EXTREMAL PROPERTIES OF h-VECTORS AND HILBERT FUNCTIONS

Vesselin Gasharov

We focus on a topic which is on the crossroad between combinatorics and commutative algebra, namely f-vectors of simplicial complexes and h-vectors of multicomplexes on the combinatorial side, and Hilbert functions on the commutative algebra side.

First we recall the definitions of the lexicographic, antilexicographic, and reverse lexicographic orders. Let n be a fixed positive integer and $S^{(d)}$ the set of all d-element subsets of $\{1,2, \ldots, n\}$. The lexicographic order \mathcal{L} on $S^{(d)}$ is defined by:

$$
A<_{\mathcal{L}} B \text { if and only if the smallest element of }(A \cup B) \backslash(A \cap B) \text { is in } A .
$$

If we reverse the ordering of $1,2, \ldots, n$ we obtain the antilexicographic order \mathcal{A} :

$$
A<_{\mathcal{A}} B \text { if and only if the largest element of }(A \cup B) \backslash(A \cap B) \text { is in } A .
$$

The reverse lexicographic order (or rev-lex order) \mathcal{R} is the reverse of the antilexicographic order, i.e.,

$$
A<_{\mathcal{R}} B \text { if and only if the largest element of }(A \cup B) \backslash(A \cap B) \text { is in } B .
$$

All definitions above generalize in a straightforward manner to multisets.
It is well known and not hard to prove that every positive integer a can be written uniquely in the form:

$$
a=\binom{m_{d}}{d}+\binom{m_{d-1}}{d-1}+\cdots+\binom{m_{\delta}}{\delta},
$$

where $m_{d}>m_{d-1}>\cdots>m_{\delta} \geq \delta \geq 1$. This is called the d-binomial representation of a and $m_{d}, m_{d-1}, \ldots, m_{\delta}$ are called the d-binomial coefficients of a. Denote by $S_{a}^{(d)}$ the initial rev-lex segment of $S^{(d)}$ with cardinality a, i.e., the first a elements of $S^{(d)}$ with respect to the rev-lex order. We can describe $S_{a}^{(d)}$ as follows:
$S_{\binom{m_{d}}{d}}^{(d)}$ consists of the d-element subsets of $\left\{1,2, \ldots, m_{d}\right\}$,
$S_{\binom{m_{d}}{d}+\binom{m_{d-1}}{d=1}}^{(d)} \backslash S_{\binom{m_{d}}{d}}^{(d)}$ consists of the sets formed by adding $m_{d}+1$ to the $(d-1)$-element subsets of $\left\{1,2, \ldots, m_{d-1}\right\}$,
$S_{\binom{m_{d}}{d}+\binom{m_{d-1}}{d-1}+\binom{m_{d-2}}{d-2}} \backslash S_{\binom{m_{d}}{d}+\binom{m_{d-1}}{d-1}}^{(d)}$ consists of the sets formed by adding $\left\{m_{d-1}+1, m_{d}+\right.$ $1\}$ to the $(d-2)$-element subsets of $\left\{1,2, \ldots, m_{d-2}\right\}$, etc.

If F is a family of d-element sets, denote by ΔF the family of $(d-1)$-element sets which are subsets of members of F. ¿From the above description of $S_{a}^{(d)}$ it follows that

$$
\Delta S_{a}^{(d)}=S_{b}^{(d-1)}
$$

where $b=\binom{m_{d}}{d-1}+\binom{m_{d-1}}{d-2}+\cdots+\binom{m_{\sigma}}{\delta-1}$.
We generalize this to multisets:
Denote by $M^{(d)}$ the set of d-element multisets on $\{1,2, \ldots, n\}$ and by $M_{a}^{(d)}$ the initial rev-lex segment of $M^{(d)}$ with cardinality a. If F is a family of d-element multisets, denote by ΔF the family of $(d-1)$-element multisets which are submultisets of members of F. Then:
$M_{\binom{m_{d}}{d}}^{(d)}$ consists of the d-element multisets on $\left\{1,2, \ldots, m_{d}-d+1\right\}$,
 $(d-1)$-element multisets on $\left\{1,2, \ldots, m_{d-1}-d+2\right\}$,
$M_{\binom{m_{d}}{d}+\binom{m_{d-1}}{d-1}+\binom{m_{d-2}}{d-2}} \backslash M_{\binom{m_{d}}{d}+\binom{m_{d-1}}{d-1}}^{(d)}$ consists of the multisets formed by adding $\left\{m_{d-1}-\right.$ $\left.d+3, m_{d}-d+2\right\}$ to the $(d-2)$-element subsets of $\left\{1,2, \ldots, m_{d-2}-d+3\right\}$, etc.

This shows that

$$
\Delta M_{a}^{(d)}=M_{c}^{(d-1)},
$$

where $c=\binom{m_{d}-1}{d-1}+\binom{m_{d-1}-1}{d-2}+\cdots+\binom{m_{\delta}-1}{\delta-1}$.
If $a=\binom{m_{d}}{d}+\binom{m_{d-1}}{d-1}+\cdots+\binom{m_{\delta}}{\delta}$, then we denote

$$
a^{(d)}=\binom{m_{d}}{d+1}+\binom{m_{d-1}}{d}+\cdots+\binom{m_{\delta}}{\delta+1}
$$

and

$$
a^{\langle d\rangle}=\binom{m_{d}+1}{d+1}+\binom{m_{d-1}+1}{d}+\cdots+\binom{m_{\delta}+1}{\delta+1}
$$

so we have:

$$
\left|S_{a}^{(d)}\right| \leq\left|\Delta S_{a}^{(d)}\right|^{(d-1)} \quad \text { and }\left|M_{a}^{(d)}\right| \leq\left|\Delta M_{a}^{(d)}\right|^{(d-1\rangle}
$$

Kruskal and Katona, and Macaulay proved the remarkable results that the above inequalities generalize to arbitrary subsets of $S^{(d)}$ or $M^{(d)}$:

Theorem(Kruskal-Katona). Let $F \subseteq S^{(d)}$. Then $|F| \leq|\Delta F|^{(d-1)}$.

Theorem(Macaulay). Let $F \subseteq M^{(d)}$. Then $|F| \leq|\Delta F|^{\langle d-1\rangle}$.
We can reformulate these theorems in terms of f-vectors of simplicial complexes and h-vectors of multicomplexes (see [7, p.55]) as follows:

Theorem. A vector $\left(f_{0}, f_{1}, \ldots, f_{d-1}\right) \in \mathbb{Z}_{+}^{d}$ is the f-vector of a simplicial complex if and only if

$$
f_{i+1} \leq f_{i}^{(i)}
$$

for $0 \leq i \leq d-2$.
Theorem. A vector (h_{0}, h_{1}, \ldots) of nonnegative integers is the h-vector of a multicomplex if and only if $h_{0}=1$ and

$$
h_{i+1} \leq h_{i}^{\langle i\rangle}
$$

for $i \geq 1$.
There are obvious bijections between $S^{(d)}$ and squarefree monomials in n variables, say x_{1}, \ldots, x_{n}, and $M^{(d)}$ and ordinary monomials in x_{1}, \ldots, x_{n}. Fix a field k and denote by Q_{d} and R_{d} the k-vector spaces of monomials of degree d in x_{1}, \ldots, x_{n} and squarefree monomials of degree d in x_{1}, \ldots, x_{n}, respectively. Let V (resp. W) be a subspace of Q_{d} (resp. R_{d}) and denote by V_{1} (resp. W_{1}) the subspaces of Q_{d+1} (resp. R_{d+1}) generated by all polynomials of degree $d+1$ (resp. squarefree polynomials of degree $d+1$) which are divisible by at least one polynomial in V (resp. W). We write $V_{1}=V Q_{1}$ and $W_{1}=W R_{1}$. It is well known (see [6, Theorem 2.1] for example) that there exist subspaces $\tilde{V} \subseteq Q_{d}, \tilde{V}_{1} \subseteq Q_{d+1}, \tilde{W} \subseteq R_{d}$, and $\tilde{W}_{1} \subseteq R_{d+1}$ generated by monomials and satisfying the following 2 conditions:
(1) $V \oplus \tilde{V}=Q_{d}, V_{1} \oplus \tilde{V}_{1}=Q_{d+1}, W \oplus \tilde{W}=R_{d}$, and $W_{1} \oplus \tilde{W}_{1}=R_{d+1}$;
(2) All monomials in Q_{d} (resp. R_{d}) which divide a monomial in \tilde{V}_{1} (resp. \tilde{W}_{1}) are in \bar{V} (resp. \bar{W}).
By the theorems of Macaulay and Kruskal-Katona we see that $\left|\bar{V}_{1}\right| \leq|\bar{V}|^{\langle d\rangle}$ and $\left|\bar{W}_{1}\right| \leq$ $|\bar{W}|^{(d)}$. Equivalently, we can restate these inequalities as follows:

Theorem. Let V, V_{1}, W, and W_{1} be as above. Then

$$
\operatorname{codim}\left(V_{1}, Q_{d+1}\right) \leq \operatorname{codim}\left(V, Q_{d}\right)^{\langle d\rangle}
$$

and

$$
\operatorname{codim}\left(W_{1}, R_{d+1}\right) \leq \operatorname{codim}\left(W, R_{d}\right)^{(d)}
$$

A natural question to ask is what can be said about the vector spaces V which achieve Macaulay's bound, i.e.,

$$
\operatorname{codim}\left(V_{1}, Q_{d+1}\right)=\operatorname{codim}\left(V, Q_{d}\right)^{\langle d\rangle}
$$

One important result in this direction was obtained by Gotzmann:

Gotzmann Persistence Theorem. Let V and V_{1} be as above and V_{2} be the subspace of Q_{d+2} generated by all polynomials of degree $d+2$ which are divisible by at least one polynomial in V, i.e., $V_{2}=V Q_{2}$. If $\operatorname{codim}\left(V_{1}, Q_{d+1}\right)=\operatorname{codim}\left(V, Q_{d}\right)^{\langle d\rangle}$, then

$$
\operatorname{codim}\left(V_{2}, Q_{d+2}\right)=\operatorname{codim}\left(V_{1}, Q_{d+1}\right)^{\langle d+1\rangle}
$$

Definition. If $\operatorname{codim}\left(V_{1}, Q_{d+1}\right)=\operatorname{codim}\left(V, Q_{d}\right)^{\langle d\rangle}$, then V is called a Gotzmann vector space.

We show that a "reverse" version of Gotzmann Persistence Theorem also holds:
Theorem. Let $V \subseteq Q_{d}$ be a Gotzmann vector space and let the d-binomial expansion of $c=\operatorname{codim}\left(V, S_{d}\right)$ be $c=\binom{m_{d}}{d}+\binom{m_{d-1}}{d-1}+\cdots+\binom{m_{\delta}}{\delta}$ with $\delta>1$. Let V_{-1} be the vector space generated by all polynomials p in Q_{d-1}, such that $p x_{1}, p x_{2}, \ldots, p x_{n}$ are in V. Then $V=$ $V_{-1} Q_{1}$ and V_{-1} is a Gotzmann vector space with $\operatorname{codim}\left(V_{-1}, Q_{d-1}\right)=\binom{m_{d}-1}{d-1}+\binom{m_{d-1}-1}{d-2}+$ $\cdots+\binom{m_{\delta}-1}{\delta-1}$.

For any vector space $U \subseteq Q_{d}$, there exists a number $r \in \mathbb{Z}_{+}$such that $U Q_{s} \subseteq Q_{d+s}$ is a Gotzmann vector space for all $s \geq r$. This shows that in general we cannot say much about the structure of Gotzmann vector spaces. However, in some cases we can completely determine their structure:

Theorem. Let $V \subseteq Q_{d}$ be a Gotzmann vector space and let the d-binomial expansion of $c=\operatorname{codim}\left(V, S_{d}\right)$ be $c=\binom{a+d}{d}+\binom{a+d-1}{d-1}+\cdots+\binom{a+2}{2}+\binom{b+1}{1}$ for some $a \geq b \geq 0$. Then there exists a vector space $L \subseteq Q_{1}$ with $\operatorname{dim} L=n-a-2$ and one of the following is satisfied:
(1) If $a>b$, then there exists a vector space $K \subseteq Q_{1}$ with $L \cap K=0$ and an element $h \in Q_{d-1} \backslash L Q_{d-2}$ such that $\operatorname{dim} K=a-b+1$ and $V=L Q_{d-1}+h K$.
(2) If $a=b$, then there exists an element $f \in Q_{d} \backslash L Q_{d-1}$ such that $V=L Q_{d-1}+\operatorname{span}(f)$.

The special case $a=b$ of the previous theorem was first proved by Green [3, Theorem 4].
Let $\bar{M}_{m}^{(d)}$ be the set of elements of $M_{m}^{(d)}$ not containing 1 . ¿From the description of $M_{m}^{(d)}$ we see that

$$
\left|\bar{M}_{m}^{(d)}\right|=\binom{m_{d}-1}{d}+\binom{m_{d-1}-1}{d-1}+\cdots+\binom{m_{\delta}-1}{\delta}
$$

This observation was generalized by Green [3, Theorem 1] as follows. We will say that some property P is true for a general element of a vector space L if there exists a dense open subset $U \subseteq L$, such that P is true for all elements of U. An element of U is called a general element.

Theorem (Mark Green). Let $V \subseteq Q_{d}$ be a vector space of codimension c. Let x be a general element of Q_{1} and \bar{V} be the image of V under the projection $Q_{d} \rightarrow \bar{Q}_{d}=Q /(x)$. Let $c_{x}=\operatorname{codim}\left(\bar{V}, \bar{S}_{d}\right)$. Then $c_{x} \leq c_{\langle d\rangle}$.

Definition. In the situation of the previous theorem, if $c_{x}=c_{\langle d\rangle}$, then V is called a Green vector space.

We show that there is a persistence theorem for Green vector spaces:
Theorem. Let $V \subseteq Q_{d}$ be a Green vector space. Let x and y be general elements of Q_{1} and let $\overline{\bar{V}}$ be the image of V under the projection $Q_{d} \rightarrow \overline{\bar{Q}}_{d}=Q_{d} /\left(x Q_{d-1}+y Q_{d-1}\right)$. Let $c_{x, y}=\operatorname{codim}\left(\overline{\bar{V}}, \overline{\bar{Q}}_{d}\right)$. If $c=\binom{m_{d}}{d}+\binom{m_{d-1}}{d-1}+\cdots+\binom{m_{1}}{1}$ with $m_{1} \neq 1$, then

$$
c_{x, y}=\left(c_{x}\right)_{\langle d\rangle} .
$$

References

1. G. Clements and B. Lindström, A generalization of a combinatorial theorem of Macaulay, J. Combinatorial theory 7 (1969), 230-238.
2. G. Gotzmann, Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z. 158 (1978), 61-70.
3. M. Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, Algebraic curves and projective geometry (E. Ballico and C. Ciliberto, eds.), LNM, vol. 1389, Springer, 1989, pp. 76-86.
4. C. Greene and D.J. Kleitman, Proof techniques in the theory of finite sets, Studies in Combinatorics (G.-C. Rota, ed.), Mathematical Association of America, 1978, pp. 22-79.
5. F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. Lond. Math. Soc. 26 (1927), 531-555.
6. R. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83.
7. \qquad Combinatorics and commutative algebra, second edition, Birkhäuser, 1996.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1003
E-mail address: gasharov@math.lsa.umich.edu

