightarrow(\mathrm{d})$ : By Theorem $3, \Delta(K)^{\langle i\rangle} \subseteq \Delta\left(K^{\langle i\rangle}\right)$, so $\Delta(K)^{\langle i\rangle}=\Delta\left(K^{\langle i\rangle}\right)$ if and only if $f_{j-1}\left(\Delta(K)^{\langle i\rangle}\right)=f_{j-1}\left(\Delta\left(K^{\langle i\rangle}\right)\right)$ for all $j$. But, algebraic shifting preserves the $f$-vector, so $f_{j-1}\left(\Delta\left(K^{<i>}\right)\right)=f_{j-1}\left(K^{\langle i>}\right)$.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$ : This follows immediately from equation (5) applied to $\Delta(K)$ and $K$, respectively. (For the $i=d$ case, we also need that $\Delta(K)^{\langle d\rangle}=\emptyset=K^{\langle d\rangle}$ so $f_{j-1}\left(\Delta(K)^{<d\rangle}\right)=$ $0=f_{j-1}\left(K^{<d>}\right)$ for all $j$.)
$(\mathrm{e}) \Rightarrow(\mathrm{d})$ : This follows immediately from equation (4) applied to $\Delta(K)$ and $K$, respectively.
(e) $\Leftrightarrow(\mathrm{f})$ : This follows immediately from equations (2) and (3).

## Shelling.

Björner and Wachs generalized the definition of shellability by dropping the assumption of purity.

Definition (Björner-Wachs [BW2, Definition 2.1]): A simplicial complex is shellable if it can be constructed by adding one facet at a time, so that as each facet is added, it intersects the existing complex (previous facets) in a union of codimension 1 faces. Equivalently, as each facet $F$ is added, a unique new minimal face, called the restriction face $R(F)$, is added. (Note that the dimension of $R(F)$ is one less than the number of codimension one faces in which $F$ intersects the existing complex when it is added.)

The restriction faces are counted by the $h$-triangle [BW2, Theorem 3.4]: If $K$ is a shellable ( $d-1$ )-dimensional complex, then

$$
h_{i, j}(K)=\#\{\text { facets } F \in K: \operatorname{dim} F=i-1, \operatorname{dim} R(F)=j-1\}
$$

for $0 \leq j \leq i \leq d$. This generalizes the well-known result that the restriction faces of a shellable pure complex are counted by the $h$-vector.

Björner and Wachs' generalization of shellability prompted Stanley to define sequentially Cohen-Macaulay complexes, and to design the definition so that shellable complexes are sequentially Cohen-Macaulay, generalizing the well-known pure case. Our first corollary to Theorem 4 now follows easily.

Corollary 5 Let $\boldsymbol{k}=\left(h_{i, j}\right)_{0 \leq j \leq i \leq d}$ be an array of integers. Then the following are equivalent:
(a) $\boldsymbol{h}$ is the $h$-triangle of a sequentially Cohen-Macaulay simplicial complex;
(b) $\boldsymbol{h}$ is the $h$-triangle of a shellable simplicial complex; and
(c) $\mathfrak{h}$ is the $h$-triangle of a shifted simplicial complex.

Proof: $(\mathrm{c}) \Rightarrow(\mathrm{b})$ : A shifted complex is shellable [BW2, Theorem 11.3].
(b) $\Rightarrow$ (a): A shellable complex is sequentially Cohen-Macaulay [St6, Section III.2].
(a) $\Rightarrow(\mathrm{c})$ : Let $K$ be a sequentially Cohen-Macaulay simplicial complex. Theorem 4 implies that $h_{i j}(K)=h_{i j}(\Delta(K))$ for all $0 \leq i \leq j \leq d$. Thus $\Delta(K)$ is a shifted complex with the same $h$-triangle as $K$.

The pure case of Corollary 5 is due to Stanley [St1, Theorem 6]. The proof of Corollary 5 is a generalization of Kalai's proof of Stanley's result [Ka2, Corollary 5.2]. It follows from Corollary 5 that characterizing the $h$-triangle (equivalently, characterizing the $f$-triangle) of sequentially Cohen-Macaulay simplicial complexes is equivalent to characterizing the $h$ triangle of shellable complexes or even characterizing the $h$-triangle of shifted complexes. (See [BW2, Theorem 3.6] and the remarks that follow it, and also Björner [Bj2].)

## Iterated Betti numbers.

Another corollary to Theorem 4 involves iterated Betti numbers, a non-pure generalization of reduced homology Betti numbers $\left(\widetilde{\beta}_{i-1}(K)=\operatorname{dim}_{k} \widetilde{H}_{i-1}(K)\right)$ introduced in joint work with L. Rose. Although they can be defined as the Betti numbers of a certain chain complex [DR, Section 4], we will take the following equivalent formulation as our definition of iterated Betti numbers.
Definition ([DR, Theorem 4.1]): Let $K$ be a simplicial complex. For a set $F$ of positive integers, let $\operatorname{init}(F)=\max \{r:\{1, \ldots, r\} \subseteq F\}$ (so $\operatorname{init}(F)$ measures the largest "initial segment" in $F$, and is 0 if there is no initial segment, i.e., if $1 \notin F$ ). Then define the $r$ th iterated Betti numbers of $K$ to be

$$
\beta_{i-1}[r](K)=\#\{\text { facets } F \in \Delta(K): \operatorname{dim} F=i-1, \operatorname{init}(F)=r\} .
$$

A special case is $r=0$; then $\beta_{i}[0](K)=\tilde{\beta}_{i}(K)$, the (ordinary) Betti numbers of reduced homology.

Björner and Wachs [BW2, Theorem 4.1] showed that if $K$ is shellable, then

$$
\begin{equation*}
\tilde{\beta}_{i-1}(K)=h_{i, i}(K) \tag{6}
\end{equation*}
$$

for $0 \leq i \leq d$. Equation (6) is generalized in [DR, Theorem 1.2] to

$$
\begin{equation*}
\beta_{i-1}[r](K)=h_{i, i-r}(K) \tag{7}
\end{equation*}
$$

for shellable $K$.
Theorem 4 allows us to generalize even further, by weakening the assumption on $K$ in equation (7) from being shellable to being merely sequentially Cohen-Macaulay.

Corollary 6 If $K$ is sequentially Cohen-Macaulay, then $\beta_{i-1}[r](K)=h_{i, i-r}(K)$.
Proof: By [DR, Theorem 5.4], $\beta_{i-1}[r](K)=h_{i, i-r}(\Delta(K))$, for all simplicial complexes $K$. Then apply Theorem 4.

## Conjecture.

Finally, we present a conjecture inspired by collapsing, which is related to shelling.
Definition (Kalai [Ka2, Section 4]): A face $R$ of a simplicial complex $K$ is free if it is included in a unique facet $F$. (The empty set is a free face of $K$ if $K$ is a simplex.) If $|R|=p$ and $|F|=q$, then we say $R$ is of type $(p, q)$. A $(p, q)$-collapse step is the deletion from $K$ of a free face of type ( $p, q$ ) and all faces containing it (i.e., the deletion of the interval $[R, F]$ ). A collapsing sequence is a sequence of collapse steps that reduce $K$ to the empty simplicial complex.

A shelling of $K$ gives rise to a canonical collapsing (though not conversely): If $F_{1}, \ldots, F_{t}$ is a shelling order on the facets of $K$, then

$$
\left[R\left(F_{t}\right), F_{t}\right] \ldots\left[R\left(F_{1}\right), F_{1}\right]
$$

is a collapsing sequence of $K$ [DR, Lemma 5.5], [Ka2, Section 4]. Since $\Delta(K)$ is shifted and hence shellable, $\Delta(K)$ has a collapsing sequence whose types are given by $h(\Delta(K))$. Kalai has conjectured that $K$ must have a decomposition into Boolean intervals of the same type as a collapse sequence of $\Delta(K)$ [ Ka 2 , Section 9.3]. This conjecture and Theorem 4 would then imply the following conjecture.

Conjecture 7 A sequentially Cohen-Macaulay complex $K$ can be decomposed into a collection of Boolean intervals (indexed by the set A)

$$
\begin{equation*}
K=\dot{U}_{a \in A}\left[R_{a}, F_{a}\right] \tag{8}
\end{equation*}
$$

such that

$$
\begin{equation*}
h_{i, j}(K)=\#\left\{a \in A:\left|F_{a}\right|=j,\left|R_{a}\right|=i\right\} \tag{9}
\end{equation*}
$$

and every $F_{a}$ is a facet in $K$.
It is not hard to see that if $K$ is sequentially Cohen-Macaulay and has the decomposition (8), then the decomposition satisfies equation (9) if and only if every $F_{a}$ is a facet.

This is the nonpure generalization of a conjecture made (separately) by Garsia [Ga, Remark 5.2] and Stanley [St2, p. 149], that a pure Cohen-Macaulay complex can be decomposed into Boolean intervals whose tops are facets (see also [St5, Du]). Conjecture 7 is equivalent to being able to decompose a relative Cohen-Macaulay complex into Boolean intervals whose tops are facets.

## Acknowledgements.

I am grateful to Anders Björner for informing me about sequential Cohen-Macaulayness and its possible relation to the $h$-triangle and shelling. Richard Stanley kindly provided details about sequential Cohen-Macaulayness. Anders Björner and Gil Kalai provided encouragement by saying that my preliminary conjectures "seemed right." Ping Zhang and the referees suggested several improvements.

## References

[Bj1] A. Björner, "Shellable and Cohen-Macaulay partially ordered sets," Trans. Amer. Math. Soc. 260 (1980), 159-183.
[Bj2] A. Björner, "Face numbers, Betti numbers and depth," in preparation.
[BK1] A. Björner and G. Kalai, "An extended Euler-Poincaré Theorem," Acta Math. 161 (1988), 279-303.
[BK2] A. Björner and G. Kalai, "On $f$-vectors and homology," in Combinatorial Mathematics: Proceedings of the Third International Conference (G. Bloom, R. Graham, J. Malkevitch, eds.); Ann. N. Y. Acad. Sci. 555 (1989), 63-80.
[BS] A. Björner and B. Sagan, "Subspace arrangements of type $B_{n}$ and $D_{n}$," J. Alg. Comb., to appear.
[BW1] A. Björner and M. Wachs, "On lexicographically shellable posets," Trans. Amer. Math. Soc. 277 (1983), 323-341.
[BW2] A. Björner and M. Wachs, "Shellable nonpure complexes and posets, I" Trans. Amer. Math. Soc., to appear.
[Du] A. Duval, "A combinatorial decomposition of simplicial complexes," Israel J. Math. 87 (1994), 77-87.
[DR] A. Duval and L. Rose, "Iterated homology of simplicial complexes," preprint, 1995.
[Ga] A. Garsia, "Combinatorial methods in the theory of Cohen-Macaulay rings," Adv. in Math. 38 (1980), 229-266.
[Kal] G. Kalai, "Characterization of $f$-vectors of families of convex sets in $R^{d}$, Part I: Necessity of Eckhoff's conditions," Israel J. Math. 48 (1984), 175-195.
[Ka2] G. Kalai, Algebraic Shifting, unpublished manuscript (July 1993 version).
[Mu] J. Munkres, Elements of Algebraic Topology, Benjamin/Cummings, Menlo Park, CA, 1984.
[Re] G. Reisner, Cohen-Macaulay quotients of polynomial rings, thesis, University of Minnesota, 1974; Adv. Math. 21 (1976), 30-49.
[St1] R. Stanley, "Cohen-Macaulay complexes," in Higher Combinatorics (M. Aigner, ed.), Reidel, Dordrecht and Boston, 1977, 51-62.
[St2] R. Stanley, "Balanced Cohen-Macaulay complexes," Trans. Amer. Math. Soc. 249 (1979), 139-157.
[St3] R. Stanley, "The number of faces of simplicial polytopes and spheres," in Discrete Geometry and Convexity (J. Goodman, et. al., eds.); Ann. N. Y. Acad. Sci. 440 (1985), 212-223.
[St4] R. Stanley, "Generalized $h$-vectors, intersection cohomology of toric varieties, and related results," in Commutative Algebra and Combinatorics (M. Nagata and H. Matsumura, eds.), Advanced Studies in Pure Mathematics 11, Kinokuniya, Tokyo, and North-Holland, Amsterdam/New York, 1987, 187-213.
[St5] R. Stanley, "A combinatorial decomposition of acyclic simplicial complexes," Disc. Math. 120 (1993), 175-182.
[St6] R. Stanley, Combinatorics and Commutative Algebra, 2nd ed., Birkhäuser, Boston, 1995.
[SWa] S. Sundaram and M. Wachs, "The homology representations of the $k$-equal partition lattice," Trans. Amer. Math. Soc., to appear.
[SWe] S. Sundaram and V. Welker, "Group actions on arrangements of linear subspaces and applications to configuration spaces," Trans. Amer. Math. Soc., to appear.

