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Abstract. The area+penaeter generating function of directed
colusn-convex polyominoes will be written as a guotient of two
expressions, each of which involves powers of q of all kinds:
positive, zero and negative. The method used in the proof applies
to some other classes of column-convex polyominoes as well.

I* Definitions, conventions and notations

1*1 Directed column-convex polyominoes

Let x=(l, 0), x=(-l, 0), y=(0, l), and y=(0, -l). Suppose we

have paths TT^ and "_ such that:

i) n lies in <x, y> starts with an x-step, and ends with a

y-step;

22; ". lies in <x, y, y> has no factors yy or yy, starts

with a y-step, and ends with an x-step,

iii) n and "^ have the same origin and the same terminus,

but are internally disjoint.

Let P be the plane figure bounded by " and " . The figure P is
called a directed coluan-convex polyoinino (dcc-polyoaino, Fig. 1,

lower border and the upper

part of P

ends of

left). The paths n, and n^ are the
.
th

border of P, respectively. The i~" column of P is the

that lies between the vertical lines passing through the

the j"" x-step of " . We denote the minimal and the maximal
ordinate of the F" column of P by y, (P) and Y;(P), respectively.

If no ambiguity need. be feared, we suppress the "(P)"

column of P by y, (P) and

and simply

write y; and Y;.

Let P be a dcc-polyomino. If the boundary of P consists of j

horizontal steps and k vertical steps, we say that the horizontal
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and vertical perimeters of P are j and k respectively, and we
write h(P)=j, v(P)=A. If the upper border of P has m nonempty
downward segments, P then has a descents, and this is written
d(P)=20. If the area of P is n, we write a(P)=7?.

For 0 a family of dcc-polyominoes, we define the generating
function (gf) of 0 to be the formal sum

SfW= E ^h<pyv<pqa<p> .
pen

The case y=l of gf(n) is the area gf of n, denoted by agf(O),
We denote the set of all dcc-polyominoes by <T, and we put

v=gf(r).

1. 8 Lattice paths

Let V be the set of the paths on the step-set <x, y, y> which
begin on the x-axis and have no factors yy or yy

Let we<v. if |y|^=/7, then y has a unique factorization

w= u^-x-u^-x---u_-x-u__ ,
1 -2 ~ ~n '" "n+1 '

where u^ .Cy^u<y>- , for every i. We call the paths y, nests of
y. Clearly enough, by the odd nests of y we mean the nests u,, u_,
"g,... , while by the even nests of w we mean the nests u^, u

2 ^

u^, . . . . An x-step of w is odd (resp. eve/?) when it comes after an
odd (resp. even) nest of w. The rank of w (denoted r(y)) is
defined to be the ordinate of the terminus of w. We write a. (iy)
(resp. a^(y)) for the sum of the ordinates of the odd (resp. even)
x-steps of w. Finally, with y^V we associate two generating func-
tions, gf^(JP) and gf^(^), defined by

<xVqnt2> gf, (^)= \<^y: 1^1^,, |A. |^|^_=J, a, (^)=/7, r(AT)=^|,
y

. <xVqntz> gf^(^)= \<^y: 1^1^,, |^|^|^_^-, a, (^)=/7, r(>.)=^|.
y

(The symbol <u"> f(u) means the coefficient of uk in f(u).)

I \
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1. 3 Notations for products

Assuming from now on any empty product to be one, we write

(a)^= n(l-aq')
I =0

(^ [N^) ; [". ]- «3n-j+l),
-7qTT (/7, J lN^) ;

hcn:l(x)= nh(qlx)
». =0

(/7 lN^, h a formal power series) .

The second one of the above three items are the q-binomial
coefficients or Gaussian polynomials.

2. Introduction

The model of a self-avoiding polygon (SAP) on the step-set
<x, x, y, y^ has its origins in various physical and chemical con-

texts. The things that would be most interesting to know about

SAP'S are: what is the number of SAP'S whose perimeter is p, or

the number whose area is n, or the number whose perimeter is p and

area is n. But these questions are all open, and there are little

chances to answer any of them in the near future.

Hoping to get insight into the above-mentioned difficult

problems, scientists started studying various simplified, but

still nontrivial SAP models. Such models proved to be a rich vein

of appealing exact results. Here we shall recall only the neoes-

sary minimum of those results; for a comprehensive survey we refer
the reader e. g. to Viennot C153.

So, the number of dcc-polyominoes of area n is the Fibonacci

number F (Delest and Dulucq C63).

The number of dcc-polyominoes with c columns, 2v vertical

edges and d descents is -^-[ 5 j [^] [^^-1] (Fereti6 C83;
cf. I:63). The gf for these numbers is algebraic of degree three.

The gf for dcc-polyominoes is given by
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^ x2n(y2 -l)n-lqn<n+l>/2

V= y2 - "^ <q)"-(y2 q)-(y2 q)"

1- ^ x2n(y2 -l)n-lqn<n'1^2
"^ «3)n(y2 q)n-, (y2 <3),

(1)

Formula (1) is due to Bousquet-M^lou 1:23.

A nice feature of the method which produced formula (1) is
its wide range of applicability. Indeed, besides the dcc-polyo-
minoes, that method can handle e. g. stack, parallelogram, directed

and convex, convex, and column-convex polyoiainoes (see [2, 3, 93)
The same is true of the q-counting method that will be presented
here. So this paper is, in fact, the first illustration of a
certain fairly versatile approach. On this occasion, it seemed us

appropriate to tackle the dcc-polyominoes, because they are not
too complicated, and are also not too simple or over-studied

The basic idea of our method is to combine Delest's C53

coding for column-convex polyominoes with a factorization of lat-

tice paths used in Gessel 1:103. It should be mentioned, however,
that the formulas obtained in this way are somewhat different from
those derived in 1:2, 3, 93. Namely, whereas those "old" formulas
involve only positive and zero powers of q, in our formulas
negative powers of q are present too.

3. A coding for dcc-polyominoes

.^

The first step of our method is to encode the dcc-polyo-
minoes.

Let ;pevri be the set of dcc-polyominoes which have c columns,
Zv vertical edges and area n. With Pe^__ we associate a path
<o(P) <r which

i) starts and ends on the x-axis, and

ii) has 2c-l x-steps, whose ordinates are, from left to
right,

Y,-y,, Y^-y,, Y,-y,, Y,-y,, ... , Y,-y^. (2)
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(See Fig. 1 for an example.)

On account of the geometry of dcc-polyominoes, the numbers

in (2) are all positive, which means that the internal vertices of

f>(. P) all lie in the half-plane y>0. Next, since y, $ y^ y^ ...
each even x-step of <o(P) stands on the sane or lower level than

the last x-step before it. Hence the even nests of ^>(P) all lie in

<y> . Further, the first differences of the sequence (2) are

y^-Yz' Y2~Yi' 72~y3 ' ... ' Yc~Yc-i' The absolute values of these

differences are the lengths of the internal nests of ^>(P). Thus

1^(P)1. +I^P)1_ = (3)

=(Y,-y, ) + |y,-vJ + IY^-YJ + |y,-yj + ... + IY^-Y^J + (Y^-y^)

But the sum in the second row of (3) is nothing other than

the vertical perimeter of P, and thus |^(P) )"+|^>(P) | = 2v. Fur-
y - .^

ther, it is obvious that the ordinates of the odd x-steps of ^>(P)
sum up to the area of P, i. e. to n.

Let S^^ be the set of those »etv which meet the following
conditions:

i} the origin and terminusof w are on the x-axis, and

all the internal vertices of w lie in the half-plane y>0,

ii) all even nests of w lie in <y>"' ,

ill} |y|^= 2c-l,

y} a (y)= is.

iv) \w\^\w\_^ 2v,,

y . ,^

We have shown that <p maps the set ^__. _ into « . What is
cvn cvn

more, this mapping is readily seen to be a bijection. Let

^= u »_.. _ .
0 c. v:nSlcvn

(The family 8 consists of those w^cv which possess the properties
i}Siii} and have an odd number of x-steps. ) For all c, v, neW we have

<x2cy2vqn> V= <x2c-ly2vqn> gf^(^) ,

which means that V= x-gf^(^) . (4)
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n,
w=(p(P)

7C,

h(P)=8, v(P)=18,
a(P)=13. d(P)=2

lw|,=7.
|w|y+|w|y=18,

a, (w)=13

Figure 1. A dcc-polyoinino P and its code

I I

y=-6
7"

\
y=-2

^

from L to N: u  c^, with a,(u)=5

from L to M: ve ̂ , with a,(v)= -7 from M to N: ze <^, with a, (z)=12

Figure 2. A path ue. 0^ has a unique factorization u=vz, where ve^, and z6<^,
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4. A factorization of lattice paths

It turns out advantageous to regard the paths of «^ as right
factors of certain other lattice paths. The relevant definitions
follow.

Let ^f be the set of those uecw which possess the properties:

1} \u\^ is a nonzero even number,
ii) the odd nests of u lie in <y> ,
ill) the last (odd) nest of u is nonempty.

Let ^ =<u jtf: r(u)=0>.

Further, let £ be the set of those ve'V which possess the
properties:

-i} \v\ is an odd number,
11} the odd nests of y lie in <y^",

ill) the last (even) nest of v lies in <y) .

Let £=<. veS: r(v~)=0^.

Now, let ue^if Consider the factorization u=vz, where v is
the longest among such left factors of u which are different from

u and have rank zero. A little thought shows that here we have

veS^ and ^ 8 Evidently,

lulx =lylx +l^lx and l"ly+l"l_= (|^ly+l^l_) + (|^|^|^|_) .
y ' y ' y

Since |v|^ is an odd number, the odd x-steps of z are even x-steps
of u, and consequently a^(u)=a^( y)+a (^). Furthermore, the fac-
torization just described is actually a bijection between ^". and

the cartesian product S^x'6^. (See Fig. 2.)
Putting these remarks together, we find

gf, (^)=gf, (^)-gf, (^) (5)

From (4) and (5) it follows that

V= x ^<^0>
gf, (^)

(6)
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5. Computations

As we see, now we need to compute the functions gf^(^) and

gf2(;8o)- A good way to do that is fco compute gf^(^) and gf (S)
first, and then read off the coefficients of t°.

In what follows, for k a negative integer, we write y to
mean y .

Now, the family ^ consists of all paths of the form

u= y lx-y 2x-y 3x-y 4x. . . y 2i-lx-y"2x .y"21'1 ,

with jelN, the odd-indexed n's up through n^ ^ nonpositive, /?.
2«.-1 -----^-----. <-, 2i*l

negative, and the even-indexed n's arbitrary integers
It is easy to see that for such a u we have

a^(u)= i-^+ j-77^+ (i-l)-/7g+ (i-l)-^+ ... + ^^+ n

ef,«.». x2l. <yl"ll, iVl ). <yl"'l, iV'>.

. <yl"'l.<i-"\"9). (.
lnJ, Ii-"V<>...

... (y'"2i-J. n2t-ltn-l). (yl''-l, "-t"-). (yl"-ltn- /

Now we sum this latter equation over i>.l and over all legal
values of ^>-.. >^^- Using the evaluation

Z ylntqlcntn =
neZ

1-y'

(l-yq~kt-l)-(l-yqkt)

which is valid for every keR, we find that

fif-(^)= Z X2l(l:y2)lyt-l
'2^/~ i^ <a\<b). <b)i.. '

where a= yqt and b= yq~''t . In order to expand gf, (^) in a
series in powers of t, next we apply the familiar identity
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[n+r-l~\. _r
^Mo F^J'0'trl] (/3 lN), (7)

the proof of which can be found e. g. in CIS, p. 18, Ex. 33. The re-
suit is

St,^)- E [J^:-l][-i^-l][-''^]x2 l(l-y2 )iy^1^ -Kk+D+j^ j-k-l-l

i. ^1
J. k. lSo

Finally, we take the coefficient of tv to find that

gf^^o)= ^ X2l(
i. jSl

l-y2 )ly2 jg"j-ii[J+J-1] .JE'[j^-1] [2+J;*-1] <8)

The function gf^(^) is found in much the same way as2X "0

6f<,(^)» so we omit the derivation and merely state that2% 0 ^
.(9)

^<2o>= -^ \>^, ^x2i<l-^^2j^tj[y] . iJ'T1] [2TA]
Ll-y~ i-Si. jSo L ^ j k=o

6. The theorem

Combining (6), (8) and (9), we establish our main result:

Theorem 1. The generating function for dco-polyoninoes is
given by

^
(10)

v= i"jsl
E x2l(l-y2) t^j^. j-tj^-ljj-i. j [i+j-1^ . .',-1 Fi^-ll [i-f-j-k-l

i-oL *k=0
L] [J+JJ*-1]

^T+ , Z, x2i(l-y2 )ly2 jq-ijp^1. Z PTlir2 TA1
i-y" tSi7jSo ' ' ' ~ LJJkr"ol-A'-!L-1

J

Comparison of the formulas (1) and (10) is now in order.

First, we must confess that there is one nice property of formula

(1) which formula (10) does not share. Namely, in (1) we can put

y=l to find that the area gf of dcc-polyominoes is given by
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agf(T)= X~<3<1-<3>
(l-q)2-X2q .

In contrast to that, we cannot put y=l in (10), because the numer-
ator, and so too the denominator, would no longer formally con-
verge. In other respects, however, it seems that (10) can bear
comparison with its rival formula (1). In fact, in view of the
identity (7), it might be said that the numerator (resp. denomi-
nator) of (10) virtually involves one sumnation less than the
upper (resp. lower) two floors of (1).

. We have not attempted to give an independent (no-polyomi-
noes) proof that the right sides of (1) and (10) are the same,
However, we think that such an attempt would have good chances of
success, especially in view of the possibility to consult the

now-known similar proofs for parallelogram polyominoes.

7. Applications to other models

As we have said, besides dcc-polyominoes, there are also
some other models to which our method applies. Here are two exam-
pies.

7. 1 Parallelogram polyominoes

Let P be the gf of parallelogram polyominoes. Our method

gives the formula p= 4
c (11)

where A= E |i^-l||^J-l1x2ty2 Jql+j-ij
i. j=l

and c=. E. f^Jimx2iyv
i., j=0 L -k JL*/ J
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It is not difficult to show that (11) implies the related
results of P61ya C143 and Gessel C10, Proposition 11. 13, and that
(11) is equivalent to the result of the exercise 5. 5. 2. b} in
Goulden and Jackson C113.

Bousquet-M^lou and Viennot C43 obtained two formulas for P
which (unlike (11)) do not involve negative powers of q. One of
those formulas generalizes earlier results due to Klarner and
Rivest C123, and to Delest and F^dou C73.

7. 2 Directed convex polyominoes

Let K be the gf of directed convex polyominoes. Our method

finds the formula A+B
K= --^ ^ (12)

where
00

B= E
i. j=2 k

i-1 j-1

i l[^~l][JT][l^'-i-ZVw i+j-kl

while A and C are as in (11). Note that the knowledge of (12)
enables everybody (whether he know or not where does the function

K come from) to prove it easily that K is symmetric in x and y.
(Let B be the expression B with the variables x and y
We can convert B into B, and so too B' into B, by
interchanges of indices: i<->j and k<^ 7.)

Once more, our formula has a different-looking
it is Bousquet-M61ou and Viennot's C43 formula for K,

exchanged.

doing two

precursor:

which in-

volves nonnegative powers of q only. Incidentally, the formula of
C43 was elegantly rederived in the lafer-day papers C2, 33.
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