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An Aztec diamond may be defined as the union of those 1-by-l closed
lattice squares that lie completely inside the region {(x, y) : |a;|+|y| ̂  n+1}.
A domino is a l-by-2 rectangle, and a tiling of an Aztec diamond by dominoes
is a collection of dominoes whose interiors are disjoint and whose union is
the Aztec diamond. Figure 1 shows a tiling of an Aztec diamond of order
4 by dominoes. It was shown in [3] that the Aztec diamond of order n has
exactly 2n(n+l)/2 filings by dominoes. In this article, we establish two other
results concerning domino filings of Aztec diamonds.

The first result is a formula governing the number of domino filings of
Aztec diamonds, subject to the constraint that a particular pair of adjacent
lattice squares must be covered by a domino. This formula is expressed
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in terms of a three-variable generating function whose coefficients are the
respective probabilities that a domino tiling, chosen uniformly at random
from the set of all filings of some particular Aztec diamond, contains a domino
covering some particular pair of adjacent lattice squares. We prove that this
generating function is in fact a rational function of its variables.

The second result is a formula (first conjectured by William Jockusch
in private correspondence) for the number of domino filings of an Aztec
diamond of order n from which the centred 2-by-2 square has been removed,
referred to here as a holey Aztec diamond. This number is easily seen to
be equal to the number of domino filings of an Aztec diamond subject to
the constraint that the central 2-by-2 square must be covered by a pair of
horizontal dominoes. Hence proving the formula is equivalent to proving a
formula for the probability that a randomly-chosen domino tiling of an Aztec
diamond of order n contains not one particular domino, as in the preceding
paragraph, but rather a pair of dominoes in two particular k>cations.

In general, it is not possible to determine the probability that a random
tiling contains some pair of dominoes from the probabilities that a random
tiling contains each domino individually, but in the case where the dominoes
happen to form a 2-by-2 square (as happens her^, then a general graph-
theoretic lemma on perfect matchings of plane graphs allows us to derive the
probability of such a compound event from the probabilities of four simple
events. This reduces proving Jockusch's conjecture to proving a formula for
the number of order-n filings containing a horizontal domino in the center
of the nth row, which we are able to derive from the generating function
described above.

In give a more precise statement of the formula involving the three-
variable generating function, we will find it convenient to pass to a dual
picture in which domino filings of an Aztec diamond of order n are replaced
by perfect matchings of the dual graph G'n, which we blow up by a factor
of 2 so as to make all coordinates integers. Specifically, the vertices of Gn
are lattice points in Z2 with a, 6 odd and |a| + \b\ < 2n, and the edges of
Gn connect vertices at distance 2. We represent each edge in this graph by
its midpomt (t, j), where i is even and j is odd for a horizontal edge and
vice versa for a vertical edge. A perfect matching of Gn is a collection of
edges such that each vertex of Gn is an endpoint of exactly one edge in the
collection.

Domino filings of the order-n diamond correspond to perfect matchings
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of Gn, so that the probability that a randomly-chosen tiling of the Aztec dia-
mond will contain a domino in a particular position is equal to the probability
that a randoinly-chosen perfect matching of Gn will contain the correspond-
ing edge of Gn. We call this quantity an edge-probability, and denote it by
E^\ where (ij) is the midpoint of the edge of Gn being considered.

Appealing to the four-fold rotational symmetry of Gn, we may without
loss of generality focus on the horizontal edges centered at vertices (i, j) with
i - j =2n+l (mod 4). We will show that

yzl2f(s^y). "=7TT'
n=l \i.j

~y2 z)(l- {x2 + x-2 +y2 + y-2)z/2 + z2)'

where i, j range over all pairs with \i\ + \j\ <: 2n, i even, j odd, and i -j =
2n + 1 (mod 4). This algebraic relation encodes a recurrence relation for the
numbers £'.(^), which allows us to calculate them efficiently for fairly large
n (with storage space being more of the critical resource than computation
time). For instance, the unnumbered figure that appears at the end of this
abstract shows the £',w's for n = 256, where intensity-level (black to white)
corresponds to the value of E^ (0 to 1), and where the upper-left corner of
the figure corresponds to the edge centered at (0, 2000). (For an explanation
of the circularity of the boundary of the northern black region, see [2] or [1].)

We actually prove a more general result that includes an additional pa-
rameter. This result concerns random selection of matchings in which one
orientation of edge (horizontal or vertical) is favored over the other. More
specifically, we can select a perfect matching of Gn so that the probability
of any particular matching M being chosen is equal to p/l(M)/2(l - p)v(-M^2,
where /i(M) (resp. u(M)) is the number of horizontal (resp. vertical) edges in
M, necessarily an even integer. Here p is an arbitrary real number between 0
and 1; the case p= ̂  corresponds to the unbiased case discussed earlier. Let
E^)(p) be the probability that a randomly-chosen perfect matching of Gn
(chosen in accordance with the p-biased distribution) will contain the edge
centered at {i-, j)'i then Theorem 1 of our paper states that

^ / , ^, , .. ;\ 
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where we have put g = 1 -pfor convenience, and where ij range over the
same pairs ds in the preceding formula.
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Our proof of this theorem makes use of the "shuffling algorithm" intro-
duced in [3]. In the earlier article, shuffling was construed as a deterministic
operation that gave a bijective proof of the formula for the number of domino
filings of Aztec diamonds; specifically, given a tiling of the diamond of order
n - 1 and a string of n bits, one can construct a tiling of the diamond of
order n, such that each possible tiling of the larger region arises once ajid
only once. Under this correspondence, the positions of dominoes in a tiling
of the larger region are determined by the positions of dominoes in a tiling of
the smaller region, plus extra information coming from the n bits. Here, we
show how one can view shuffling as a random process, by treating both the
tiling of the smaller region and the bit-string as indeterminate (i. e. random);
shuffling gives rise to a scheme that determines probabilities associated with
the larger diamond from probabilities associated with the smaller diamond.
Naturally, we express this in terms of perfect matchings rather thau filings.

To prove Theorem 1, it turns out to be very useful to introduce quantities
pertaining to the shuffling process itself. These are the net creation rates (the
reason for this terminology will be explained in the full article). These rates
are associated not with edges but with certain cells in the square grid. Our
proof of Theorem 1 is essentially based on a double induction, in which
the edge-probabilities in the graph Gn determine the creation rates for the
graph Gn which in combination with the edge-probabilities for Gn allow one
to compute the edge-probabilities for Gn+i- The creation rates occur as
coefficients of the generating function

1 - (px2 + px-2 + qy2 + qy-2)z + z2'

which is similar to the formula for the edge-probabilities but simpler. This
generating function is related to the Krawtchouk polynomials, and in some
sense it may be even more fiindamental than the formula governing the edge-
probabilities; for instance, in the article [I], which obtains o(l)-estimates
for the edge-probabilities asn -» oo, the fundamental formula from the
current paper that is used is actually the formula for the generating function
associated with creation rates.

Theorem 2 of the current paper is the formula of Jockusch mentioued
earlier. It states that the number of perfect matchings of the graph obtained
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from Gn by deleting its four central vertices is

2((T)-2n-3)f2 n-f"/21
\n/A)

for n = 0 (mod 4),

2(m-2(-)-3>(2"-^C::^)'
for n = 1 (mod 4), and

2("(n+l)/2)-3

forns 2 or 3 (mod 4). We derive this from Theorem 1 by medns of a slm-
pie contour integration (to calculate individual coefficients of the generating
function) and the following general result (Lemma I): If G is any bipartite
plane graph with edges a, 6, c, c? forming a 4-cycle, then the probability that
a randomly-chosen perfect matching of G (chosen uniformly at random from
the set of all perfecting matchings) contains edges a and c is just papc+PbPd,
where pa, pb, pc, and pd are the probabilities that a random matchings con-

tains the individual edges a, 6, c, and c?, respectively.
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Figure 1
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