EXTREMAL PROPERTIES OF
h-VECTORS AND HILBERT FUNCTIONS

VESSELIN GASHAROV

We focus on a topic which is on the crossroad between combinatorics and commutative
algebra, namely f-vectors of simplicial complexes and h-vectors of multicomplexes on the
combinatorial side, and Hilbert functions on the commutative algebra side.

First we recall the definitions of the lexicographic, antilexicographic, and reverse lexico-
graphic orders. Let n be a fixed positive integer and S (d) the set of all d-element subsets of
{1,2,...,n}. The lexicographic order L on S(4) is defined by:

A <. B if and only if the smallest element of (AUB)\ (AN B)isin A.
If we reverse the ordering of 1,2,...,n we obtain the antilexicographic order A:
A <4 B if and only if the largest element of (AU B) \ (AN B) is in A.

The reverse lexicographic order (or rev-lex order) R is the reverse of the antilexicographic
order, i.e.,

A <z B if and only if the largest element of (A U B) \ (AN B) is in B.

All definitions above generalize in a straightforward manner to multisets.

It is well known and not hard to prove that every positive integer a can be written

uniquely in the form:
= md md—l P m6
= (%) + () (5)

where mg > mg—; > --- > ms > & > 1. This is called the d-binomial representation of a
and mg,mg—1,...,ms are called the d-binomial coefficients of a. Denote by S’.(,d) the initial
rev-lex segment of S(¥) with cardinality a, i.e., the first a elements of § (d) with respect to
the rev-lex order. We can describe Sl(,d) as follows:
5@
(")
g S ey V2 () | consists of the sets formed by adding m4 +1 to the (d — 1)-element
()T ()

subsets of {1,2,...,m4-1},

consists of the d-element subsets of {1,2,...,ma},
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(,,,d)_*_(,.,d 1) (- 2)\.5'(,,,‘1)_*_(,,.., .\ consists of the sets formed by adding {m4—; +1, md+

1} to the (d — 2)-element subsets of {1,2,...,m4_2}, etc.
If F is a family of d-element sets, denote by AF' the family of (d — 1)-element sets which
are subsets of members of F. ;From the above description of 59 it follows that ‘

A8 = sV,

where b= (%) + (345!) +- + (2%
We generalize thJS to multisets:

Denote by M(? the set of d-element multisets on {1,2,...,n} and by Méd) the initial
rev-lex segment of M(%) with cardinality a. If F'is a family of d-element multisets, denote
by AF the family of (d — 1)-element multisets which are submultisets of members of F.

Then:
M ((f,l,)d) consists of the d-element multisets on {1,2,...,mq — d + 1},

M((i)d)+ (mé=1) \ M((f,)d) consists of the multisets formed by adding mgq — d + 2 to the
(d — 1)-element multisets on {1,2,...,mq—1 — d + 2}, _
M((i)d)+(,;d 1) (me=2) \M((:in)a)_,_(maq) consists of the multisets formed by adding {m4—; —
d+ 3,mq — d + 2} to the (d — 2)-element subsets of {1,2,...,m4_» — d + 3}, etc.
This shows that
AM‘Ed) = Méd_l),
where ¢ = m"l) + (™ 1"1) + ol (”“‘1

Ifa= (’"‘) + (m‘ 1) + - (";‘), then we denote

@ ( ™d ) (Md-1) | L ™
= (d+1)+( d )+ +(6+1)

(@ _ mqg+1 mg—1 +1 ms+1
¢ (d+1)+( d Tt s+ )

1S(D| < |ASD|@-D) and |M?D| < |AMD|4-1),

so we have:
Kruskal and Katona, and Macaulay proved the remarkable results that the above inequal-

ities generalize to arbitrary subsets of S(%) or M(4):

Theorem(Kruskal-Katona). Let F C S(9. Then |F| < |AF|(¢-1),
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Theorem(Macaulay). Let F C M. Then |F| < |AF|@-1,

We can reformulate these theorems in terms of f-vectors of simplicial complexes and
h-vectors of multicomplexes (see (7, p.55]) as follows:

Theorem. A vector (fo,.fl,...',fd_l) € Z‘j_ is the f-vector of a simplicial complez if and
only if _

fira < £
for0<i<d—-2.

Theorem. A vector (ho,h1,...) of nonnegative integers is the h-vector of a multicomplez
if and only if hg =1 and .
hip1 < B

for 1 > 1.

There are obvious bijections between S (@) and squarefree monomials in n variables, say
Z1,...,Zn,and M@ and ordinary monomials in z,...,z5. Fix a field k£ and denote by Qq
and R, the k-vector spaces of monomials of degree d in z1,...,Z, and squarefree monomials
of degree d in Z1,...,Zn, respectively. Let V (resp. W) be a subspace of Qg (resp. Rg) and
denote by Vi (resp. W;) the subspaces of Q441 (resp. Ri+1) generated by all polynomials
of degree d + 1 (resp. squarefree polynomials of degree d + 1) which are divisible by at least
one polynomial in V (resp. W). We write V; = VQ; and Wi = WR;. It is well known (see
[6, Theorem 2.1] for example) that there exist subspaces V C Qa4, Vi € Qat1, W C Ry, and
Wi C Ray1 generated by monomials and satisfying the following 2 conditions:

1) VOV =Qa Vi ® Vi = Qas1, W& W = Ry, and Wy & Wi = Rara;

(2) All monomials in Qq (resp. Rg) which divide a monomial in V; (resp. W) argin V
(resp. W).
By the theorems of Macaulay and Kruskal-Katona we see that |V;| < |V|{9) and |W;| <
|W|(4). Equivalently, we can restate these inequalities as follows:

Theorem. Let V, Vi, W, and W, be as above. Then

codim(Vi, Qa+1) < codim(V, Qa)‘¥

and
codim(W;, Rg+1) < codim(W, Rd)(d) .

A natural question to ask is what can be said about the vector spaces V which achieve
Macaulay’s bound, i.e., v

codim(V;, Qa+1) = codim(V, Qd)(d).

One important result in this direction was obtained by Gotzmann:
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Gotzmann Persistence Theorem. Let V and V; be as above and V2 be the subspace
of Qi+2 generated by all polynomials of degree d + 2 which are divisible by at least one
polynomial in V, i.c., V2 = VQs. If codim(V1,Qa+1) = codim(V, Q4)(¥, then

codim(V3, Qu+2) = codim(Vi, Qa41)!4*Y.

Definition. If codim(Vi,Q4+1) = codim(V,Q4)‘?, then V is called a Gotzmann vector
space.

We show that a “reverse” version of Gotzmann Persistence Theorem also holds:

Theorem. Let V C Qg be a Gotzmann vector space and let the d-binomial ezpansion of
¢ = codim(V, Sg) be ¢ = (™) + (Ti7) + - + () with § > 1. Let V_; be the vector space
generated by all polynomzials p in Qq—1, such that pz,,pzs2,...,pz, are in V. Then V =
V_1Q; and V_; is a Gotzmann vector space with codim(V_1,Q4—1) = ";"__11) + (m‘:i‘;12_1) -

- (),

For any vector space U C Qgq, there exists a number r € Z such that UQ, C Q4+, is
a Gotzmann vector space for all s > r. This shows that in general we cannot say much
about the structure of Gotzmann vector spaces. However, in some cases we can completely
determine their structure:

Theorem. Let V C Qg be a Gotzmann vector space and let the d-binomzial ezpansion of
¢ = codim(V, Sg) be c = (a';d) + (a';f;l) 4t (ag-z) -+ (b';l) for some a > b > 0. Then there
ezists a vector space L C Q, with dimL = n — a — 2 and one of the following is satisfied:
(1) If a > b, then there ezists a vector space K C @, with LN K = 0 and an element
h€Qq-1\LQ4—2 such thatdmK =a—-b+1and V =LQ4-1 + kK.
(2) Ifa =b, then there ezists an element f € Q4\LQa—1 such that V = LQ4_1+span(f).

The special case a = b of the previous theorem was first proved by Green (3, Theorem 4].

Let M52 be the set of elements of M not containing 1. ;From the description of M

. we see that ; : i
(D)= (™ Md-1 — . L
o= (") () (M)

This observation was generalized by Green [3, Theorem 1] as follows. We will say that some
property P is true for a general element of a vector space L if there exists a dense open
subset U C L, such that P is true for all elements of U. An element of U is called a general
element.

Theorem (Mark Green)._Let V C Qa be a vector space of codimension c. Let z be a
general element of Q; and V be the image of V under the projection Q4 — Q4 = Q/(z).
Let ¢, = codim(v, S4). Then c; < c(dy-
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Definition. In the situation of the previous theorem, if c; = ¢(q), then V is called a Green
vector space.

We show tha.t there is a persistence theorem for Green vector spaces:

Theorem. Let V C Qq be a Green vector space. Let z and y be general elements of Q1
and let V be the  image of V under the projection Qq — Qd = Qa/(zQd-1 + yQa—1). Let
o cod1m(V Qd) IFe= (") + (570) +--- + () withmy #1, then

cz,y = (€z)(a)-
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