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Abstract

The linear span of isomorphism classes of posets, P, has a Newtonian coalgebra structure. We
observe that the ab-mdex is a Newtonian coalgebra map from the vector space 7y to the algebra of
polynomiak in the non-commutative variables a and b. This enables us to obtain explicit formulas
showing how the cd-index of the face lattice of a convex polytope changes when taking the pyramid
and the prism of the polytope. As a corollary we have new recursion formulas for the cd-index of
the Boolean algebra and the cublcal lattice. Moreover, these operations also have interpretations
for certain classes of permutations, including simsun and signed simsun permutations. Lastly, we
prove an identity for the shelling components of the simplex.

Resume

L'espace vectoriel 'P engendre par les classes d'isomorphismes des ensembles partiellemeat or-
donnes a une structure d'une coalgebre newtonienne. Nous observons que I'index ab est un ho-
momorphisme de coalgebre newtonienne de 1'espace vectoriel -P a 1'algebre des polynomes en les
variables noncommutatives a et b. Cette observation nous permet d'obtenir des formules explicites
montraat comment 1'index cd du treillis des faces d'un polytope convexe change quand on prend la
pyramide et Ie prisme du polytope. Comme corollaire nous avons des nouvelles formules r^cursives
pour 1'index cd de I'algebre de Boole et du treillis cubique. De plus, ces operations ont aussi des
interpretations pour certaines classes de permutations, comportent les permutations de "simsun'
et leur variante signee. Finalement, nous prouvons une identite pour les composantes d'effeuillage
du simplexe.

1 Introduction

The cd-index is an efficient way to encode the flag /-vector (equivalently the flag /i-vector) of an
Eulerian poset. It also gives an expUcit basis for the generalized Dehn-SommerviUe equations, also
known as'the Bayer-Bmera relations [1]. An important example of an Eulerian poset is the face lattice
of a. convex polytope.
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In this paper we study how the cd-index of the face lattice of a convex polytope changes after
applying each of the following geometric operations to the convex polytope itself: taking the pyramid,
taking the prism, truncating at a vertex, and pasting two polytopes together at a common facet. AU
four of these operations act on the face lattice of the polytope. The change in the cd-index from
the pasting operation follows from a result of Stanley [17, Lemma 2. 1]. Similarly the change from
truncating at a vertex follows from the same result of Stanley and the pyramid and prism operations.

To understand how the cd-index changes under the prism and pyramid operations, we consider P,
the linear span of isomorphism classes of graded posets. This vector space is an algebra under the star
product * of posets, first described by Stanley [17]. More importantly, 77 has a coalgebra structure.
The pair formed by the star product * and the coproduct A do not form a bialgebra, but instead a
Newtonian coalgebra, a concept introduced by Joni and Rota [12]. The main observation we make is
that the cd-index is a Newtonian coalgebra map from the vector space E. spanned by aU isomorphism
classes of Eulerian posets to the algebra T of polynomials in the non-commutative variables c and d.
We thus obtain that the prism operation corresponds to a certain derivation D on crf-polynomials, and
the pyramid operation corresponds to a second derivation G. Hence given the cd-index of a polytope,
we may easily compute the cd-index of the prism and the pyramid of the polytope with the help of
these two derivations. Using these two derivations, we obtain new explicit recursion formulas for the
cd-index of the Boolean algebra Bn and the cubical lattice Cn-

There is a relation between the cd-index of the Boolean algebra Bn and certain classes of permuta-
tions. For instance, the cd-index of Bn is a refined enumeration ofAndre permutations [14]. Similarly,
it is also a refined enumeration of simsun permutations, first defined by Simion and Sundaram [19, 20].
Another known example of a poset-permutations pair is the cubical lattice and signed Andre permuta-
tions [7, 14]. This motivates us to ask the following question. Given an Eulerian poset P, is it possible
to find a canonical class of permutations which correspond to the cd-index of the poset P? We show
that given a poset-permutations pair (P, T), we can construct a class of permutations corresponding
to the pyramid of P. A siinilar signed result holds for the prism of P. The simsun permutations
may be built up by repeated use of this correspondence. Also, we define signed simsun permutations,
which correspond to the cubical lattice Cn.

In [17] Stanley studies the shelling components of a simplex and their cd-indexes, given by a sum
of $^'s. Using our techiiiques we obtain a recursion formula for $^. As a corollary to this recursion
we prove a version of Stanley's conjecture [17, Conjecture 3. 1] concerning the correspondence between
simsun permutations and the $^'s.

We thank Louis Billera, Gabor Hetyei, and Christophe Reutenauer for many helpful discussions.

2 Newtonian coalgebras

Let fc be a field of characteristic 0. Let V be a vector space over the field k. A product on the vector
space V is a linear map ^ : V® V ->. V. The product ju is associative if^o (^® 1) = ^xo (1 ®^i).
Similarly, a coproduct on the vector space V is a linear map A : V - > V ^V. The coproduct A is
coassociative if(A®l)oA=(l®A)oA.
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Definition 2. 1 Let V be a vector space with an associative product p, and a coassociative caproduct
A. We call the triplet (V, ^, A) a Newtonian coalgebra if it satisfies the identity

Ao^ = (l®^)o (A® 1)+ (^® 1) o(l ® A).

Recall the Sweedler notation of a coproduct A. That is, we write A(a;) = ^ T(I) ® x^. Then the
Newtonian condition may be written

A(a: . y) = S a;(1) ® (a:(2) ' y) + S(a:' t/(1))(8) t/(2)-
i y

Observe that this identity is a generalization of the product rule for a derivative. In fact, for any
element v eV, the linear map x i-> D^(x) = ^ T(I) . v . x^) is a derivative on the algebra (V, fi).
That is, D^{x . y) = D^x) -y + z . D^y), or I»<, o^ = ^o(£><, ® 1+ I® D^).

The definition of Newtonian coalgebra originated from Joni and Rota [12] under the name in-
fiiiitesimal coalgebra. Our definition is from [6]. The first in-depth study of a Newtonian coalgebra
was by Hirschhorn and Raphael [ll], who studied the coalgebra on k[x} where the coproduct is given
by A(a:") = E.+j=n-i a;l ® .Z;J- In tlus section we will introduce two important examples of Newtonian
coalgebras, which we denote by A and P. These two examples appear in [6j.

Let A = k{a, b} be the polynomial algebra in the non-commutative variables a and b. Let the
product on A be the ordinary multiplication. Define the coproduct A on a monomial Vi-vy-Vn by

n

A(vi . V2--"yn)=^vr--v. _i®v,+r--Vn.
»=1

" It is easy to see that this is a Newtonian coalgebra. The Newtonian coalgebra A is naturally graded,
that is, we may write A = ©n>o An, where An is spanned by monomials of degree n. Then dim(^4n) =
2" and we have A, . A] C Ai+j and A(^n) C ©,+j=n_i ̂ , ® Aj.

We wUl now consider graded posets P whose minimal element differs from its maximal element.
Hence the rank of such a poset is at least 1. (See [16] for terminology on posets. ) If two posets are
isomorphic we say that they have the same type. We denote the type of a poset P by P. Let P be
the vector space over the field k spanned by all types of posets.

We define a coproduct on the vector space P by

A(P)= E [6^]®[^i],
.
* p-

6<«<i

and extend this definition by Unearity. Observe that this coproduct differs from the ordinary coproduct
that is defined on the reduced incidence Hopf algebra of posets; see [4, 12, 15].

Let P and Q be two graded posets. We define their star product, R= P *Q, by letting R be the
set (P - {i}) U (Q - {6}) and defining the order relation onj Rby a; <^ y if (i) x, y   P and x <, p y,

(n) I, y   Q and a; ̂ Q y, or (m) z   Pandy  <3. This product was iirst mentioned in [17]. Observe
that the rank of the poset P * Q is given by p(P) + p(Q) - 1. The product * extends naturaUy to a
product on 77.
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Proposition 2.2 (Ehrenborg and Hetyei) The triplet (P, *, A) !'s a Newtonian coalgebra.

This Newtonian algebra has a natural grading, P = ®n>o ̂"' where Pn is the linear span of types of
graded posets of rank n + 1. Then we have P, * Pj C P^j and A(7?n) C ©,+j. =n_i 77, ® Pj.

There are two other products on posets that we consider. First, there is the Cartesian product of
posets, which we denote by P x Q. Secondly, define the diamond product by PoQ = {P- {6}) x
(0 - {o}) u {o}. The diamond product corresponds to the Cartesian product of convex polytopes,
that is, £{V x W) = £(V)o£(W), where V and W are two convex polytopes and £{V) denotes the
face lattice of V. Both of these products on posets extend naturaUy to the linear space P, and we
have that 7?, x P, C P.+j+i and .P. o'Pj- C P,^.

I ,

3 The crf-index of Eulerian posets

To each graded poset P we wiU assign a non-commutative polynomial in the variables a and b caUed
the afe-index. Let P be a graded poset of rank n + 1. To every chain c= {0< a;i < ... <a;ji: < 1} of
the poset P we associate a weight wp{c) = w(c) = zr'-Zn, where

z, =
b ift {/>(a;i),..., /»(a;it)},

a-b otherwise.

Observe that the chain {0 < 1} receives the weight (a - 6)" and a maxima! chain has weight bn. Note
also that the degree of the weight w(c) is n. Define the ab-index of the poset P to be the sum

^(P)=s^),
c

where c ranges over aU chains c= {0<a;i < -. -< a;t < 1} inthe poset P.

By linearity we may extend the map ^ to a linear map }S : P - ». A.

Proposition 3.1 The linear map ^ : P
^o(^® ̂ ) andAo $=('$' ® ̂ )o A.

A is a Newtonian coalgebra map. That is, ¥ o /x =

The first identity is equivalent to V(P *Q) = }S(P) . <S(Q), for two posets P and Q. This is due to
Stanley; see [17, Lemma 1. 1].

Recall that a poset P is Eulerian if the Mobius function p. on any interval [z, y] in P is given by
l.t{x, y) = (-lY(x'y). Let £ be the subspace of P spanned by all types of Eulerian posets. It is easy to
see that £ is closed under the product * and thecoproduct A. Hence £ forms a Newtonian subalgebra
of P. Observe that £ is also closed under the Cartesian product and the diamond product.

Fine observed that the afr-index of an Eulerian poset may be written uniquely as a polynomial in
the non-commutative variables c = a+b and d = ab + ba; see [2]. When the aft-index can be written
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as a polynomial in c and d, we caU this polynomial the cd-index. See Stanley [17] for an elementary
proof of this fact.

Let 7 be the subalgebra of<4 spanned by the elements c and d. ^ is closed under the coproduct A,
sinceA(c)= A(a+6)= 101+101 = 2-101 and A(d) = A(a6+6a) = a®l+liS>&+6® l+l®a =
c® 1+ 1 ®c. The Newtonian coalgebra T inherits the grading from A. That is, T = ®n>o ̂~n, where
^~n c .^n- It is easy to see that dim(^~n) = /n+i, where /n is the nth Fibonacci number. (RecaU /n is
defined recursively by /o =0, /i = 1, and /r> = /n-i + /n-2.)

The important observation to make here is that the linear map ̂  : P - >. A restricts to a linear
map from the Newtonian coalgebra £. to the Newtonian coalgebra T. Note that there exist posets
which are not Eulerian, but whose a6-index may be expressed in terms of c aiid d.

Let V be a convex polytope. Then the face lattice of V, C(V), is an Eulerian poset. Hence we
may compute the cd-index of C(V), that is, }S(£(V)). For the remainder of this paper we will write
9{V) instead of the more cumbersome ^(£(V)).

4 The pyramid and the prism of a polytope

There are two weU-known operations defined on convex polytopes: the pyramid and the prism. ^. Frorn
a convex polytope V we may construct the pyramid of V, Pyr(y), and the prism of V, Prism(y). See
[22] for a formal treatment of these operations. Let Bn be the Boolean algebra of rank n, that is, the
face lattice of the simplex of dimension n - 1. Also let Cn be the cubical lattice of rank n + 1, namely
the face lattice of an n-dimensional cube.

Proposition 4. 1 Let V be a convex polytope. Then the face lattice of the pyramid of V and the face
lattice of the prism of V are given by £(Pyr(V)) = £(V) x B^ and £(Prism(V)) = C{V)oBy. .

Two natural questions occur now. Given the cd-index '3?(V), are we able to compute ^(Pyr(V)) =
9(£(V) x Bi) and ̂ (Prism(y)) = 9(C(V)oB^

Proposition 4.2 Let P be a graded poset. Then we have that

1

^(PxBO = ^ |^(P). c+c. ^(P)+ ^ $([6, z]). d. ^, i])
* P

6<*<i

^(Po^) = $(P). c+ ^ ^([6, i]). d-^([z, i]).
* P.

6<*<i

Since Cn+i = Cn o B^, Proposition 4. 2 gives a recursion formula for the cd-index of the cubical
lattice Cn which was first developed by Purtill [14]. The second part of Proposition 4.2 may be
generalized in the following manner. Let Ar be a graded posetofrank 2 which has r atoms (and hence
r coatoms). Note that A; = B-s. LetCr = a+(r - l)-b and dr = a&+ (?. - 1)- ba.
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Proposition 4.3 Let P be a graded poset. Then we have that

^(PoA. )=^(P). ^+ ^ ^([6, z]). 3,. ^([^i]).
.
*ep

6<*<l

This proposition generalizes the recursion for the r-cd-index given in [7].

Define a linear operator D : A - ̂  A by

Z?(w)=^U;(i)-C?-W(2).
U)

RecaU that D is a derivation. We could have defined D directly as a derivation on A such that
D(a) = D(b) = a&+6a = d. Note that Z> is also a derivation on 7 since D(c) = 2-d and D(d) = cd+dc.

Combining Proposition 4.2 with the fact that ̂  is a Newtonian coalgebra map we obtain

Theorem 4.4 Let P be a graded poset. Then we have

^(PxBQ = j[^(P). c+c. $(P)+I5(^(P))],
^(Po^z) = ^(P)-c+D(^(P)).

Similarly, let V be a convex polytope. Then we obtain

^(Pyr(V)) = |^(y). c+c. ^(y)+D(^(V))],
t(Pnsm(V)) = y(V)-c+D(9(V)).

This theorem gives us a new recursion formula for the cd-index of the cubical lattice Cn. Directly we
have

9(Cn^)=9(Cn)-C+D^(Cn)).
This is a different recursion formula than PurtUl obtained in [14].

Example 4. 5 Let the convex polytope V be a 3-cube with a vertex cut off. The polytope V has 10
vertices and 7 facets. Hence the cd-index of V is ̂ (V) = c3 + (10- 2)dc + (7 - 2)cd = c3 + 8dc + 5cd.
We have

A(c3 + 8dc + 5cd) = 7-c2®l+15-c®c+10-l(g>c2+16-d(g)l+10-l®d.
D(c3+8dc+5cd) = 7 . c2d+15 . cdc+10-dc2+26-d2.

Hence the cd-index of the prism of V is equal to

^(Pnsm(y)) = c4+7-c2d+20. cdc+18-dc2+26. d2.
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5 The coproduct F

On the algebra T define two Newtonian coproducts, F and F', by

r(c) = i®i, r(c) =101,
F(d) == c 01, T'(d) = l®c.

Observe that A = F+ F'. It is interesting to note that neither T or T' can be extended nicely to a
Newtonian coproduct on A. Define (?, a linear operator from ̂  to itself, by

G(vj)=^w^-d-w^
u»

where the Sweedler notation appUes to the coproduct F. SimUariy, let

G"(w) = Z <i) . d . ̂ 2)-
w

The linear maps G and G" are derivations on 7 such that G'(c) = G"(c) = d, G'(d) = cd, and G"(ri) = dc.
Also we have that D = G +G'. More importantly, we have the following lemma.

Lemma 5. 1 For all cd-monomials w we have w -c+ G{w) = c-w + G"(w).

Theorem 5.2 Let P be an Eulerian poset. Then we have

^(Px5i)=^(P)-c+G'(»(P)).

Similarly, let V be a convex polytope. Then we obtain

^!{Py^V))=V(V)-c+G(9(V)).

This theorem gives us a new recursion formula for the cd-index of the Boolean algebra Bn different
from the one Purtill obtained in [14]. It is

^(B^)=^(5n)-C+G-(^(^)).

Example 5. 3 Let V be the polytope in Example 4. 5, with cd-indexc3 + 8dc + 5cd. ]Ve have

F(c3 + 8dc + 5cd) = 6-c2®l+9-c®c+l®c2+8-d®l+5-l®d.
G(c3 + Sdc + bed) = 6-c2d+9-cdc+dc2+13-d2.

Hence the cd-index of the pyramid of V is given by

9(Pyr(V)) = c4+6-c2(f+14. cdc+9-dc2+13-d2.
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6 Other operations on polytopes

Let W be an n-dimensional convex polytope with vertex v. Let u be a vector such that W n {x  
? \^u\x ^ c^ = ^' The vertex figure ^ of W at the vertex v is defined as the polytope
V =WH{x CRn : u-x= c-e}, for smaU enough   > 0. We define the truncated polytope W as
the polytope WH{x ̂ Rn : u-x<c-e}. The combinatorial structure of V and W only depends
on W and v, and not on u, c, or e.

Proposition 6. 1 Let W be a convex polytope and let v be a vertex of W. Assume that the vertex
figure at v is the polytope V. Let W be the polytope W with the vertex v cut off. Then the difference
in the cd-index of W and W is given by

9(W) - ^!(W) = £>(w) - G(w) = G'(w),

where w = ^(V).

Example 6. 2 Let W be a four-dimensional convex polytope such that at the vertex v it has the vertex
figure V, where V is the three-dimensional polytope mentioned in Examples 4. 5 and 5. 3. Hence.

y(W)-9(W) = D{c3+Sdc+5cd)-G(c3+8dc+5cd)
= c2d+6-cdc+9- dc2 + 13 . d2.

Another operation on polytopes is pasting two polytopes along a common facet. Let V and W
be two polytopes such that they intersect in a facet F, that IS, VDW = F. A corollary of Stanley's
result [17, Lemma 2. 1] is that the cd-index of the union V UW is given by

^!(V UW)= ̂ !(V) + 9(W) - 9{F). c.

The Minkowski sum of two subsets X and Y of K" is defined as

X+Y={x+y^Rn : xeX, y Y}.

Notably, the Minkowski sum of two convex polytopes is another convex polytope. For a vector x we
denote the set {A-a; : 0 ^ A < 1} by [0, a;]. We say that the non-zero vector x lies in general position
with respect to the convex polytope V if the line {X- x +u ̂ Rn : A   R} intersects the boundary
of the polytope V in at most two points for aU u   1R".

Proposition 6.3 Let V be an n-dimensional convex polytope and x a non-zero vector that lies in
general position with respect to the polytope V. Let H be a hyperplane orthogonal to the vector x,
and let Proj(V) be the orthogonal projection of V onto the hyperplane H. Observe that Proj(V) is an
(n - l)-dimensional convex polytope. Then the cd-index of the Minkowski sum of V and [0, x\ is given
by

^(V + [0, x]) = 9(V) + D(9(Proj{V))).
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7 On Siinsun perinutations

Let 5 be a set such that S U {0} is a linearly ordered set.

Definition 7. 1 An augmented permutation v of length n on S is a list v = (0 = SQ, SI,.. ., Sn), where
5i,.. ., 5n are n distinct elements from the set S.

The descent set of the augmented permutation TT is the set D(v) = {i : 5, _i > 5, }. Observe the
descent set of TT is a subset of [n] = {1,.. ., n}. We say that v has no double descents if there is no
index i such that s, > 5,-+i > s,+2. The variation of a permutation TT is given by U('!T) = UD(»), where
us is the afr-monomial ui . . -Un such that u, =a if? ̂ 5' and u; = bifi ̂  S.

Let Rn(S) be the set of augmented permutations on the set S of length n so that any such
permutation begins with an ascent and has no double descents. We let Ro(S) be the singleton set
containing the permutation (0). For an augmented permutation TT in Rn(S) we define the reduced
variation of v, which we denote by V^v), by replacing each ab in U(v) with d and then replacing each
remaining a by a c. For a subset T of J?n(5') we define V(T) = ET T y(7r)-

We now ask the following question. Given an Eulerian poset P of rank n+ 1, is it possible to find
in a canonical manner a Uneariy ordered set 5' and a subset T of Rn{S) such that $(P) = V(T)').
Examples of such posets and permutation sets are the Boolean algebra and Andre permutations, and
the cubical lattice and signed Andre permutations. See [7, 14]. For more refined identities using such
a poset-permutation set correspondence, see [5, 10, 17].

We wffl now define three operations on permutations. These wffl give us a partial answer to
our question. For a permutation v = (0, 5i,. .., 5n) and an element x, we define the concatenation
7T-2 = (0, 5i,..., 5n, x). We extend this notion for a class T of permutations by T-a; = {TT -a; : ^   T}.
Let M be an element larger than all the elements in the linear order S U {0}. For T a subset of Rn(S)
we have that T-M C An+i(5 U {M}). Moreover, we have that V(T . M) = V(T) . c.

We will now define the insert operation. Let At be as just defined and let m be an element smaller
than aU the elements in 5 U {0}. For T C Rn(S) and x   {m, M}, we define Iiisert(T, a;) to be set of
all augmented permutations (0, 5i,. . ., 6,-, a;, 5, +i,.. ., 5n) such that

1. (0, 5i,..., 5n)6T,
2. (0, 5i,..., s,-, a;, s,+i,..., Sn)  fin+i(5'U{a;}),
3. if a; is the maxima! element At, then i / n, and

4. if x is the minimal element m, then t ^ 0.

That is, we insert x into the permutation (0, Si,.. ., 5n)   T such that no double descents occur and
we do not aUow the maxima! element at the end nor the minimal element at the beginning of the
permutation. Observe that we have Insert(T, M) and Insert(T, m) C J%n+i(5' U {M, m}).

Lemma 7. 2 For T C R^S) we have V( Insert, M)) = G(V(T)) and V(Inserl(T, m)) = G'(V(T)).
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Theorem 7.3 Let P be an Eulerian poset of rank n+1. LetSu{0} bea linearly ordered set, and let
T be a subset of R^{S) such that 9(P) = V(T). Introduce a new maximal element M and a minimal
element m to the set Su {0}. Then the following identities hold:

$(Px5i) = V(7n5ert(T, M) U r. M),
9{P o 5z) = V( Insert, M) U Insert m)uT-M).

I I

I

Simion and Sundaram defined a class of permutations called simsun permutations; see [19, page
267] and [20]. We will now see how simsun permutations are closely related with the operations
Insert(r, n) and T . n on permutations.

A simsun permutation TT of length n is a augmented permutation TT = (0, si,.. ., Sn) on the set
{!,..., n} of length n such that forall 0 ^ A ^ nifwe remove the A; entries n, n-l,..., n-A;+l
from the permutation TT, the resulting permutation does not have any double descents. Let <?" denote
the set of aU simsun permutations of length n. We have that »?n C ^n({l,..., n}).

Similarly, we may define a signed simsun permutation TT of length n as an augmented permutation
of length n on the set {-n,..., -1, 1,.. ., n) such that exactly one of the elements +i and -i occurs
in the permutation dnd for allO ^ A ^ nifwe remove the k entries ±n, ±(n - 1),..., ±(n - A; + 1)
from the permutation ff, the resulting permutation belongs to An_t({-(n -fc),..., -1, 1,.. ., n- k}).
Let S^ denote the set of aU signed simsun permutations of length n.

Corollary 7.4 The sets of all simsun permutations and all signed simsun permutations satisfy the
following recursions:

Sn = 7nsert(<?n_i, n) U <?n-i-n,
^ = 7nsert(^_i, n) U Jnserf(^_i, -n) U ^_i. n.

Thus we have $(5«+i) = V(Sn) and 9(Cn) = V(S^).

8 The shelling coinponents of the sinaplex

Stanley [17] studies the shelling components of the simplex in order to obtain a formula for the cd-
index of a simplicial Eulerian poset. Namely, if P is a simplicial Eulerian poset of rank n + 1 with
A-vector (/io,..., /in) then the cd-index of P is given by ̂ (P) = ^^o /i, . $,". By using the techniques
we have developed, we now study the cd-polynomials $7-

Recall that Bn is the Boolean algebra, that is, all the subsets of {1,..., n) ordered by inclusion.
Let c, be the coatom {!,.. ., n} - {n+ 1 - 0. Similarly, for i -^ j let c. j be the element {1,.. ., n} -
{n+ 1- z, n+ 1 -j'}, that is, c, j is the intersection of the two sets c, and Cj. Define the poset 5^;
foT !<: i <:n- Iby

<. =LJ[0'c. ]u{{i,..., "}}.
3=1
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That is, J?n. » consists of the maximal element {!,..., ra) and all the elements below the coatoms
ci,. .., c,. Since the elements c^t, where 1 ^ j <:i and i+l< k <n, a,ie only covered by one element
in 5n,, we know that £" . is not an Eulerian poset. However we can obtain an Eulerian poset by
adding an element 7 in the following manner. Let Bn,, be the poset Bn, U {7}, where the coatom 7
covers all elements c^k with 1 ^ j <i and i+1 <, k <: n. The poset Bn,, is Eulerian. Observe that
J?n. l = 5n-i * -62 and Bn,n_i = 5n. Stanley defines $^ by the relation

»(^, ;)=^-l+... +$r_-il.

That is, ̂  = ^(5n+i, i) = ^(5n). c, and for 1 <i^ n-1, $? = ^(Bn+i,.. +i) - »(5n+i,. ).

We now state the main result of this section.

Theorem 8. 1 The following recursion holds for $?: G'($?) = $^i1.

Stanley conjectured [17, Conjecture 3. 1] that the reduced variation of certain classes of permuta-
tions is equal to 67. This conjecture was proved by Hetyei in [10]. We now present a slightly modified
result of this kind. It follows easily by Theorem 8. 1 and the techniques of Section 7. Let <$", » be the
set of simsun permutations of length n ending with the element k.

Corollary 8. 2 The reduced variation of the set Sn, k is given by V(<?n, i) = $^_t.

9 Concluding Remarks

There are a number of questions that appear at this point in the research. We put forward a few of
them.

In Section 8 we found new properties that hold for the cd-index of the shelling components of the
simplex. In [5] the cd-index of sheUing components of the cube have been studied. Are there any
identities between the cd-indexes of the sheUing components of the cube involving coproducts?

Stanley conjectured that among all Gorenstein* lattices of rank n, the Boolean algebra Bn mini-
mizes aU the coefficients of the cd-index, [18, Conjecture 2. 7]. We present the foUowmg generalization:

Conjecture 9. 1 Let F be a polytope of dimension d- 1. Then among all d-dimensional polytopes
having F as a facet, the pyramid of F minimizes all the coefficients of the cd-index.

Let I be a linear functional on the Newtonian coalgebra V. Then the linear map DL defined on
V by

DL{x)=^x^-L(xw)-X(3)
x

is a. coderivation on V. That is, DL satisfies the relation A o £»£ = (£>£ ® 1 + I® £>£)oA. In
the Newtonian coalgebras 7?, £, A, and J' are there any coderivations which have a combinatorial
interpretation?
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Let V and W be two convex polytopes in IR". The Minkowski sum V+W is also a convex polytope.
Assume that we know the cd-index of the two polytopes V and W. This does not give us enough
information to compute the cd-index of the Minkowski sum V +W. What more information do we
need of V and W in order to compute ̂ (V + W)? Recently, the authors together with Louis Billera
have found an answer in the case when one of the polytopes is a line segment.

References

[1] M. BAYER AND L. BILLERA, Generalized Dehn-SommervilIe relations for polytopes, spheres and Eulerian
partially ordered sets, Invent. Math. 79 (1985), 143-157.

[2] M. BAYER AND A. KLAPPER, A new index for polytopes, Discrete Comput. Geom. 6 (1991), 33-47.

[3] L. BlLLERA AND N. Liu, Noncommutative enumeration in ranked posets, in preparation.

[4] R. EHRENBORG, On posets and Hopf algebras, to appear in Adv. Math.

{5] R. EHRENBORG AND G. HETYEI, The cd-index of Eulerian cubical posets, preprint 1995.

[6] R. EHRENBORG AND G. HETYEI, Newtonian coalgebras, in preparation.

[7] R. EHRENBORG AND M. READDY, The r-cubical lattice and a generalization of the cd-index, to appear
in European J. Combin.

[8] D. FOATA AND M. P. SCHUTZENBERGER, "Nombres d'Euler et permutations alternantes, " Tech. Report,
University of Florida, Gainesville, Florida, 1971.

[9] D. FOATA AND M. P. SCHUTZENBERGER, Nombres d'Euler et permutations alternantes. In: J.N. Srivas-
tavaet al., "A Survey of Combinatorial Theory, " Amsterdam, North-Holland, 1973 (pp. 173-187).

[10] G. HETYEI, On the cd-variation polynomials of Andre and simsun permutations, preprint 1994.

[11] P. S. HlRSCHHORN AND L. A. RAPHAEL, Coalgebraic Foundation of the Method of Divided Differences,
Adv. Math. 91 (1992), 75-135.

[12] S. A. JONI AND G.-C. ROTA, Coalgebras and Bialgebras in Combinatorics, Stud. Appl. Math. 61 (1979),
93-139.

[13] N. Liu, "Algebraic and combinatorial methods for face enumeration in polytopes, " Doctoral dissertation,
Cornell University, Ithaca, New York, 1995.

[14] M. PURTILL, Andre permutations, lexicographic shellability and the cd-index of a convex polytope, Trans.
Amer. Math. Soc. 338 (1993), 77-104.

[15] W. R. SCHMITT, Antipodes and Incidence Coalgebra, J. Combin. Theory Ser. A 46 (1987), 264-290.

[16] R. P. STANLEY, "Enumerative Combinatorics, Vol. I," Wadsworth and Brooks/Cole, Pacific Grove, 1986.

[17] R. P. STANLEY, Flag /-vectors and the cd-index, Math. Z. 216 (1994), 483-499.

[18] R. P. STANLEY, A survey ofEulerian posets, in: "Polytopes: Abstract, Convex, and Computational, " T.
Bisztriczky, P. McMullen, R. Schneider, A. I. Weiss, eds., NATO ASI Series C, vol. 440, Kluwer Academic
Publishers, 1994.

[19] S. SUNDARAM, The Homology Representation of the Symmetric Group on Cohen-Macaulay Subposets of
the Partition Lattice, Adv. Math. 104 (1994), 225-296.

[20] S. SUNDARAM, The Homology of Partitions with an Even Number of Blocks, J. Algebraic Combin. 4
(1995), 69-92.

[21] M. SWEEDLER, "Hopf Algebras," Benjamin, New York, 1969.

[22] G. M. ZIEGLER, "Lectures on Polytopes, " Springer-Verlag, New York, 1995.

162


