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Abstract

It is well-known that relative position between two complete flags in
an n-dimensional vector space can be specified by an nx n permutation
matrbc, and that all permutation matrices arise in this way. We define
a notion of "permutation matrix" of higher dimension d, such that
the relative position between d complete flags is specified by such an
n<i-matrix.

For fixed n and d, the n'f-permutation matrices have a natural
partial order. For d = 2, the poset is isomorphic to the Bruhat order
on the symmetric group Sn- For n = 2, the poset is isomorphic to the
partition lattice.
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1 Introduction

By a permutation matrbc of size n we shaU mean a square matrbc with ex-
actly one dot in each row and column, aU other entries empty. We wUl
in this paper discuss a solution to an algebraic combinatorial problem on
intersections of flags, that suggests a generalization of the concept ofpermu-
tation matrbc to arbitrary dimensions. For each n we shaU present a family
of dotted arrays of dimension d ^ 1, such that for d = 2 we get the ordinary
permutation matrices of size n.

1.1 On permutation matrices

By an rad-matrbc we shaU mean a hypercubic array nx ... x n of dimension
d. Several generalizations of permutation matrices to higher dimensions can
be proposed, each generalizing some aspect of the classical case.
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One natural candidate is the dense d-dimensional permutation matrix,
where we have distributed nd~1 dots in a n^-matrbc, such that there is
exactly one dot in each one-dimensional submatrix of size n. Another can-
didate is the sparse d-dimensional permutation matrbc, where n dots are
distributed so that we have exactly one dot in each submatrbc of size n and
codimension one (that is, dimension d - 1).

Both these concepts have been studied in the literature. For exam-
pie, a dense three-dimensional permutation matrix is equivalent to a latin
square. In general, it seems hard to say much about the deiise matrices.
On the other hand, the sparse d-dimensional permutation matrices quite
simply correspond to elements in the product of d - 1 copies of the sym-
metric group Sn, with (^1, ^-2, .. -, 7Td_i) giving the dot matrix with a dot in
(!', 7Ti(!), 7T2(Q,..., 7Td-i(!)) for each t = l, 2,..., n. Hence, there are (ra!)(f-l
diflferent sparse permutation matrices of size n in dimension d. The sparse
permutations were used by E. Pascal in 1900 to define higher-dimensional
determinants [6]. An alternative definition of higher-dimensional determi-
nants was quite recently given by Gelfand, Kapranov, and Zelevinsky [4].

1. 2 A geometric property of permutation matrices

The generalization suggested in the present paper wiU contain the sparse
permutations but also others. It is motivated by the following elegant con-
nection between permutation matrices and geometry (possibly due to Schu-
bert), cf. the papers by Fulton [3] and Proctor [7].

First, for any matrbc P, let P[i, j] denote the upper left i by j submatrbc
of P. If P is a dot matrbc such that there is at most one dot in each row

and column (like permutation matrices and their submatrices), then define
the rank of P to be its number of dots.

Let V be an n-dimensional vector space, and let £'. and F« be two com-
plete flags in V, that is,

0=£o C £1 C ... C -En =V, 0=FoC Fi C ... C ^ =V.

where dim(^) = dim(Fj) = j for allj = l,..., n. Define a dot matrix
?(£'., F«) by putting a dot in Pi j if the two conditions

£. -i n Fj = E. n F,_i ^ £, n F,

are satisfied. Then, elegantly, it is always true that P is a permutation
matrbc and rankJ>[t, j] = dim(£', n Fj) for aU !, j. Conversely, every permu-
tation matrbc arises as J>(£», F») for some pair of flags.

EXAMPLE Let V be a three-dimensonal space spanned by Ci, e2ie3-
Given the flags £. : 0 C <ei) C (61, 62) C V and F. : 0 C (ei+es) C
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{e-i+e-iyCs} C V, we get the dimensions of intersections and permutation
matrbc in the figure.

0 0 1

1. 3 Higher dimensional matrices

Let Z^. be partially ordered by componentwise comparison:

X = (xi,..., Xd) <:{y-i,..., yd)=Y if Xi <, yi for aU i = 1,. .., d.

This is a lattice, with X\/Y and X /\Y given by componentwise maximum
and minimum respectively.

By a ri-dimensional matrbc of shape ni x nsx ... x "d we shall mean
the lower interval [(1,..., l), (ni,..., n^)] ofZ^.. The positions may be filled
with anything. If the positions are aU either empty or dotted, we speak of a
dot matrbc. We will keep the intuitive name upper left submatrbc for a
lower interval of a d-dimensional matrix (and its contents). Let P[ji,.. -, jd]
denote the upper left j\ x ... x jd submatrbc of a d-dimensional matrix P.

1.4 Two characterization problems

While attempting [2] to generalize Fulton's essential set [3] to higher dimen-
sions, the present authors became interested" in intersecting several flags,
E^..., E.d. In particular, let I(E,\.. ., E,d) and M(£,1,.. ., £, ') be de-
fined by

ljl> = ^, n ... n Ef,, and M^,...,,, = dim(^,... jj.

Problem 1 Which nd-matrices M can arise from intersection of several
flags?

In the two-dimensional case, we know what the answer is: the rank-
matrices of permutation matrices. To be able to get an analogous answer for
other dimensions, we must define a general meaning of rank. Fulton makes
the trivial but useful observation that the number of dots in a submatrix of
a permutation matrix is equal to the number of its rows that contain a dot,
and is also equal to the number of its columns that contain a dot. We shaU
generalize this concept of rank.

For an arbitrary d-dimensional dot matrix P, say that the coordinate-
t-rank of P is the number of indices j such that there exists at least one dot
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in P m some position whose tth coordinate is j. Say that P is rankable with
rank? = r if the coordinate-z-rank is r for all i = 1,.. ., ri. The intuitive
picture is that in whichever direction we traverse P, the number of layers
containing at least one dot will be the same. Let us say that P is totally
rankable if every upper left submatrix of P is rankable.

Answer 1 Every nd-matrix M that arises from intersection of several flags
is the rank matrix of a totally rankable nd-matrix.

The converse holds for d = 1, 2, 3 and we conjecture that it in fact holds in
general.

Problem 2 Which are the totally rankable dot matrices?

For any dot matrbc we shall define its redundant positions and its covered
positions. It will be obvious that every covered position is redundant. The
key question is whether the converse holds.

Answer 2 A dot matrix is totally rankable if every redundant position is
covered.

Among all totally rankable matrices of given ranks in all positions, there is
a unique minimal one. For d = 2 the minimal totally rankable dot matrices
of full rank are the permutation matrices.

1. 5 A partial ordering

Let Pn,d be the set of minimal totally rankable matrices of fiiU rank of size
n and dimension d. The set P^ct can be partially ordered by entrywise
comparison of ranks, that is, if P, P'   Pn,d-, then

P^P/ if rankP[ji,..., j'd] ^rankP/[ji,..., jd]foraUji,..., jd.

For d = 2 the dot matrices in 'Pn,2 are the nxn permutation matrices, and
the poset is in fact the Bruhat order on 5'n. On the other hand, for n = 2 the
dot matrices in P^d encode partitions of a d-set and the poset is in fact the
partition lattice. Hence, what we have got is a common generalization of the
Bruhat order and the partition lattice. These two posets have very different
features. For example, the Bruhat order is not a lattice, but it is self-dual;
the partition lattice is of course a lattice, but it is not self-dual. However,
they are both graded, and have unique minimzd and maxima! elements. We
can show that for all n, d, the poset Pn,d has unique minimal and maxima!
elements. We prove that 7:>n,3 is graded and conjecture the grading for d ^ 4.

In Fig. 1 we show the first non-trivial case, ?3,3, with 70 elements.
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2 Totally rankable dot matrices

Given a fixed shape of matrices, a dot matrbc P can be identified with the
set of positions in which it has dots. Several totally rankable dot matrices
may yield the same rank for each upper left submatrbc. Say that such dot
matrices are rank equivalent. Last in this section we shall see that every
rank equivalence class of totally rankable dot matrices has a simple boolean
lattice structure, so that in particular every rank equivalence class has a
unique mimmal member.

For a position X, let P- X and P+X denote the two dot matrices ob-
tainable from P by removing the dot in position X (if there is one, otherwise
do nothing), and adding a dot in position X (if there is none) respectively.

Leinnia 2. 1 For a dot matrix P and a position X, the dot matrices P - X
and P + X are rank equivalent if and only if X -=\IX for some subset of
dots X C P not containing X.

In the classical case, this means for example that adding a dot in a
position that is later in the row than some other dot and later in the column
than yet another dot does not alter either the column rank or the row rank.

Let (a;i,..., a;d) -< (fi,.. ., ij) mean that a;, < i, for all z = l,..., j. For
a set /f C Z^., define a statistic o-(-V) as the number of members in -^ that
have at least one coordinate in common with the join, that is, a(X) = |{X  
X : X -^\IX}\. For a dot matrbc P, let R(P) be the set of redundant
positions defined by

R(P) ={X=\/X:XC P, aW ̂  2}.

Furthermore, say that a position X = {x-i,. .., Xd)is covered by a subset
X of P if it can be written X =\J X where

\. xixcp;

2. X / X for every X in X\ and

3. for every j there is an X = (a:i,. .., a;d) in <V such that xj < xj.

It is evident that if X is covered in P, then X is redundant in P. We
shaU see that P is totally rankable if and only if the converse also holds.

167



Theorem 2. 2 A dot matrix P is totally rankable if and only if every re-
dundant position is covered by a subset of P.

For ri = 2, this statement boils down to the simple fact that a two-
dimensional dot matrix is totally rankable if and only if the first dot in any
row is also the first dot in its column, and vice versa.

FinaUy, let us prove the boolean algebra structure of the rank equivalence
classes of totally rankable matrices.

Proposition 2.3 The class of dot matrices that are rank equivalent to some
totally rankable matrix P is a boolean interval under inclusion. Conse-
quently, it has a minimal member P and a maximal member P.

3 Intersection of several flags

Given flags £,1, £',2,..., £'.d, we defined in the introduction the matrbc J of
intersections by I^,..., ^ = ^ n ... n Ef^, and its dimension matrbc M by
Mh, -,3d = dim(/7l,..., Jd)- Now define also a dot matrbc P(£,1,.. ., f;,d) as
the d-dimensional dot matrbc with a dot in Pj^,..., j^ whenever

'Jl-l,J2,-,Jd ~ 13l,32-1,-,]d - .. . = -'Jijz.-Jd-l ^ lh,J'i,-,]d,3d

holds. In the two-dimensional case we obtained the permutation matrices,
i.e. the minimal totally rankable matrices, in this way. We shall now see
that this holds also in th three-dimensional case.

Theorem 3. 1 Given flags £,1, £,2, £;,3, the dot matrix P(f;«l, £,2, £,3) is
minimal totally rankable, and M(E^E^E^) is its rank matrix. Con-
versely, every minimal totally rankable n x nx n matrix P has the same
rank matrix as the intersection matrix for some three flags. Complete flags
correspond to matrices of full rank.

EXAMPLE Let V be a three-dimensonal space spanned by 61, 62, 63.
Given the flags f;.1 : 0 C (ei) C (ei, e2) C V, £.2 : 0C { 3} C (d, 63) C V,
and £',3 : 0 C (ei+ea) C {61, 63} C V, we get the dimensions of intersections
and dot matrbc in the figure below. The three layers have third coordinate
one, two and three respectively.

0

0

0

0 0 0
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For d ^ 4 the first part of Theorem 3. 1 is still true with the same proof.

Theorem 3. 2 Given flags £.1,..., E,d, the dot matrix P(£,1,. .., E.d) is
minimal totally rankable of full rank and M(£',1,..., E,d) is the rank matrix
of P.

We conjecture that the other direction is also true in higher dimensions.

Conjecture 3.3 Given any minimal totally rankable nx .. . x n dotted ma-
trix P of full rank there are complete flags £«1,... , £.d, such that the inter-
section rank matrix M(£«l,.. ., E»d) is the rank matrix of P.

4 The rank partial order on d-dimensional per-
mutation matrices

Let Pn, d be the set of minimal totally rankable matrices of full rank of size n
and dimension d, partially ordered by entrywise comparison of rank matri-
ces. Henceforth, in this article we will be bold enough to say d-dimensional
permutation inatrices instead of the awkward "minimal totally rankable
dot matrices of full rank".

Proposition 4. 1 The poset Pn, d has unique maximal and minimal elements
i = {{i, i,..., i):i= 1, 2,..., n} and0= {(zi, a;2,.. . ^d) : a;i+a;2+.. .+a;d =
l+n(d-l)}. °

The two elements 1 and 0 for Ps.s are shown below.
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4. 1 Tn.2 is the Bruhat order

It is clear from our previous discussion that the two-dimensional permutation
matrices in our sense are precisely the classical permutation matrices.

The partial ordering on permutation matrices given by componentwise
comparison of the corresponding rank matrices is known to be the Bruhat
order, see Proctor [7].

4.2 Pz.d is the partition lattice

In this section wefix n = 2, that is, we will deal with 2(f-matrices. Given a
permutation matrbc P   P2, di associate to every dot in (z"i,.. ., t"d)   -P the
set {a : ia = 1} C {1,..., d}. Define also <f>{P) to be the family of such sets.
Note that (2, 2,.. ., 2) - which wUl be mapped to the empty set - is a dot
only in the permutation matrbc that contains the dot (1, 1,..., !) as well,
i.e. the maximal element of 772,d- Disregard the empty set when defining 4>.

First we claim that two dots in a d-dimensional permutation cannot
both have a coordinate j equal to 1 for some j. We also claim that for every
coordinate j there is a dot in the permutation having the jth coordinate
equal to 1. With these claims we see that 4>(P) is a partition of {1,.. ., d}
for every permutation matrbc P and that <?!> is a bijection.

Let lid be the lattice of partitions of {1,.. ., d) ordered by reimement.
Regarding <^> as a function from 7?2, d to 11^ it is easy to see that it is true to
the cover relations of 7?2.d. Hence the bijection 4> is also an isomorphism of
lattices.

Theorem 4.2 The poset Pz.d is isomorphic to the partition lattice H^.

See Fig. 2 for a picture of 7?2, 4 ^ H4.

4.3 Pn,3 is graded

Both the specializations, Bruhat order and Partition lattice, are graded
posets. It is an interesting question whether this common property carry
over to Pn,d in general. We have not been able to prove this for arbitrary d,
but at least it is true for d = 3.

Theorem 4.3 'Pn,3 is graded, with maximal chains of length 2(^).

Conjecture 4.4 'Pn,d is graded for all n, d>, 1, and its maximal chains are
oflength(d-l)(n, ).
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Another obviously interesting question is: "How do we generate aU the
nd-permutation matrices?" Once again the proof of Theorem 3. 1 gives the
answer when d = 3.

The following algorithm will produce a dotted matrbc. After the algo-
rithm we must remove every dot that is directly under a dot in a previously
layer and we wiU get an n3-permutation.
Algorithm At each level k do one of the following steps:

. Choose a square (t, j, k} such that there is no dot in row (t, ., fc- 1) or
in column (-, ;', fc- 1). Define level k by copying level k-1 and adding
a dot in {i, j, k).

. Choose a staircase of dots (ii, ji, A; - 1),.. ., (z,, js, ^ - 1), such that
ii > ... > is and ji < ... < js, in level k - 1. Choose also a row
i < is and a column j < ji such that there are no dots in level k - I
in this row or in this column. Construct level k by copying level fc - 1,
removing the dots in the chosen staircase and instead adding dots in
positions (t'i, j, k), {^Jii k),..., (isjs-i, k), {ij,, k).

Repeating these steps in all possible ways and removing the dots that
are directly beneath a dot in a previous layer, will give all possible n3-
permutaions. See Figure 1 for the 70 permutation matrices when n = c?= 3.

One can formulate analogous algorithms forall d ^ 3.

5 Enumeration

Having defined d-dimensional permutations as minimal totally rankable nd-
matrices of full rank, one obvious question to ask is how many they are. Let
c(n, d) denote this number. This number is not easily computed in general,
but when d= 2or n= 2 weget from the characterizations in sections 4.1
and 4.2 that

c(n, 2)=n! and c(2, d)=5(d),

where B(d) is the dth Bell number. Since the sparse permutations (see the
introduction) are permutations also in our sense, we can easily conclude a
lower bound.

Proposition 5. 1 A lower bound for the number ofnd-permutation matrices
is given by

(n!)d-l^c(ra, d)

We have not yet found any general nontrivial upper bound. However, for
d = 3 we have the following.
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Proposition 5. 2 For three-dimensional permutation matrices we have the
following upper bound

c(n, 3)^n!. 2('?1)-1

The number sequence c(n, 3) starts: 1,5,70,2167,...
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Figure 1: The poset '^3, 3 of the generalized 3 x 3 x 3-permutation matrices.
The empty circles, crosses, and filled circles signify dots in the first, second,
and third layer respectively. The edges in the middle were too many to be
drawn conveniently.
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(1. 1. 1, 1)
(2, 2, 2,2)

(1, 1, 1,2) (2, 1, 1, 1) (1.2, 1, 1) (1, 1,2, 1) (1, 1,2,2) (2, 1,2, 1) (2, 1, 1,2)
(2, 2,2, 1) (1, 2.2.2) (2, 1,2,2) (2,2, 1,2) (2, 2, 1, 1) (1,2. 1,2) (1,2,2, 1)

(1. 1,2,2) (2, 2, 1, 1)
(2,2, 1,2) (1,2.2,2)
(2,2,2, 1) (2, 1,2,2)

(1, 2, 1,2)
(2, 1,2,2)
(2, 2.2, 1)

(2, 1,2, 1)
(1, 2, 2,2)
(2,2, 1,2)

(2, 1, 1,2) (1,2,2, 1)
(1.2,2,2) (2, 1,2,2)
(2,2,2, 1) (2,2, 1,2)

(1,2,2,2)
(2, 1.2,2)
(2, 2, 1,2)
(2, 2,2, 1)

Figure 2: The partition lattice of a set of four elements: 772.4-
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