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We focus on a topic which is on the crossroad between combinatorics and coniinutative
algebra, namely /-vectors of sunplicial complexes and fc-vectors of multicomplexes on the
combinatorial side, and Hilbert functions on the commutative algebra side.

First we recall the defimtions of the lexicographic, antilexicographic, £tnd reverse lexico-
graphic orders. Let n be a fixed positive integer and S(d) the set of all (f-element subsets of
{1, 2,... ,n}. The lexicograpbic order C on S(d) is defined by:

A<£, B it and only if the smallest element of (A UB) \ (An B) is in A.

If we reverse the ordering of 1, 2,... , n we obtain the antilejdcograpbic order A:

A <^ B ifand only if the largest element of (A U5) \ (An B) is in A.

The reverse lexicograpbic order (or rev-lex order) K is the reverse of the antilexicographic
order, i.e.,

A <% 5 ifand only if the largest element of (AU 5) \ (An B) is m B.

All definitions above generalize in a straightforward manner to multisets.
It is well known and not haxd to prove that every positive integer a can be written

uniquely m the form.:

a=(T)-(:d-0+-+(7)-
where m^ > md-i > ... > ms>8 >1. This is called the d-binomial representation of a
and md, m<i-i,... ,mg are called the d-binomial coefEcients of a. Denote by 5^ ; the initial
rev-lex segment of S(d) with cardinality a, i.e., the first a elements of S(d) with respect to
the rev-lex order. We can describe S^ as follows:

S'jl^ consists of the d-element subsets of {1, 2,.. . , md},
d'

s(^<i\^f"d-i\ \ s((^<i\ consists of the sets formed by adding m<i +1 to the (d - l)-element
dd)+[ d-1 ) {d

subsets of {1, 2,... , md-i},

199



r

?(d) ?(rf)s('"d\^fn'd-i\^. f"d-2\\sf'ni\^("'d--t\ consists of the sets formed by adding {md-i+l, md+
d~)'T\. d-1 }~r\ d-2 ) \ d~}~r\ d-l

1} to the (d - 2)-element subsets of {1, 2,..., m^-z}, etc.

]£ F is a. fajnily of (f-element sets, denote by AF the fanuly of (d - l)-element sets which
zire subsets of members of F. ^From the above description of 5^ it follows that

A5id ) 
= Sid-l\

where b = (^) + (^) + ... + (^).
We generalize this to raultisets:

Denote by M^ the set of d-element multisets on {l, 2,..., n} and by M^ the initial
rev-lex segment of M(- ^ with cardinality a. If I7' is a family of (f-element multisets, denote
by AJF' the family of (d - l)-element multisets which are submultisets of members of F.
Then:

M}, ^^ consists of the (f-element midtisets on {l, 2,..., md-<f+l),
<. d"

r(d) r(d)

1-

^fmd\j. fmd-i\ \ ^f">d\ conslSts °f the multisets formed by adding md - d+ 2 to the
d )+[ d-1 ) (.d

(d - l)-element midtisets on {1, 2,... , md-i - d+ 2},

M(d"d\M(md-i\j. fm't-^\Mfmd\j. ('"d-i\ consists of the multisets formed by addmg {m^-]
d /~r\ d-t }~r\ d-2 ; V d }~r\ d-1

d + 3, m. d -4+2} to the {d - 2)-element subsets of {1, 2,..., m^-z - <f + 3}, etc.
This shows that

AM^ = M^-1),

where c = (7_1) + (m^-1) + ... + (7_^).
If a = (m/) + (7_-, 1) + ... + (7), then we denote

a(d) = C:\) ^ (T) - C:\)

aw=(ril)^(^+l)-(m^1).
and

so we have:

|5^| ^ |A5^|(d-1) and |M^| < |AM^|<d-l\

Kruskal and Katona, and Macaulay proved the remarkable results that the above inequal-
ities generalize to arbitrary subsets of S^ or AI^:

Theorem(Kruskal-Katona). Let F C S^. Then |F| ̂  \AF\(d-l\
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Theorem(MacauIay). Let F C M^. Then \F\ < |AF|<d-l>.

We can reformulate these theorems ui terms of /-vectors of simplicial complexes and
^-vectors of multicomplexes (see [7, p.55]) as follows:

Theorem. A vector (/o, /i,..., /d-i)   Z^. M <Ae f-vector of a simplicial complex if and
only if

f^ ̂  fw
for0<:i<:d-2.

Theorem. A vector {he, hi,... ) of nonnegative integers is the h-vector of a multicomplex
if and only if hy = 1 and

fc.+l ̂  ^<l>

for i ^ 1.

There are obvious bijections between S(d) and squarefree monomials in n variables, say
xi,..., Xn, and M(d) and ordmary monomials in a;i,... , a;n. Fix a field k and denote by Qd
and Rd the Jb-vector spaces of monomials of degree d'mxi,..., Xn and squarefree monomials
of degree d'mx^,..., a:n, respectively. Let V (resp. W) be a subspace of Qd (resp. Rd) and
denote by Vi (resp. IVi) the subspaces of Qd+i (resp. Rd+i) generated by all polynomials
of degree d+1 (resp. squarefree polynomials of degree d+1) which are divisible by at least
one polynomialm V (resp. W). We write Vi = VQi and Wi = WJZi. It is well known (see
[6, Theorem 2.1] for example) that there exist subspaces V C Qd, Vi C Q^+i, W C, Rd, and
Wi, C Rd+i generated by monomials and satisfying the following 2 conditions:

(1) V@V= Qd, Vi ® Vi = Qd+i, W®VT = Ad, and TVi © Wi = Rd+i;
(2) All monomials in Qd (resp. Rd) which divide a monomial in Vi (resp. VFi) ar? m V

(resp. W).
By the theorems of Macaulay and Kruskal-Katona we see that |Vi| < |V|<d> and |fVi| ^
|W|(d). Eqmvalently, we can restate these mequalities as follows:

Theorem. Let V, Vi, W, and Wi be as above. Then

and

codim(yi, C?d+i) ^ codim(y, Qd)w

codim(T^i, Ad+i) ̂  codim(W, J2d)(d).

A natural question to ask is what can be said about the vector spaces V which achieve
Macaulay's bound, i.e.,

codun(yi, <?d+i) = codim(y, <?d)w.

One important result in this direction was obtamed by Gotzmann:
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Gotzinann Persistence Theorein. Let V and V^ be as above and Vz 6e the subspace
of Qd+2 generated by all polynomials of degree d + 2 which are divisible by at least one
polynomial in V, i. e., V^ = VQz. If codam(V^, Qd+i) = codun(V, <5d)^, then

codim(y2, <?d+2) = codim(yi, Qd+i)<d+l>.

Definition. If codim(V-i, Qd+i) = codim(V, (?(f)^, then V is called a Gotzmann vector
space.

We show that a "reverse" version of Gotzmann Persistence Theorem also holds:

Theorein. Let V CQd be a Gotzmann vector space and let the d-binomial expansion of
c = codim(y, 5d) 6e c = (^d) + (^) + ... + (7) wi(A ̂ > 1. Let V-i ie fAe uecfor space
generated by all polynomials p in Qd-i, such that pxi, px^,... , pXn are in V. Then V =

V-iOi and y_i M a Gotzmann vector space with codim(V-^, Qd-i) = ("^l.'i1) + (mdd~_l2-l) +
... +(T-',1).

For any vector space !7 C Q^, there exists a number r   Z+ such that UQs C Qd+a is
a Gotzmajm vector space for all 5 ^ r. This shows that in general we cannot say much
about the structure of Gotzmaim vector spaces. However, in some cases we can completely
determine their structure:

Theoreni. Let V CQd be a Gotzmann vector space and let the d-binomial expansion of
c = codim(y, Sd) be c = (a^) + (a^1) + . . . + (a^"2) + (6tl ) /or some a^b^O. Then there

exists a vector space 2/ C Qi with dim Z = n - a-2 and one of the following is satisfied:

(1) If a > b, then there exists a vector space A" C Qi with L(~\ K = Q and an element
h   Qd-i \ LQd-2 such that dun AT = a- 6+ 1 and V = LQd-i + /i^".

(2) If a = b, then there exists an element f   Qd\LQd-\ such that V = LQd-i-}-spa.n.(f).

The special case a = 6 of the previous theorem was first proved by Green [3, Theorem 4].

Let MTn be the set of elements of M^n not containing 1. ^From the description of M^n
we see that

w)i=(m7I )+(m^i'l)+-+(m71 )-
This observation was generalized by Green [3, Theorem 1] as follows. We will say that some
property P is true for a general eleinent of a vector space L if there exists a dense open
subset U C L, such that P is true for all elements of U. An element of U is called a g'eneraJ
element.

Theorein (Mark Green). Let V CQd be a vector space of codimension c. Let x be a
general element of Qi and V be the image of V under the projection Qd ->. Qd = Q/(x)-
Let c-e = codim(y, 5d). TAen Cs <, c^}.
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Definition. In the situation of the previous theorem, if c,; = C(d), then V is called a Green
vector space.

We show that there is a persistence theorem for Green vector spaces:

Theorexn. Let V CQ^ be a Green vector space. Let x and y be general elements of Qi
and let V be the image of V under the projection Q^. -^ Q^= Qd/{xQd-i +yQd-i)- Let

c,,, = codim(V, Qj. J/c = (7) + (7_-,1) +... + (ml) wzfA m, ̂  1, ffeen

Cx,y =(Cl)(d>.
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