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Abstract: The number of ways of placing k non-attacking rooks on a Ferrers board is expressed as a
hypergeometric series, of a type originally studied by Karlsson and Minton. Known transformation identities
for series of this type translate into new theorems about rook polynomials.

1. Sununary.

Since its introduction in the 1940's by Riordan and Kaplansky, rook theory has continued to find ap-
plication to an ever-expanding list of topics in Enumerative Combinatorics. In this article we establish a
connection between rook polynomials and certaiu types of hypergeometric series, and explore the conse-
quences.

Section 2 begins with an overview of some historical results in rook theory, and highlights recent work,
which counts permutations by cycle type. We also introduce an extra parameter into Chow's path-cycle
symmetric function of a digraph, and show how his reciprocity theorem extends to this more general function.

In section 3 we explicitly express the cycle-counting rook nuinbers as hypergeometric series, and show
how some special cases of the Karlsson-Minton Summation formulas have a very simple combinatorial inter-
pretation. Then we use Gasper's transformation for series of this type to derive a transformation identity
for rook polynomials, which specializes to an mteresting Stirling number identity. By combining Gasper s
transformation with familar facts from rook theory, we are led to a new expression for Karlsson-Minton type
series with parameter z.

In section 4 we demonstrate how a generating function for rook polynomials yields a generatmg function
for terminating, balanced hypergeometric series of all orders. By difFerentiating in the standard way we obtain
recurrence relations (which are essentially "iterated" contiguous relations). By a different method we derive
a recurreDce for rook numbers which contains Whipple's transformation for termmating, balanced 4^3's and
Saalschutz summation as special cases. Some choices of the parameters in this recurrence yield identities
which have simple mterpretatioiis involving perinutations of multisets.

Section 5 contains g-versions of some of the previous results. Notation : LHS and RHS are abbreviations
for "left hand side" and "right hand side" respectively. N = the aonnegative integers, Z = the integers, C =
the complex numbers, "COEF(zfc) m" means "the coeflScient of z* in".

2. Rook Theory.

Consider an infinite grid of squares, with the same labellmg as the points in the first quadrant having
positive integral coordinates; the lower left-hand square has (column, row) coordinates (1, 1), etc.. A board
B is a finite subset of these squares, together with a value of n, called the number of columns. The squares
of B must satisfy (i, j) e B ===>. 1<»'< n, 1 <j. Ifia addition (i, j)  B ==» J< n (all the squares of B
are contained in the n x n grid) then B is called admissible. See Figure 1.

Let r»(B) be the number of ways of placing k rooks on the squares of B (throughout the article, all
placements are assumed to be non-attacking, i.e. no two rooks in the same row, and no two in the same
column). If B is admissible, let ak(B) be the number of ways ofplacmg n non-attacking rooks on the square
n x n grid with exactly n- k rooks on B. The a^ are usually called "hit" numbers. Of particular interest
is an, which equals the number of permutatioas on n letters which avoid the "forbidden positions encoded
by the squares of B (we can identify a rook on square (i, j) with the condition that i is sent to j in the
associated permutation). The ajk(B) can be expressed in terms of the rt(5) via an identity ofRiordan and
Kaplansky [KaRi];

^ k\r^(B)(z - l)»-k = ^ zAan-t(B) (1)
k k

If B is not admissible, define ak(B) via (1) (although they no longer count permutations).
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Figure 1: The shaded squares (1,2), (2,1), and (3,3)
of the 3 x 3 grid fonn an admissible board B.

A Ferrers board B is a board with the property that (i, j)   B implies all squares to the right and
below (i, j) are also in B. More formaUy, (i, j)   B =^- (t, p)   Bfort"$t< nand 1 < p$j .
These boards can be identified with the Ferrers graphs of partitions. They were introduced by Foata and
Schutzenberger, who proved that every Ferrers board is rook equivalent (has the same rook aumbera) to a
unique board with strictly increasing column heights. Ferrera boards satisfy the important factorization
theorem ofGoldman, Joichi, and White [GJW1];

S;r(»-1).. .(z - t + l)rn-t = H(r+c. -. +1), (2)
t=0 . =1

with c, = the height of the »th column of B.
Throughout this article, if B is a Ferrers board it will represent the board of Figure 2, indicated by the

following notation: B = B(/»i , di; A;, dz;- . . ; A(, d«).

h, d,

B

d,

n

Figure 2: The Fenera board B = B(hi ,di;... ;ht, dt).
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ID order to allow leading columns of height zero and for other technical reasons we allow the A, to be
noanegative integers, but the <f» will be strictly positive integers. Note that the RHS of (2) can be written
as

II(.c+ff, -D.. +l)«,, (3)
»=l

where Hi := /»i + ... + /»,-, D, := di +^2 + .. -+ d« (this notation will be used often), and (x)k :=
x(x+l)---(x+k-l).

For some time researchers have sought a g-version of (1), the inclusion-exclusion identity of Riordan and
Kaplansky. For arbitrary boards this problem has never been completely solved, although partial solutions
occur in [ChRo] and [JoRo]. For Ferrera boards Garaia and Reinmel [GaRe] introduced a <-version which
has found a number of applications [Dinl], [Din2], [Hagl]. In particular, Ding has shown that the Poincare
polynomialsofcohomolgyfor certain algebraic varieties associated to Ferrera boards are expressable as g-rook
polynomials of Garsia and Remmel.

Other recent work iu rook theory incorporates the cycle structure of simple directed graphs associated
to rook placements. This idea originated in a 1989 paper of Gessel [Gesl]; ifarook occupies square (i, j),
draw an edge from »' to j in the associated digraph (otherwise do not draw such an edge). The resulting
digraph (on n vertices) will coiisist of a certain number of cycles and a certain number of directed paths
(vertices with no incident edges count as a directed path of length one). See Figure 3.

(1. 2)

(1, 1) (2. 1)

^\
l5

.0

Figure 3: A rook placement and the associated <iigraq)h.

It should be mentioned that the special problem of determining rn(B), which can be viewed as the
permanent of a matruc, has been studied in great detail by Shevelev. His work also contains some resiilts on
determining rn(y, B); see [Shev] and the references therein.

Let
Ft(y):= ^ . ynumberofcycK.^

placement* of k rooka on B

so for the placement of Figure 3 we associate y2. If B is adinissible, we can define

°t(y, 5):= E y""»berofcycl». (4)
placement* of n rooka on nxn aquare

n-Jk rooka on B

Chung and Grahain introduced the function

C(B; x, y):=^x(x-l)---(x-k+ l)r«-t(y). (5)
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One of their results can be expressed as follows [ChG];

C(B;x, y)= z (number of cycles of S

0 to n rooks on B
each rook in a cycle

(x+\TnB\-\S\>
n-\S\

( I

n rooks on n x n
scr

where the inner sum is over all placements T of n non-taking rooks which contain the rooks in S, and |m B\
is the number of rooks in T on B. In the outer sum, each rook in S must be in a cycle.

Gessel [Ges2] found a more compact expansion for C(B; x, y);

He also noted that

C(B;., y) =^^^y, B)(x+y^x-l^x-n+k+l\
~iT w)n

^(y)krn-t(y, B)(z - l)»-t = ^zta«-t(y, B).

(6)

(7)

Shortly after a preprmt of Chung and Graham's influential work became avaUabIe, the author and
Dworkin noticed independently that a version of the factorization theorem for Ferrers boards held for
[EHR], [Dwo],

^x(x-l)... (x-k+l)rn_k(y)= H(.C+c. - i+y) J](.c+c. - . + 1).
* C»S' c,-<»

(8)

Earlier Stanley and Stembridge [StS] developed a version of rook theory which takes into account the
cycle structure of rook placements and the associated digraph. To describe this we need two partitions a, /?.
The a, are the lengths of the directed paths, and the ft are the lengths of the cycles. In their theory they
weight a given placement by fa (Y)pp(Y)Y[, m. (o')!, where the fc, are the forgotten syiumetric functions in

the set of variables Y, p^ are the power-sum symmetric functions, and m. (a) is the multiplicity of t in a
(see [Mac] for background on symmetric functions).

Chow has recently coiisidered a more general function;

C(B;X, Y) :=^ma(X)pp(Y)r^]^m. (a)\
",^

(in this section X,Y will denote sets of variables and x,y real variables). Here Ta, p is the number of rook
placements whose digraph has directed path type a and cycle type 0, and m<» is the monomial symmetric
function. If X is chosen so that ^, a:.t = pk(X) = (-l)*+ipt(V), C(B;X, Y) reduces to the Stanley-
Stembridge function. I! pk(X) = x, and pk(Y) = y, we get Chung and Graham's C(B;x, y). Here we sre
using the well-known fact that ideBtities involving sjrmmetric functioas can be mterpreted as polynomial
identities in the p».

Chow proved a "reciprocity" theorem for C(B;X, Y), which says that for admissible boards B,

C(B;X, Y) := ^ A y)p^y)nm. -(u)!(-l)"+<(a) w
0 to n rooks on Bc

0 rooks on B

where £(ct) is the number of parts of a, and X,Y indicates the union of the two sets of variables X and Y
(so pk(X, Y) = pk(X) +pt(Y)). Bc is the complement board consisting of those squares in the n x n grid

.not a part of B.
We now introduce another parameter into Chow's function;

C(B; X, Y; z) := ̂  m^X)p0(Y)r^(l - z)»-<(a) I] m, (a)!. (10)
a,^
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The next theorem shows that this more general function satisfies a version of reciprocity which contains both
(1) and (9) as special cases.
Theorein 2. 1 Let B be an admissible board. Then

^m. Wp0(Y)r^(l-z)n-i^]^mi(a)\=(-l)n^zkCk(B;X, Y), where
a.ff k

Ct(B;X, Y) = ^ /<. (X, y^(y)nm,. (a)!(-l)<(a).
0 to n-A rooks on Bc *

k rooka on B

Note that if z = 0 this reduces to (9).
Remarks on the Proof : Mimics Chow's proof of (9) [Cho, pp. 7-8]. .

The extent to which theorems about rook placements and applications of reciprocity extend to the
symmetric functions Ck(B; X, Y) is an interesting topic for research m its own right; the main focus of this
article, however, is to study the following special case of Ck(B; x, y), a new two-parameter versioB of the hit
numbers.
Definition. For any board B, define ak(x, y, B) by

S(^)trn-i(y)(^ - l)"-t = Szta»-t(a:. y'B)- (11)

If 5 is the triangular board (see Example 3.3), the ak(x, 1, B) have been introduced independently in recent
work of Steingrimsson [Ste]. His approach is different from ours, involving partially ordered sets, and there
is little duplication between our results.

Using known facts about symmetric functions [Chol], one finds that if pt(X) s -x and pk{Y) = y,
Ck(B; X, Y) reduces to ak(x, y, B). This same choice for X,Y in Theorem 2. 1 then gives (for admissible B)

a, (x, y, B)= Y. (-l/(a)(y - ^Wytw (12)
n-t rooks on B

0 to t on Bc

where a,^ are the directed path type and cycle type of the associated rook placement. Note that

at(y, y)= ^ y"""-^^=at(y, B) (13)
n-t rooks on B

tonBC

since (y - y)t(a) = 0 unless there are no directed paths, which means there are n rooks on B.
We end this section by listing extensions of some of the known algebraic identities satisfied by ak(B).

Theorem 2.2 (For Ferrere boards, a g-version of the case j = n, a:= -l, y= 1 of this identity occurs in
work of Garsia and Remmel [GaRe]) Let B be any board, and assume j is a nonnegative integer. Then

^/'x+k-l\_ / ,_ _ ^_t (-iy" v-/'"-^- /-.. D^-t
g(";-l;«.(-t. »,^t = (T=^I;(.::;J«>('.".^.

Theorem 2.3 (The j =n case of this is due to Gessel [Ges2]). For any board B,

., (., ^)=E.>(^, B)(;:^)<I)l(^-t(-l»'-'.
3. Ferrers Boards and Hypergeonietric Series.
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The remainder of this article will focus on Ferrers boards, for which there are well-known explicit
formulas for rfc and ak. These formulas extend easily to r(. (y) and ak(x, y), and will be used to express these
functions as hypergeometric series.
Definition. Let

t

PR{x, y, B) := ]^(H, -D. +X+ y)^.
«=1

Remark : Clearly PR depends only on the sum x-\-y; we choose to view it as a function of both x and y
in order to keep the connection with cycle-counting clear in what follows.
Leinma 3.1 Let B = B(Ai, <fi;/i2, d2;... ;/»(, dt) be a regular Ferrers board, by which we mean B satisfies
Hi ̂  Di for 1 <»" < f. Then for Jfc   N,

k'.rn-k(y) = S (k, )(-l)k-]PR(J, y, B), and
3=0

». (., »)= E (;!j)(-i)>-'(t+^- l)P^,,, fl).

(14)

(15)

Proof : Uses the Vandermonde convolution and (2). .

Remark 1: Assume for the moment that y   N. Then clearly PR(x, y, B) = PR(x, l, C), where C =
B(hi +y - 1, di; Az, ̂ 2; - .. ; /»(, </<) is the board obtained from B by replacing AI by Ai +y - 1. Then by
(14) and (15), we see that ri(y, 5) = rk(1., C), and ak(x, y, B) = Ok(x, l, C). Now say we have an algebraic
identity involving the rjfc's or ajb's. TypicaUy this wUl be a polynomial or rational function identity in the
hi's and d.-'s. Thus it is easy to translate back and forth between identites with the y parameter and those
without just by changing the value of hi.

We now convert (14) and (15) into hypergeometric notation. Let e, := Hi - D, + y (we wiU iise this
notation throughout the rest of the article!) and note that for j   N,

(e, +j')<i. =(c. )d,
(e. +dOj
~(^)T assuming e, ,£ 0,

hence

PR(j, y, B) = PR(0, y, B) H (c^^.
Plugging this into (14) and (15) we get

c, ̂ 0, 1 ^ i <f. (16)

t!r«-t(y) = ^ f*) (-l)fc-^JZ(0, y, B) H (c^-
]=0 ^/ . =1 ^*^

=PR(0, y, B)(-l)k ^F, \~k' el+(fl> ---' c(+dt1, and
Cl, . . . , Ct

-.^=g(:+;)(-»l-^^, ^)n<^
=^0, ^)("^)(-1)> . «^, [-t. ̂ , 1.^^ «. ^*. :::: e-.+''-].

(17)

(18)

Here we have used the standard notatiou

pF,
Cl, <'2,

frl,
ap.
6,"
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for the series

L

u

(ai)*(a2)*---(ap)t .t
^kl. Wk(b2)k---(b^E

(if the argument 2 is 1 it will be omitted).
Remark 1: A version ofLemma3.1, which holds for any board, can be obtained by replacing PR(j, y, B)
on the RHS of (14) and (15) by EtJ'O' - 1)---0" - *+ l)rn-t(y, B). The assumption that 5 is a Ferrers
board is only needed to write rfc or flt in hypergeometric notation.
Remark 2: The formulas above assume B is regular (H{ ̂  D, for 1 $»'$(). As a general rule, any formula
for Ferrers boards involving the y parameter in sections 3, 4, or 5 will make this same assumption. If Hi < D{
for some i, not all of the factors on the RHS of (8) have the parameter y in them, but we can still write our
r» and 04 as hypergeometric series by first modifying the definition of PR(x, y, B) appropriately and then
shiftmg the index of summation.

Remark 3: One of the more important types of i+iFf wl' '^" ' wt> "^+1 series are balanced series,
where the parameters satisfy 61 +.. -it = 1+ u/i + .. .Ut+i. The at(B) satisfy this property, while the
k\rn-k(B) do not. For this reason, most of our attention will be focused on the ai. Also, from results on
the Ofc one can often deduce properties of the rjb since from (17) and (18),

t!r-*(rt°.u.n. ^f-
Equation (8) shows that for Ferrers boards, On(x, y) can be written as a product of linear factors in x

and y. Combining this with the k .= n case of (18) we get

<n+^/_1\" ... F. :. [-n' z' cl+dl> .. -> et+d«|-TTr_»^. ^,i
( i)^[" n~ )(~lr t+2F<+l| '" r+'l, ''lei,^' '. '. '. ', '"e«~t|=l. l(-:c+c')d'- (19)

This is equivalent to an identity proved by Minton in 1970 for n   Z, and extended to complex n by Karlsson
in 1971 [Min], [Kar].

In 1981 Gasper [Gasp] showed that (19) is a special case of an interesting transformation identity;

F(l + r + c)F(l - w) TT (fr. - .c)<i,\w, x, h+di, ..., bt+dt'[_T(l+x+
t+2Ft+l[~" .t+c'+i, '^'i,-" ^; "6t-'J=r(i+.c- w)]^+l).5(^

X«+2.Ft+l (20)-c, z, 1+a;-61, ..., 1+z-frf
a-+l-w, 1+z-ti-di, ..., l+a;-6t-d(

where w, c, x, 6, 6 C, d,   H, and 3t(c- w) > n- 1. We can use this to derive the following result;

Theorein 3.2 Let B be a regular Ferrers board. Then

ai(x, y, B) = an-t(z, 1+x - y+n-Hi-p, Bp),

where Bp is obtained by first rotating the n x Hi grid containing B 180 degrees, keeping the squares in this
grid which were not in B, affixing a p x n rectangle to the bottom, and finally relabelling so that the square
that was (i, j) is now (n+ 1 -», ff( +P+ 1 -J'). The parameter p can be any positive mteger, so long as Bp
is regular.
Proof : Uses (18) and (20). .
Example 3.3 Let B be the triangular board of size n, so B is regular and Hi = n. See Figure 4.
From [EHR],

r^i_t(y, B)= ^ y"um(A):=52(n+l, t, y)
A

t blocks
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n

Figure 4: The triangular board of side n.

say, where the sum is over aU set partitions A of n + 1 elements into k blocks, and num(A) := the number
of values of », 1 $ «" $ n, such that the »*'. and (f + 1)" elements are in the same block. For example
52(3, 2, y) = 2y+ 1 since there are 3 set partitions of {a, 6, c} into 2 blocks:

{a, b}{c}^y, {a, c}{b}-. l, {a}{b, c}-. y.

Clearly Bi = B so after some sunplification (11) and Theorem 3. 2 imply

JL ^L

;(a-)t-i52(n, k, y)(z - !)"-* = ^(z)i_i52(r», fc, .c - y)z*-l(l - z)n-t.
t=l Jt=l

One of the well-known identities for Ferrers boards is

SP^-B)zt=rT^TE^(B)-
t=0 \^-"f t^b

Translatmg the z,y version of this (the case j=n ofTheorem 2.2, together with (19)) into hypergeometric
series notation led to a result on series of Karlsson-Mmton type with parameter z.
Theorem 3.4 Let T, 6,-, z   C, d,   N, and Di = n. Also fix the branch of log z which is analytic for
z   C\(-oo, 0], with -T < ary(z) < T (the principal branch). Then for z   C\[l, oo),

.^<h bltd l' .... 6t?dt;zi=
[, ..., 0(

-l-Y'/rn+^r-nt ^F^\-k' x'. 6»+di' .. -' ^+d«1^
(1 - z)»+- ̂  \, A ^-1; t+2rt+4 n+^-fc+1, ~6i, ~ ... ; 'b, '\z~-

Remark : Theorem 3. 4 shows that series of KarIsson-Minton type with parameter z , and one complex
parameter x, are very close to being polynomials, albeit with complicated coefficients.

4. Generating Functions and Recurrence Relations.
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In this section we translate various recurrence relations for the hit numbers for Ferrers boards into state-
ments about hypergeometric series. Some "iterated" contiguous relations for balanced series are obtained.
We also show that special cases of Saalschiitz summation and Whipple's 4^3 transformation have simple
combinatorial interpretations involving permutations of multisets.

By exploiting a connection between compositions of vectors and rook placements [Hag2, Thm. 22], the
following generating function for rook polynomials of Ferrers boards is derived;

t _*,.. <<,-
x?y?.(ET<+y<+ E :c^-)fc= Z n?^T^+^-t(5(Ai, di;... ;/><, dt))t!.

l$'$^t h,d Ht«=l "*"*."
(21)

«=1

Using this, we can easily obtain the following generatmg function for 04(1, 1, B);

(l-Ea;'-Ey'+(l-z) Z z^)~r= E n^T(a;)^Ea»-*(a;+^-l'B)zt- (22)
i=l 1=1 1<'<J"« h,d6H* *=l t=0

By diflTerentiating (22) with respect to one of the variables we can derive recurrence relations for the 04.
The following result is typical;

(n-k)at(x, l, B)= ^ h, d, at(x, l, B - hi - d, ).
1<«<J«

(23)

It is worth noting that PfafF-Saalschutz summation, which gives the sum of a terminatmg, balanced aFz, can
be derived by iterating the t = 1 case of (23) (after usmg (18)).

A different type of recurrence can be derived from Theorem 2.2.
Theorena4.l Let B be a regular Ferrers board. Let Bj = B(Ai, di;... ;hp-j, dp-j;hp^.\, dp^.\;... ;/>t, d()
be the board obtained from B by decreasing hp and dp by j (here we assume j>. hp, dp}. Then

^ - /- .. ^^IIp-Dp-i+y+s-l\fn+Dp-i-Hp-s+x-y'>
a^, y, B)=, ! i;^, (^, y, B, )^p-7:7+7<'-^rT ^-lYl^ 

"'^ 

yj-

Proof : By induction on j. The details are omitted. .

Corollary 4.2 Assume dp < hp + /»p+i, or that p = t. Let B/ = B(hi, di;... , hp-i, dp-i;hp + hp+i -
dp, dp+i;... ;ht, dt) be the Ferrers board obtamed from B by removing the "pt h step" (ifp= f, B/ =

B(Ai, di;... ;At-i, <it-i)). Then

..(^, B)^!_S.. (.,,, B-)(^-D^+'-l)("+o'-I~^;'+'~i')
where a. (r, y, 0) = 5,, o.
Proof : Set j = dp ia Theorem 4. 1. .

Interpreted in terms of hypergeometric series, Corollary 4.2 is equivalent to the known fact that a
terminating, balanced <+2^t+i with unit argument can be expressed in terms of terminating, balanced
i+iFt's with unit argument. If we let f = 1, then B' = 0, and there is only one term on the RHS. After
simplification, this reduces to the Pfaff-SaaIschiitz summation formula mentioned earlier. Letting t = 2, and
using the fact that a, (x, y, B') can be summed, the RHS turns out to be a terminating, balanced ̂ Fz (as
does the LHS). This theorem is known as W hippie's transformation.

The a;= 1, y= 1 case of Corollary 4.2 was previously discovered by the author [Hagl], in connection
with the study of permutations of multisets. A permutation a ofamultiset M is a linear list 0-1^2 . . -O"|M|
of the elements of M. Let Nt(v) be the number of permutations, of the multiset m which »' occurs v, times,
having exactly k-l descents. A descent is a value oft, 1 < » ^ |Af|-l, such that o-, > o'.+i. A connection

Li
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between ̂ (v) and rook placements was discovered by Riordan and Kaplansky and developed further by
the author. Dillon and Roselle [DiR] derived a recurrence for the Nk which is a special case of Corollary 4. 2.

5. q-versions.

Throughout this section, let g be a real variable, 0 <q < I. For Ferrers boards B, Garsia and Remmel
[GaRe] define

Rk(B) := ^ g'""^
placements C of t rooks on B

where inv C is a. certain statistic. To calculate it, cross out all squares on B below and all squares oa B to
the right of each rook in C. The number of squares on B not crossed out by this procedure is inv C.
Example . If C consists of rooks on squares (2, 1) and (4, 3) of the n = 4 case of Figure 4, then inv C = 5.

This definition led them to a g-version of (2);

^[x][x -l]... [^-k+ l]Rn-t(B) = I][z + c. - i+ I],
t=0 t=l

where [a;] := if^- (which approaches a; as g-*l) and c, is the height of the t*A column of B.
They ako define a g-version of a»(B) as follows;

^ R^^(B)[kY. zk ]"[(!- zq') = ^ At(B)
t=0 «=t+l fc=0

where [*]! := H.Ljt]. The polynomial Ak(B) equals afc(B) when g = 1.
Garsia and Remmel conjectured that Rk(B) is unimodal for aU Ferrers boards (this is still open; a

special case is the well-known conjecture that the ̂ -Stirling numbers of the second kind are uumodal).
They were able to show that for admissible B, Ak(B)   N[y], and in [Hagl] it was demonstrated that their
proof extends easily to show that for such boards Ak(B) is a-symmetric and unimodal polynomialm q.

A cycle-counting version of Rk has been introduced in [EHR]. The following fact is used m its description:
given a placement of j non-attacking rooks in columns 1 through i of B, where 0 ^ j" ̂  »", then if c, (the
height of the ftA column of B) is ̂  t, there is one and only one square in column »" wherearook placement
will complete a cycle. If c, < i, there is no such square.

Given a placemeat C of k rooks on b, define s, as follows; if c, < i, s, == the square (», c, + 1), while if
c, > i, s, is the unique square such that, considering only the rooks from C in colunans 1 through »' - 1, a
rook on square s, completes a cycle. Set E = E(C) = the number of i such that there is a rook from C' in
column i on or above square c,. Then if we define

Rk(y, B) := ^ ^number of cyclea of C invC+E
c

i. rooks

we get [EHR];

n

^[x][x -l]... [x-k+ l]Rn-k(y, 5) = Jj[a- + c. -i+y]]^[x+ c, - i+ 1] = PA[r, y, B] say. (24)
t=0 c, ^, e, <,

We can use Rk(y, B) to define a g-version of ak(x, y, B);

^[x][x+l]... [x+k-l]Rn^(y, B)zli H (l-zqi+'-l):=^Ak(x, y, B)zk.
t=0 . =t+l t=0

An easy calculation shows that if g = 1, At(x, y, B) = at(x, y, B).

I .
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In a paper of Chu [Chu], a bilateral g-identity is developed which contains both of the g-versions of
Gasper's transformation found in [Gasp] (the author has noticed that Chu's result can also be obtained by
specializing a general result due to Sears and Slater). Together with (24), this can be used to find g-versions
of almost all of the identities in sections 3 and 4. The exception is the generating function identity (21) and
(12), which have no known g-versions at present. We use the standard notation

[x][x-l]... [x-k+l]
~w- '(w)n:=(l-w)(l-wg)... (l-^n-l), M:=^^, ^]:=

.
k\ ... A. (a^ a2' ... ' at+l . - ^ - V (al)" . . -(a<+l)"

(. ;<?)«:= y^i-^), <^^-1) ^: :::; T;g'2J:=^(^(6o^.^
Lemnia 5.1 For any regular Ferrers board B,

[*]!^-»(y) = PR[0, y, B](-l)fcg(^ <+i^ (q~

'?-zn.

,<1+«1,
gel,

Vs,

;<t+<it
9et

Kit
:, ; 9, 9],

A. (.,,, B)=Pm>, BK-l)^)[ntl '].«^. (r'' ^f-w, ''',:,". ;::: '7."i<, <).
Theorena 5.2 For any regular Ferrers board B,

Ak(x, y, B) = An-k(x, 1+x-y+n-Ht-p, Bp)qa,

where a := n(-a; + y- n) + i;(n + a: +1)+ area(B), with area(B) = the number of squares in B = ^, fffd,.
As in Theorem 3.2, p is any positive integer for which Bp is regular.

Theorem 5.3 Let j   N, j ^ hp, dp for some p, with 1 <p<t. Then if B is a regular Ferrers board, and
B] is the board described in Theorem 4. 1,

A^, y, B) = W 'LM^B, )[ep ̂ ^+ s] [" ~ep~^+x~ SV-^^^-1\
where A, (x, y, 9) = 5,, o, and e? = Hp- Dp+ y.

There are also g-versions of Theorems 2.2 and 2.3;

Theorena 5.4 For any Ferrers board B, with Q<. j<:n, and \z\ < 1,

E \x+k, -l}M-k, y. B)^ = (-iy<G)(^^^ [;:^.(.,,, B)^. (25)
00fc=0

Theorein 5.5 For any Ferrers board B, with 0 $j < n,

M,,,, B^,&^-_k^,.,, B)^y-\-f)-', - . W
Acknowledgenaent. The author would like to thank Professors Andrews, Bowman, and Stanton for sup-
plying him with some of the references on hypergeometric series used in this article. He would also like to
thank the referee s for supplying hun with the following interesting identity, where P is ziny polynomial with
%(c+l-w-deg(P))>0

f- _(^(x)-p(^ = r(i+^+c)r(i-^) f- (-^-(^ ^ ^ _ ,y
^ j!(z+c+l)/ VJ7 - r(l+^-w)F(c+l) ̂  j!(^t-T- w), ' v- .'/-

(27)

Eq. (27) can be proven by proving it for the basis polynomials P(u) = (-x - c- u)<<, d= 0, 1,..., for which
both sides of (27) can be evaluated by Gauss' theorem on the sum of a 2^1. This can be used in place
of Gasper's transformation in the proof of Theorem 3.2, the advantage being that part of this proof then
extends to non-Ferrers boards. Other parts of the proof do not, however, so it doesn't appear that a version
ofTheorem 3.2 holds for arbitrary boards.
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