
Algebraic Shifting and Sequentially Cohen-Macaulay
Simplicial Complexes

Art M. Duval
University of Texas at El Paso

Department of Mathematical Sciences
El Paso, TX 79968-0514

artduval@math. utep. edu

Summary.

Bjorner and Wachs recently generalized the definition of shellability by dropping the as-
sumption of purity; they also introduced the h-triangle, a doubly-indexed generalization of
the /i-vector which is combinatorially significant for shellable (nonpure) complexes. Stanley
subsequently defined a (nonpure) simplicial complex to be sequentially Coben-Mac&ulay if it
satisfies algebraic conditions that generalize the (pure) Cohen-Macaulay conditions, so that
a shellable (nonpure) complex is sequentially Cohen-Macaulay.

We show that algebrzdc shifting preserves the /i-triangle of a simplicial complex K if
and only if K is sequentially Cohen-Macaulay. This generalizes a result of Kalai's for pure
Cohen-Macaulayness. Immediate consequences include that shellable (nonpure) complexes
and sequentially Cohen-Macaulay complexes have the same set of possible A-triangles.

Pure complexes and nonpure generalizations.

A simplicial complex is pure if all of its facets (maximal faces, ordered by inclusion) have the
same dimension. Cohen-Macaulayness, algebraic shifting, shellability, and the ^-vector are
significantly interrelated for pure simplicial complexes. We will be concerned with extending
some of these relations to nonpure complexes, but first, we briefly review the pure case.

A simplicial complex is Cohen-Macaulay if its face-ring is a Cohen-Macaulay ring (an
algebraic property), or, equivalently, if the complex satisfies certain topological conditions
(see, e. g., [St3, St6]). In particular, the complex must be pure. A pure simplicial complex
is shellable if it can be constructed one facet at a time, subject to certain conditions (see,
e. g., [Bjl, BW1]). A shellable (pure) complex is Cohen-Macaulay, and the A-vector of a
Cohen-Macaulay or shellable (pure) complex has natural combinatorial interpretations.
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Algebraic shifting is a procedure that defines, for every simplicial complex K^ a new com-
plex A(^) with the same A-vector as K and a nice combinatorial structure (A(A') is shifted).
Additionally, algebraic shifting preserves many algebraic and topological properties of the
original complex, including Cohen-Macaulayness; a simplicial complex is Cohen-Macaulay if
and only if A(A') is Cohen-Macaulay, which, in turn, holds if and only if A(A') is pure. Thus,
it is easy to tell whether K is Cohen-Macaulay, if A(/<) is known. (See, e. g. ^ [BK1, BK2].)

Now we are ready for the nonpure czise.
Bjorner and Wachs' recent generalization of shellability to nonpure simplicial complexes,

made by simply dropping the assumption of purity [BW2], generated a great deal of interest,
and sparked the generalization of several other related concepts [SWa, SWe, BS, DRj. In
particular, Stanley introduced sequential Cohen-Macaulayness [St6, Section III.2], a non-
pure generalization of Cohen-Macaulayness, and designed the (algebraic) definition so that
a shellable (nonpure) complex is sequentially Cohen-Macaulay, much as a shellable (pure)
complex is (pure) Cohen-Macaulay. Meanwhile, joint work with L. Rose DR] shows that
algebraic shifting preserves the /i-triangle (a non-pure generalization of the /i-vector) of
shellable (nonpure) complexes. These developments prompted A. Bjorner (private commu-
nication) to ask, "Does algebraic shifting preserve sequential Cohen-Macaulayness?" and
"Does algebraic shifting preserve the A-triangle of sequentially Cohen-Macaulay simplicial
complexes?"

Shifted complexes are shellable and hence sequentially Cohen-Macaulay, so A(Ar ) is al-

ways sequentially Cohen-Macaulay. Thus, the "obvious" generalization, tlK is sequentially
Cohen-Macaulay if and only if A(A') is sequentially Cohen-Macaulay, " is trivially false.
Bjorner's first question may be restated as, "Can one use A(A') to tell if a simplicial com-
plex K is sequentially Cohen-Macaulay?"

Our main result is to answer both of Bjorner s questions simultaneously, by showing that
algebraic shifting preserves the /i-triangle of a simplicial complex if and only if the complex
is sequentially Cohen-Macaulay (Theorem 4). Two immediate corollaries, one involving
shellability cind the other a nonpure generalization of homology Betti numbers, follow.

/-triangle and A-triangle.

A siniplicial complex A" is a collection of finite sets (called faces) such that F  . K and
G C F together imply that G e. K. We allow K to be the empty simplicial complex 0
consisting of no faces, or the simplicial complex {0} consisting of just the empty face, but
we do distinguish between these two cases. A subcomplex of K is a subset of faces L C K
such that F Q. L and G C F imply G e. L. A subcomplex is a simplicial complex in its own
right. An order filter of. K is a, subset of faces J C K such that F ^ J and F CG ^ K
imply G ^ J.

. The dimension of a face F e. K is dim F = |F| - 1, and the dimension of K is
dim A" = max{dimF: F   K}. The maximal faces of K (under the set inclusion partial
order) are called facets, and K is pure if all the facets have the same dimension.

Following [BW2], we define the degree of a face F ^ K tobe deg^- F = max{|G>|: F C
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G   A'}. We further define the degree of K to be degAr = mm{deg^- F: F   A'}. Note

that K is pure if and only if all the faces have the same degree.
Bjorner and Wachs [BW2, Definition 2. 8] define the subcomplex

K^T'S} = {F   K: dimF ̂  s, deg^ F ^ r+ 1}

for -1 ^r, 5 < dim K. We may extend this by defining K^r's^ to be the empty simplicial
complex when r > dim K.

We will frequently make use of the following subcomplexes: K(s) = K<-~l's\ the s-
skeleton of K; K<r> = K(T'^mK\ the subcomplex of all faces of K whose degree is at
least r + 1 (equivalently, the subcomplex generated by all facets whose dimension is at least
r); dnd A"(t't\ the pure i-skeleton, the pure subcomplex generated by all z-dimensional
faces. Another interpretation of K(T'S\ then, is K(r's) = (K<T>)^.

Let Kj denote the set of j-dimensional faces of K. Recall that the /-vector of K is the
sequence f(K) = (/_i,.. ., /<f-i), where fj = fj(K) = #Kj and d-1 = dim-R', and that
the A-vector of K is the sequence h{K} = (ho, . .., hd) where

^=Z(-i)J-sff:!)^-i (o^j<<^).
s=0 V ~

Inverting equation (1) gives

(1)

d - s
A= 51^^s=0 V T .L ~

I A,,

so knowing the /i-vector of a simplicial complex is equivalent to knowing its /-vector.

Definition (Bjorner-Wachs [BW2, Definition 3. 1]): Let K be & (d- l)-dimensional
simplicial complex. Define

/,., (^) = #{F   ̂ : degK F=i, dimF = j- - 1}.

The triangular integer array (fi, j)o<j<i<d is the /-triangle of K. Further define

^w=E(-ir<(;. ^5)A. w.
s=o \3 ~ s>

(2)

The triangular array h = (A., j)o<j<t<<f is the /i-triangle of K. D

Inverting equation (2) gives

/. t - S

'."=5U+i- 1^,. (3)

so knowing the /i-triangle of a simplicial complex is equivalent to knowing its /-triangle.
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If A' is a pure (d- l)-dimensional simplicial complex, then every face has degree d, so

f^(K), if i= d
Jt'^'=\ 0, if i^ d '

and similarly for the Vs. Thus, when K is pure, the /-triangle and the A-triangle are zero
except for the last row (fd,»(K) or hd,, {K)), which consists of the /-vector or A-vector,
respectively.

Clearly,

f^(K<i-l>)=^f^(K)
p=t

for all 0 ^j', ? ^ d. Inverting equation (4), we get

f^K) = f^{K<i-l>) - f^{K<i>)

(4)

(5)

for all 0 ^j <ii ̂  d; this is essentially the same idea as [BW2, equation (3. 2)]. In the case
i = d, equation (5) relies upon the tail condition fj-i(K<d>) = /, -i(0) = 0.

Cohen-Macaulayness.

Cohen-Macaulayness is an important algebraic concept, but we will use the equivalent al-
gebraic topological characterizations as our definitions. For all undefined topological terms,
see [Muj; for further details on Cohen-Macaulayness, see [St6].

The pair (K, L) will denote a pair of simplicial complexes L C K. Let k denote a field,
fixed throughout the rest of the paper. Recall tha. t. Hp^K) refers to reduced homology of
K (over k), and Hp[K, L) denotes reduced relative homology of the pair (K, L) (over
k). For K a simplicial complex, Hp(K^) = Hp(K); for a pair (A', L) with I non-empty,
H, (K, L)=H,{K, L).

The link of a face F in a simplicial complex K is defined to be the subcomplex

IkKF ={GeK:FuGeK, Fn G = 0}.

IfL C X area pair of subcomplexes and F e K, then define the relative link of F in I to
be

lki, F ={G^L:FUG^L, FnG=9}
(see Stanley [St4, Section 5]). If F   Z, this matches the usual definition of /fc^F, but we
now allow the possibility that F ^ L, 'm which case IkiF = 0.

By [Re], a simplicial complex ̂  is pure Cohen-Macaulay (over k} if K is pure and, for
every F ^K (including F = 0), Hp(lkKF) = 0 for all p < dimJfcx^. By [St4, Theorem 5. 3],
a pair of simplicial complexes [K, Z) is relative Cohen-Macaulay (over k) if and only if,
for every F   A' (including F = 0), ̂ p(/^F, /A:LF) = 0 for all p < dim/fc^^.
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Definition (Stanley [St6, III.2.9]): Let K be a, {d- l)-dimensional simplicial complex.
Then K is sequentially Cohen-Macaulay if the pairs

fli(K) = (K(i''\ K(i+l'i})

are relative Cohen-Macaulay for -1 <i <; d-1. In particular, when i = c? - 1, we
require Q,d-i(K) = (A'(d-l'd-1), 0) to be relative Cohen-Macaulay, which is equivalent to
K<d-l> = ^(d-i, d-i) being pure Cohen-Macaulay. D

Remark: This definition is stated slightly differently from the one given by Stanley [Sf6],
but it is easy to show that the two definitions are entirely equivalent. D

We will use the following new characterization of sequential Cohen-Macaulayness, whose
proof is omitted.

Theorem 1 Let K be a (d- l)-dimensional simplicial complex. Then K is sequentially
Cohen-Macaulay if and only if K^ is pure Cohen-Macaulay for all -1 -^i <: d- 1. D

Algebraic shifting.

Define the partial order ^p on fc-subsets of integers as usual: IfS = {ii< ... < ik} and
T = {ji < ... < jk} are two ^-subsets of integers, then S ^p T ii ip ^ jp for all p. A
collection C of fc-subsets is shifted if S ^p TandT   C together imply that 5   C. A
simplicial complex K is shifted if K] is shifted for every j.

Given a simplicial complex K, algebraic shifting is a way to define a new complex A (7^)
that is shifted, has the same /-vector, and has many of the same algebraic and topological
properties of the original complex (Kalai Kal]; see also [BK1, BK2]). The following result
is the central property of algebraic shifting for our purposes.

Proposition 2 (Kalai [Ka2, Theorem 5.3]) Let K be a simplicial complex. Then K is
pure Cohen-Macaulay if and only if A(K) is pure. D

Thus, it is easy to detect whether K is pure Cohen-Macaulay, if A(^) is known. We extend
Proposition 2 to the nonpure case as follows (the proof is omitted).

Theorem 3 Let K be a simplicial complex of dimension at least i (i > -1). Then

A(A')<t>CA(^<t>),

with equality if and only if K(-i'i) is pure Cohen-Macaulay. D

Remark: The proof of Theorem 3 relies upon Proposition 2. D
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Main theorem.

We now sketch the proof of our main result.

Theorem 4 Let K be a {d - l)-dimensional simplicial complex. Then K is sequentially
Cohen-Macaulay if and only if

^,, (A(A-)) = h^(K)
for all0<:j ^i^d.

Proof: (sketch) We show that the following statements are all equivalent:

(a) K is sequentially Cohen-Macaulay;

(b) K^ = (K<t>Yi) is pure Cohen-Macaulay for all -1 ̂ i ̂ d-1;

(c) A(^)<1> = A(^<1>) for all -l^i^d- 1;

(d) /, (A(^)<1>) = /, (/<<1>) for all -1 ̂  ;, ?. < rf- 1;

(e) /,,, (A(^)) = /;,, (^) for ̂ O^j^i^d; and

(f) /i. j(A(^)) = hij(K) foraUO ^j ^z ^ d.

(a) 4» (b) <^ (c): These equivalences are Theorem 1 and Theorem 3, respectively.
(c) ^ (d): By Theorem 3, A(^)<'> C A(^<1>), so A(^)<1> = A(A'<t>) if and only if

/j_i(A(A")< >) = /j_i(A(A'< >)) for all j. But, algebraic shifting preserves the /-vector, so
/, -x(A(/<<«>)) = /, -i(^<t>).

(d) =^ (e): This follows immediately from equation (5) applied to A(A") and K, respec-
tively. (For the i = d case, we also need that ^(K)<d> = 0 = K<d> so /, -i(A(Ji:)<d>) =
0=/, -i(^<d>)forallj.)

(e) =^ (d): This follows immediately from equation (4) applied to A(A') and A", respec-
lively.

(e) ^f (f): This follows immediately from equations (2) and (3). D

Shelling.

Bjorner and Wachs generalized the definition of shellability by dropping the dssumption of
purity.

Definition (Bjorner-Wachs [BW2, Definition 2. 1]): A simplicial complex is shellable
if it can be constructed by adding one facet at a time, so that as each facet is added, it inter-
sects the existing complex (previous facets) in a union of codimension 1 faces. Equivalently,
as each facet F is added, a unique new minimal face, called the restriction face R(F), is
added. (Note that the dimension of R(F) is one less than the number of codimension one
faces in which F intersects the existing complex when it is added. ) D
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The restriction faces are counted by the A-triangle [BW2, Theorem 3. 4]: If A' is a shellable
(d - l)-dimensional complex, then

hi,, (K) = #{ facets F ^ K: dimF= z - 1, dimJ?(F) =;'-!},

for 0 ^j ^. i< d. This generalizes the well-known result that the restriction faces of a
shellable pure complex are counted by the A-vector.

Bjorner and Wachs generalization of shellability prompted Stanley to define sequentially
Cohen-Macaulay complexes, and to design the definition so that shellable complexes are
sequentially Cohen-Macaulay, generalizing the well-known pure case. Our first corollary to
Theorem 4 now follows easily.

Corollary 5 Let h = (^i, j)o<j<t<d be an array ofintegers. Then the following are equivalent:

(a) h is the h-triangle of a sequentially Cohen-Macaulay simplicial complex;

(b) h is the h-triangle of a shellable simplicial complex; and

(c) h is the h-triangle of a shifted simplicial complex.

Proof: (c) =^ (b): A shifted complex is shellable [BW2, Theorem 11. 3].
(b) =^ (a): A shellable complex is sequentially Cohen-Macaulay [St6, Section III.2].
(a) =^ (c): Let K be a, sequentially Cohen-Macaulay simplicial complex. Theorem 4

implies that hij(K) = /i,j(A(A')) for all 0 ^i ^j ^d. Thus A(^) is a shifted complex
with the same /i-triangle as K. D

The pure Ccise of Corollary 5 is due to Steinley [St 1, Theorem 6]. The proof of Corollary 5
is a generalization of Kalai's proof of Stanley's result [Ka2, Corollary 5.2]. It follows from
Corollary 5 that characterizing the A-triangle (equivalently, characterizing the /-triangle)
of sequentially Cohen-Macaulay simplicial complexes is equivalent to characterizing the h-
triangle of shellable complexes or even characterizing the /i-triangle of shifted complexes.
(See [BW2, Theorem 3.6] and the remarks that follow it, and also Bjorner [Bj2].)

Iterated Betti nuinbers.

Another corollary to Theorem 4 involves iterated Betti uumbers, a non-pure generalization of
reduced homology Betti uumbers (/3, _i(^) = dimkHi-i(K)) introduced in joint work with
L. Rose. Although they can be defined as the Betti numbers of a certain chain complex [DR,
Section 4], we will tdke the following equivalent formulation as our definition of iterated Betti
numbers.
Definition ([DR, Theorem 4. 1]): Let K be & simplicial complex. For a set F of positive
integers, let init(F) = max{r: {!,..., r} C F} (so init(F) measures the largest "initial
segment" in F, and is 0 if there is no initial segment, z'. e., if 1 ^ F). Then define the rth
iterated Betti numbers of K to be

A-iM(A') = #{facets F   A(^): dim F = ^ - 1, m^(F) = r}.

147



A special case is r = 0; then ^i[0}(K} = /?, (A'), the (ordinary) Betti numbers of reduced
homology.

Bjorner and Wachs [BW2, Theorem 4. 1] showed that if K is shellable, then

A-i(A')=/i., -(^),

foT 0 ^i <:d. Equation (6) ,is generalized in DR, Theorem 1. 2] to

/3^[r}(K) = h^(K)

(6)

(7)

for shellable K.
Theorem 4' allows us to generalize even further, by weakening the assumption on K in

equation (7) from being shellable to being merely sequentially Cohen-Macaulay.

Corollary 6 If K is sequentially Cohen-Macaulay, then /3i-i[r](K) = hi^-r(K).

Proof: By [DR, Theorem 5.4], /?,_i[r](^) = /i.,, -, (A(A')), for all simplicial complexes K.
Then apply Theorem 4. D

Conjecture.

Finally, we present a conjecture inspired by collapsing, which is related to shelling.

Definition (Kalai [Ka2, Section 4]): A face R of a. simplicial complex K is free if it is
included in a unique facet F. (The empty set is a free face oi K\i K \s& simplex. ) If \R\ = p
and |F| = g, then we say R is of type (p, g). A (j?, g)-collapse step is the deletion from
K of a, free face of type (p, $) and all faces containing it (i'. e., the deletion of the interval
[R, F}). A collapsing sequence is a sequence of collapse steps that reduce K to the empty
simplicial complex. D

A shelling of K gives rise to a canonical collapsing (though not conversely): If Fi,... , F(
is a shelling order on the facets of K, then

[^(F<), Ft]... [^(Fi), Fi]

is a collapsing sequence of K [DR, Lemma 5. 5], [Ka2, Section 4]. Since A(A') is shifted and
hence shellable, A(A') has a collapsing sequence whose types are given by /i(A(A")). Kalai
has conjectured that K must have a decomposition into Boolean intervals of the same type
as a collapse sequence of A(^) [Ka2, Section 9. 3]. This conjecture and Theorem 4 would
then imply the following conjecture.
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Conjecture 7 A sequentially Cohen-M^acaulay complex K can be decomposed into a collec-
tion of Boolean intervals (indexed by the set A)

K=UaeA[Ra, Fa

such that
A,., (A:)=#{a A:|Fa|=j, |^|=z}

and every Fa. is a facet in K.

(8)

(9)

It is not hard to see that if K is sequentially Cohen-Macaulay and has the decomposi-
tion (8), then the decomposition satisfies equation (9) if and only if every Fa is a facet.

This is the nonpure generalization of a conjecture made (separately) by Garsia [Ga, Re-
mark 5. 2] and Stanley [St2, p. 149], that a pure Cohen-Macaulay complex can be decomposed
into Boolean intervals whose tops are facets (see also [St5, Du]). Conjecture 7 is equivalent
to being able to decompose a relative Cohen-Macaulay complex into Boolean intervals whose
tops are facets.
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