Murnaghan-Nakayama Rules for Characters of Iwahori-Hecke Algebras of the Complex Reflection Groups $G(r, p, n)$

Tom Halverson
AND
Arun Ram
Macalester College
St. Paul, MN 55105
University of Sydney
NSW 2006, Australia

Summary

The finite irreducible complex reflection groups come in three infinite families: the symmetric groups \mathcal{S}_{n} on n letters; the wreath product groups \mathbb{Z}_{r} \{ \mathcal{S}_{n}, where \mathbb{Z}_{r} denotes the cyclic group of order r; and a series of index- p subgroups $G(r, p, n)$ of $\mathbb{Z}_{r} \backslash \mathcal{S}_{n}$ for each positive integer p that divides r. In the classification of finite irreducible reflection groups, besides these infinite families $\mathcal{S}_{n}, \mathbb{Z}_{r}$, and $G(r, p, n)$, there exist only 34 exceptional irreducible reflection groups, see [ST].

A formula for the irreducible characters of the Iwahori-Hecke algebras for \mathcal{S}_{n} is known [Ram], [KW], [vdJ]. This formula is a q-analogue of the classical MurnaghanNakayama formula for computing the irreducible characters of \mathcal{S}_{n}. Similar formulas for the characters of the groups $G(r, p, n)$ are classically known, see [Mac], [Ste], [AK], [Osi] and the references there. Formulas of this type are also known for the Iwahori-Hecke algebras of Weyl groups of types B and D [HR], [Pfel], [Pfe2]. Recently, Iwahori-Hecke algebras have been constructed for the groups $\mathbb{Z}_{r}\left\{\mathcal{S}_{n}\right.$ and $G(r, p, n)[A K],[B M]$, [Ari]. In this paper we derive Murnaghan-Nakayama type formulas for computing the irreducible characters of the Iwahori-Hecke algebras that correspond to $\mathbb{Z}_{r}\left\{\mathcal{S}_{n}\right.$ and $G(r, p, n)$.

Hoefsmit [Hfs] has given explicit analogues of Young's seminormal representations for the Iwahori-Hecke algebras of types A_{n-1}, B_{n}, and D_{n}. Ariki and Koike, [AK] and [Ari], have constructed "Hoefsmit-analogues" of Young's seminormal representations for Iwahori-Hecke algebras $H_{r, p, n}$ of the groups $G(r, p, n)$. Our approach is to derive the Murnaghan-Nakayama rules by computing the sum of diagonal matrix elements in an explicit "Hoefsmit" representation of each algebra. We are motivated by Curtis Greene [Gre], who takes this approach using the Young seminormal form of the irreducible representations of the symmetric group and gives a new derivation of the classical Murnaghan-Nakayama rule. Greene does this by using the Möbius function of a poset that is determined by the partition

T. HALVERSON AND A. RAM

which indexes the irreducible representation. We generalize Greene's poset theorem so that it works for our cases. In this way we are able to compute the characters of the Hecke algebras $H_{r, n}=H_{r, 1, n}$.

To compute the characters of the Iwahori-Hecke algebra $H_{r, p, n}$ of $G(r, p, n)$, $p>1$, we use double centralizer methods (Clifford theory methods) to write these characters in terms of a certain bitrace on the irreducible representations of $H_{r, n}=$ $H_{r, 1, n}$. We then compute this bitrace in terms of the irreducible character values of $H_{r, n}$.

The character formulas given in this paper contain the Murnaghan-Nakayama rules for the complex reflection groups $G(r, p, n)$ and the Iwahori-Hecke algebras of classical type as special cases.

Extended Abstract

Let r, p, d, and n be positive integers such that $p d=r$. The complex reflection group $G(r, p, n)$ is the set of $n \times n$ matrices such that
(a) The entries are either 0 or r th roots of unity.
(b) There is exactly one nonzero entry in each row and each column.
(c) The dth power of the product of the nonzero entries is 1.

The following are important special cases of $G(r, p, n)$.
(1) $G(1,1, n)=S_{n}$, the symmetric group.
(2) $G(r, 1, n)=\mathbb{Z}_{r}\left\langle S_{n}\right.$.
(3) $G(2,1, n)=W B_{n}$ the Weyl group of type B.
(4) $G(2,2, n)=W D_{n}$ the Weyl group of type D.

Characters of Iwahori-Hecke Algebras of $G(r, 1, n)=(\mathbb{Z} / r \mathbb{Z})\} \mathcal{S}_{n}$.
Let q and $u_{1}, u_{2}, \ldots, u_{r}$ be indeterminates. Let $H_{r, n}$ be the associative algebra with 1 over the field $\mathbb{C}\left(u_{1}, u_{2}, \ldots, u_{r}, q\right)$ given by generators $T_{1}, T_{2}, \ldots, T_{n}$ and relations
(1) $T_{i} T_{j}=T_{j} T_{i}$,
(2) $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$,
for $|i-j|>1$,
for $2 \leq i \leq n-1$,
(3) $T_{1} T_{2} T_{1} T_{2}=T_{2} T_{1} T_{2} T_{1}$,
(4) $\left(T_{1}-u_{1}\right)\left(T_{1}-u_{2}\right) \cdots\left(T_{1}-u_{r}\right)=0$,
(5) $\left(T_{i}-q\right)\left(T_{i}+q^{-1}\right)=0$, for $2 \leq i \leq n$.
Upon setting $q=1$ and $u_{i}=\xi^{i-1}$, where ξ is a primitive r th root of unity, one obtains the group algebra $\left.\mathbb{C}\left[\mathbb{Z}_{r}\right\} \mathcal{S}_{n}\right]$ of the wreath product group $\mathbb{Z}_{r}<\mathcal{S}_{n}$. When $r=1$ and $u_{1}=1$, we have $T_{1}=1$, and $H_{1, n}$ is isomorphic to an Iwahori-Hecke algebra of type A_{n-1}. The case $H_{2, n}$ when $r=2, u_{1}=p$, and $u_{2}=p^{-1}$, is isomorphic to an Iwahori-Hecke algebra of type B_{n}.

Representations. An r-partition of size n is an r-tuple, $\mu=\left(\mu^{(1)}, \mu^{(2)}, \ldots, \mu^{(r)}\right)$ of partitions such that $\left|\mu^{(1)}\right|+\left|\mu^{(2)}\right|+\cdots+\left|\mu^{(r)}\right|=n$. If $\nu=\left(\nu^{(1)}, \nu^{(2)}, \ldots, \nu^{(r)}\right)$ is another r-partition, we write $\nu \subseteq \mu$ if $\nu^{(i)} \subseteq \mu^{(i)}$ for $1 \leq i \leq r$. In this case, we say that $\mu / \nu=\left(\mu^{(1)} / \nu^{(1)}, \nu^{(2)} / \mu^{(2)}, \ldots, \mu^{(r)} / \nu^{(r)}\right)$ is an r-skew shape. We refer

CHARACTERS OF IWAHORI-HECKE ALGEBRAS OF $G(r, p, n)$

to r-skew shapes and r-partitions collectively as shapes. If λ is a shape of size n, a standard tableau $L=\left(L^{(1)}, L^{(2)}, \ldots, L^{(r)}\right)$ of shape λ is a filling of the Ferrers diagram of λ with the numbers $1,2, \ldots, n$ such that the numbers are increasing left to right across the rows and increasing down the columns of each $L^{(i)}$. For any shape λ, let $\mathcal{L}(\lambda)$ denote the set of standard tableaux of shape λ and, for each standard tableau L, let $L(k)$ denote the box containing k in L.

Define the content of a box b of a (possibly skew) shape $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right)$ by

$$
\operatorname{ct}(b)=u_{k} q^{2(j-i)}, \quad \text { if } b \text { is in position }(i, j) \text { in } \lambda^{(k)}
$$

For each standard tableau L of size n, define the scalar $\left(T_{i}\right)_{L L}$ by

$$
\left(T_{i}\right)_{L L}=\frac{q-q^{-1}}{1-\frac{\operatorname{ct}(L(i-1))}{\operatorname{ct}(L(i))}}, \quad \text { for } 2 \leq i \leq n
$$

Let $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right)$ be a (possibly skew) shape of size n, and for each standard tableau $L \in \mathcal{L}(\lambda)$, let v_{L} denote a vector indexed by L. Let V^{λ} be the $\mathbb{C}\left(u_{1}, \ldots, u_{r}, q\right)$-vector space spanned by $\left\{v_{L} \mid L \in \mathcal{L}(\lambda)\right\}$, so that the vectors v_{L} form a basis of V^{λ}. Define an action of $H_{r, n}$ on V^{λ} by defining

$$
\begin{aligned}
& T_{1} v_{L}=\operatorname{ct}(L(1)) v_{L} \\
& T_{i} v_{L}=\left(T_{i}\right)_{L L} v_{L}+\left(q^{-1}+\left(T_{i}\right)_{L L}\right) v_{s_{i} L}, \quad 2 \leq i \leq n
\end{aligned}
$$

where $s_{i} L$ is the same standard tableau as L except that the positions of i and $i-1$ are switched in $s_{i} L$. If $s_{i} L$ is not standard, then we define $v_{s_{i} L}=0$. The modules V^{λ}, where λ runs over all r-partitions of size n, form a complete set of nonisomorphic irreducible modules for $H_{r, n}$ ([You], [Hfs], [AK]).
Standard Elements. Define elements $t_{i} \in H_{r, n}$, for $1 \leq i \leq n$, by

$$
t_{i}=T_{i} T_{i-1} \cdots T_{2} T_{1} T_{2} \cdots T_{i-1} T_{i}
$$

For $1 \leq k<\ell \leq n$ and $0 \leq i \leq r-1$, define

$$
R_{k \ell}^{(i)}=\left(t_{k}\right)^{i} T_{k+1} T_{k+2} \cdots T_{\ell}
$$

and, for each $1 \leq k \leq n$, define $R_{k k}^{(i)}=\left(t_{k}\right)^{i}$. We say that an \mathcal{S}_{n}-sequence of length m is a sequence $\vec{\ell}=\left(\ell_{1}, \ldots, \ell_{m}\right)$ satisfying $1 \leq \ell_{1}<\ell_{2}<\cdots<\ell_{m}=n$, and we say that a \mathbb{Z}_{r}-sequence of length m is a sequence $\vec{i}=\left(i_{1}, \ldots, i_{m}\right)$ satisfying $0 \leq i_{j} \leq r-1$ for each j. For an \mathcal{S}_{n}-sequence $\vec{\ell}=\left(\ell_{1}, \ldots, \ell_{m}\right)$ and a \mathbb{Z}_{r}-sequence $\vec{i}=\left(i_{1}, \ldots, i_{m}\right)$, define

$$
T_{\bar{\ell}}^{\vec{i}}=R_{1, \ell_{1}}^{\left(i_{1}\right)} R_{\ell_{1}+1, \ell_{2}}^{\left(i_{2}\right)} \cdots R_{\ell_{m-1}+1, \ell_{m}}^{\left(i_{m}\right)} \in H_{r, n}
$$

Characters. For each standard tableau L of size n and for $1 \leq k<\ell \leq n$ and $0 \leq i \leq r-1$, define

$$
\Delta_{k \ell}^{(i)}(L)=\operatorname{ct}(L(k))^{i}\left(T_{k+1}\right)_{L L}\left(T_{k+2}\right)_{L L} \cdots\left(T_{\ell}\right)_{L L}
$$

and for $1 \leq k \leq n$, we define $\Delta_{k k}^{(i)}(L)=\operatorname{ct}(L(k))^{i}$. Let $\Delta^{(i)}(L)=\Delta_{1, n}^{(i)}(L)$, and for any shape λ (possibly skew), define

$$
\Delta^{(i)}(\lambda)=\sum_{L \in \mathcal{L}(\lambda)} \Delta^{(i)}(L)
$$

Let $\chi_{H_{r, n}}^{\lambda}$ denote the character of the irreducible $H_{r, n}$-representation V^{λ}. The following theorem is our analogue of the Murnaghan-Nakayama rule.
Theorem 1. Let $\vec{\ell}=\left(\ell_{1}, \ldots, \ell_{m}\right)$ be an \mathcal{S}_{n}-sequence, $\vec{i}=\left(i_{1}, \ldots, i_{m}\right)$ be a $\mathbb{Z}_{r^{-}}$ sequence, and suppose that λ is an r-partition of size n. Then
$\chi_{H_{r, n}}^{\lambda}\left(T_{\bar{l}}^{\dot{i}}\right)=\sum_{\theta=\mu^{(0)} \subseteq \mu^{(1)} \subseteq \cdots \subseteq \mu^{(m)}=\lambda} \Delta^{\left(i_{1}\right)}\left(\mu^{(1)}\right) \Delta^{\left(i_{2}\right)}\left(\mu^{(2)} / \mu^{(1)}\right) \cdots \Delta^{\left(i_{m}\right)}\left(\mu^{(m)} / \mu^{(m-1)}\right)$,
where the sum is over all sequences of shapes $\emptyset=\mu^{(0)} \subseteq \mu^{(1)} \subseteq \cdots \subseteq \mu^{(m)}=\lambda$ such that $\left|\mu^{(j)} / \mu^{(j-1)}\right|=\left|\ell_{j}\right|$.

To give an explicit formula for the value of $\Delta^{(i)}(\lambda)$, we say that the shape λ is a border strip if it is connected and does not contain any 2×2 block of boxes. The shape λ is a broken border strip if it simply does not contain any 2×2 block of boxes. Therefore, a broken border strip is a union of connected components, each of which is a border strip. A sharp corner in a border strip is a box with no box above it and no box to its left. A dull corner in a border strip is a box that has a box to its left and a box above it but has no box directly northwest of it.
Theorem 2. Let λ be any shape (possibly skew) with n boxes. Let CC be the set of connected components of λ, and let $c c=|C C|$ be the number of connected components of λ.
(a) If λ is not a broken border strip, then $\Delta^{(k)}(\lambda)=0$;
(b) If λ is a broken border strip, then

$$
\Delta^{(0)}(\lambda)=\left(q-q^{-1}\right)^{c c-1} \prod_{b s \in \mathrm{CC}} q^{c(b s)-1}\left(-q^{-1}\right)^{r(b s)-1}
$$

and, for $1 \leq k \leq r-1$,

$$
\begin{aligned}
\Delta^{(k)}(\lambda) & =\left(-q+q^{-1}\right)^{c c-1}\left(\prod_{s \in \mathrm{SC}} \mathrm{ct}(s)\right)\left(\prod_{d \in \mathrm{DC}} \operatorname{ct}(d)^{-1}\right) \\
& \times \prod_{b s \in \mathrm{CC}} q^{c(b s)-1}\left(-q^{-1}\right)^{r(b s)-1} \sum_{t=0}^{\mid \mathrm{DC\mid}}(-1)^{t} e_{t}(\operatorname{ct}(\mathrm{DC})) h_{k-t-c c}(\mathrm{ct}(\mathrm{SC}))
\end{aligned}
$$

where SC and DC denote the set of sharp corners and dull corners in λ, respectively, and if $b s$ is a border strip, then $r(b s)$ is the number of rows in $b s$, and $c(b s)$ is the number of columns in bs. The function $e_{t}(\operatorname{ct}(\mathrm{DC}))$ is the elementary symmetric function in the variables $\{\operatorname{ct}(d), d \in \mathrm{DC}\}$, and the function $h_{k-t-c c}(\mathrm{ct}(\mathrm{SC}))$ is the homogeneous symmetric function in the variables $\{\operatorname{ct}(s), s \in \mathrm{SC}\}$.

CHARACTERS OF IWAHORI-HECKE ALGEBRAS OF $G(r, p, n)$

Characters of Iwahori-Hecke Algebras of $G(r, p, n), p>1$.
Let $\varepsilon=e^{2 \pi i / p}$ be a primitive p th root of unity, and let q and $x_{1}^{1 / p}, \ldots, x_{d}^{1 / p}$ be indeterminates. Then $H_{r, n}$ is the associative algebra with 1 over the field $\mathbb{C}\left(x_{1}^{1 / p}, \ldots, x_{d}^{1 / p}, q\right)$ given by generators T_{1}, \ldots, T_{n}, and relations
(1) $T_{i} T_{j}=T_{j} T_{i}$, for $|i-j|>1$,
(2) $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$, for $2 \leq i \leq n-1$,
(3) $T_{1} T_{2} T_{1} T_{2}=T_{2} T_{1} T_{2} T_{1}$,
(4) $\left(T_{1}^{p}-x_{1}\right)\left(T_{1}^{p}-x_{2}\right) \cdots\left(T_{1}^{p}-x_{d}\right)=0$,
(5) $\left(T_{i}-q\right)\left(T_{i}+q^{-1}\right)=0$ for $2 \leq i \leq n$.
This is the same as the earlier definition of the algebra $H_{r, n}$ except that we are using $\varepsilon^{\ell} x_{k}^{1 / p}, 1 \leq k \leq d, 0 \leq \ell \leq p-1$, in place of u_{1}, \ldots, u_{r}. Let $H_{r, p, n}$ be the subalgebra of $H_{r, n}$ generated by the elements

$$
a_{0}=T_{1}^{p}, \quad a_{1}=T_{1}^{-1} T_{2} T_{1}, \quad \text { and } \quad a_{i}=T_{i}, \quad 2 \leq i \leq n
$$

Ariki [Ari] shows that $H_{r, p, n}$ is an analogue of the Iwahori-Hecke algebra for the groups $G(r, p, n)$.

Representations. We organize each r-partition λ of size n into d groups of p partitions each, so that we can write

$$
\lambda=\left(\lambda^{(k, \ell)}\right), \quad \text { for } 0 \leq k \leq d-1 \text { and } 0 \leq \ell \leq p-1,
$$

where each $\lambda^{(k, \ell)}$ is a partition and $\sum_{k, \ell}\left|\lambda^{(k, \ell)}\right|=n$. It is convenient to view the partitions $\lambda^{(k, 0)}, \ldots, \lambda^{(k, p-1)}$ as all lying on a circle so that we have d necklaces of partitions, each necklace with p partitions on it. In order to specify this arrangement, we shall say that λ is a (d, p)-partition.

Since $H_{r, p, n}$ is a subalgebra of $H_{r, n}$, the irreducible $H_{r, n}$-representations V^{λ} are (not necessarily irreducible) representations of $H_{r, p, n}$. With the given specializations of the u_{i}, the content of a box b of λ is

$$
\operatorname{ct}(b)=\varepsilon^{\ell} x_{k}^{1 / p} q^{2(j-i)}, \quad \text { if } b \text { is in position }(i, j) \text { in } \lambda^{(k, \ell)} .
$$

It follows that the action of $H_{r, p, n}$ on V^{λ} is given by

$$
\begin{aligned}
& a_{0} v_{L}=\operatorname{ct}(L(1))^{p} v_{L}=x_{k} v_{L}, \quad \text { if } 1 \in L^{(k, \ell)}, \\
& a_{1} v_{L}=\left(T_{2}\right)_{L L} v_{L}+\frac{\operatorname{ct}(L(1))}{\operatorname{ct(}\left(s_{2} L(1)\right)}\left(q^{-1}+\left(T_{2}\right)_{L L}\right) v_{s_{2} L}, \\
& a_{i} v_{L}=\left(T_{i}\right)_{L L} v_{L}+\left(q^{-1}+\left(T_{i}\right)_{L L}\right) v_{s_{i} L} .
\end{aligned}
$$

Irreducible Representations. Let $\lambda=\left(\lambda^{(k, \ell)}\right)$ be a (d, p)-partition. We define an operation σ that moves the partitions on each circle over one position. Given a box b in position (i, j) of the partition $\lambda^{(k, \ell)}$ then $\sigma(b)$ is the same box b except moved to be in position (i, j) of $\lambda^{(k, \ell+1)}$, where $\ell+1$ is taken modulo p. The map σ is

T. HALVERSON AND A. RAM

an operation of order p and acts uniformly on the shape $\lambda=\left(\lambda^{(k, \ell)}\right)$, on standard tableaux $L=\left(L^{(k, \ell)}\right)$ of shape λ, and on the basis vector v_{L} of V^{λ} :

$$
\sigma(\lambda)=\left(\lambda^{(k, \ell+1)}\right), \quad \sigma(L)=\left(L^{(k, \ell+1)}\right), \quad \text { and } \quad \sigma\left(v_{L}\right)=v_{\sigma(L)}
$$

In the last case, extend linearly to get the vector space homomorphism $\sigma: V^{\lambda} \longrightarrow$ $V^{\sigma(\lambda)}$. We prove that the map $\sigma: V^{\lambda} \rightarrow V^{\sigma(\lambda)}$ is an $H_{r, p, n}$-module isomorphism, and thus the set of transformations $\left\{\sigma^{\alpha} \mid 0 \leq \alpha \leq p-1\right\}$ defines an action of the cyclic group $\mathbb{Z} / p \mathbb{Z}$ on the set of (d, p)-partitions and on the set of vector spaces V^{λ}.

Now let K_{λ} be the stabilizer of λ under the action of $\mathbb{Z} / p \mathbb{Z}$. The group K_{λ} is a cyclic group of order $\left|K_{\lambda}\right|$ and is generated by the transformation $\sigma^{f_{\lambda}}$ where f_{λ} is the smallest integer between 1 and p such that $\sigma^{f_{\lambda}}(\lambda)=\lambda$. The elements of K_{λ} are all $H_{r, p, n}$-module isomorphisms, and it follows that as an $H_{r, p, n} \times K_{\lambda}$-bimodule

$$
V^{\lambda} \cong \bigoplus_{j=0}^{\left|K_{\lambda}\right|-1} V^{(\lambda, j)} \otimes Z_{j}
$$

where $V^{(\lambda, j)}$ is an irreducible $H_{r, p, n}$-module and Z_{j} is the irreducible K_{λ}-module with character η_{j}.

Characters. Let $\chi^{(\lambda, j)}$ denote the character of the irreducible $H_{r, p, n}$-module $V^{(\lambda, j)}$, and let χ^{λ} denote the $H_{r, p, n} \times K_{\lambda}$-bitrace on the module V^{λ}. By taking traces in the module equation above and applying orthogonality of characters for K_{λ} we derive the character formula:

$$
\chi^{(\lambda, j)}(h)=\frac{1}{\left|K_{\lambda}\right|} \sum_{\alpha=0}^{\left|K_{\lambda}\right|-1} \varepsilon^{-j \alpha f_{\lambda}} \chi^{\lambda}\left(h \sigma^{\alpha f_{\lambda}}\right), \quad \text { where } f_{\lambda}=p /\left|K_{\lambda}\right|
$$

Thus, we are interested in computing the values of the bitrace $\chi^{\lambda}\left(h \sigma^{\alpha f_{\lambda}}\right)$.
Standard Elements. Define elements $S_{i} \in H_{r, p, n}, 1 \leq i \leq n$, by

$$
\begin{aligned}
& S_{1}=a_{0}=t_{1}^{p} \\
& S_{2}=a_{1} a_{2}=t_{1}^{-1} t_{2} \\
& S_{i}=a_{i} a_{i-1} \cdots a_{4} a_{3} a_{1} a_{2} a_{3} a_{4} \cdots a_{i-1} a_{i}=t_{1}^{-1} t_{i}, \quad \text { for } 3 \leq i \leq n
\end{aligned}
$$

For $1 \leq k \leq n$, define $S_{k k}^{(i)}=S_{k}^{i}$ and define $\tilde{S}_{12}^{(i)}=S_{1}^{i} a_{1}$. For all other $k<\ell$, define

$$
S_{k \ell}^{(i)}=S_{k}^{i} a_{k+1} \cdots a_{\ell}, \quad \text { and } \quad \tilde{S}_{1 \ell}^{(i)}=S_{1}^{i} a_{1} a_{3} \cdots a_{\ell}
$$

Let $\left(\ell_{1}, \ldots, \ell_{m}\right)$ be an \mathcal{S}_{n}-sequence and let $\left(i_{1}, \ldots, i_{m}\right)$ be a \mathbb{Z}_{r}-sequence. We prove that is sufficient to compute the values of $\chi^{\lambda}\left(h \sigma^{\alpha f_{\lambda}}\right)$, for elements $h \in H_{r, p, n}$ of the form $R_{1, \ell_{1}}^{\left(i_{1}\right)} R_{\ell_{1}+1, \ell_{2}}^{\left(i_{2}\right)} \cdots R_{\ell_{m-1}+1, \ell_{m}}^{\left(i_{m}\right)}$, where $i_{1}+\cdots+i_{m}=0(\bmod p)$.
Our result is as follows:

Theorem 3. Let λ be $a(d, p)$-partition, where $p d=r$. Let α be such that $0 \leq \alpha \leq$ $\left|K_{\lambda}\right|-1$. Define

$$
f_{\lambda}=p /\left|K_{\lambda}\right|, \quad \text { and } \quad \gamma=\frac{\left|K_{\lambda}\right|}{\operatorname{gcd}\left(\alpha,\left|K_{\lambda}\right|\right)}
$$

Let

$$
h=R_{1, \ell_{1}}^{\left(i_{1}\right)} R_{\ell_{1}+1, \ell_{2}}^{\left(i_{2}\right)} \cdots R_{\ell_{m-1}+1, \ell_{m}}^{\left(i_{m}\right)}
$$

where $\left(\ell_{1}, \cdots, \ell_{m}\right)$ is an \mathcal{S}_{n}-sequence and $\left(i_{1}, \cdots, i_{m}\right)$ is a \mathbb{Z}_{r}-sequence such that $i_{1}+\cdots+i_{m}=0(\bmod p)$. The element h is an element of $H_{r, p, n} \subseteq H_{r, n}$. If all ℓ_{i} in the sequence $\left(\ell_{1}, \ldots, \ell_{m}\right)$ are divisible by γ then define

$$
\begin{gathered}
\bar{n}=n / \gamma, \quad \bar{r}=r / \gamma, \quad \bar{p}=p / \gamma \\
\\
\left(\bar{\ell}_{1}, \ldots, \bar{\ell}_{m}\right)=\left(\ell_{1} / \gamma, \ldots, \ell_{m} / \gamma\right) \\
\bar{\lambda}^{(k, \tau)}=\lambda^{(k, \tau)}, \quad \text { for } 0 \leq \tau \leq \bar{p}-1 \quad \text { and } \quad \bar{h}=R_{1, \bar{\ell}_{1}}^{(0)} \cdots R_{\bar{\ell}_{m-1}+1, \bar{\ell}_{m}}^{(0)} .
\end{gathered}
$$

Then:
(a) If ℓ_{i} is not divisible by γ for some $1 \leq i \leq m$ then $\chi^{\lambda}\left(h \sigma^{\alpha f_{\lambda}}\right)=0$.
(b) If all ℓ_{i} are divisible by γ and if $i_{k} \neq 0$ for some k, then $\chi^{\lambda}\left(h \sigma^{\alpha f_{\lambda}}\right)=0$.
(c) If all ℓ_{i} are divisible by γ and if $i_{k}=0$ for all k, then

$$
\chi^{\lambda}\left(h \sigma^{\alpha f_{\lambda}}\right)=\frac{\gamma^{\bar{n}}}{[\gamma]^{\bar{n}-m}} \chi_{H_{f, A}}^{\bar{\lambda}}(\bar{h}) \prod_{i=1}^{\gamma}\left(\frac{q}{1-\varepsilon^{-i}}+\frac{q^{-1}}{1-\varepsilon^{i}}\right)^{\bar{n}}
$$

where $H_{\bar{r}, \bar{n}}$ is with parameter q^{γ}, in place of q and with parameters $\varepsilon^{\gamma \tau} x_{k}^{\gamma}$, $0 \leq k \leq d-1,0 \leq \tau \leq \bar{p}-1$, in place of $u_{1}, \ldots, u_{\bar{r}}$. The element \bar{h} is viewed as an element of the algebra $H_{\bar{F}, \bar{n}}$ and $[\gamma]=\left(q^{\gamma}-q^{-\gamma}\right) /\left(q-q^{-1}\right)$.

The Method of Proof for Theorem 2.

In all of the original derivations [Ram],[KW],[vdJ] of the Murnaghan-Nakayama rules for Iwahori-Hecke algebras of types A_{n-1} the key was essentially to use the theory symmetric functions and Schur polynomials, and the Schur-Weyl duality between the Iwahori-Hecke algebras of type A_{n-1} and the Drinfel'd-Jimbo quantum groups $U_{q}(\mathfrak{g l}(m))$. This approach seems to be quite challenging for $H_{r, n}, r>1$, although some progress has been made (see [ATY]).

Curtis Greene uses the theory of partially ordered sets and Möbius functions to prove a rational function identity ([Gre], Theorem 3.3) which can be used to derive the Murnaghan-Nakayama rule for symmetric group characters. We extend Greene's poset theorem so that it can be applied to computing MurnaghanNakayama rules, Theorem 2, for the irreducible characters of the Iwahori-Hecke algebras of $\mathbb{Z}_{r}\left\{\mathcal{S}_{n}\right.$. The extended poset theorem stands on its own as a result for planar posets, so it is stated here.

Throughout this explanation \hat{P} will denote a planar poset with unique minimal element u, and $P=\hat{P}-\{u\}$ will be the poset obtained by removing the minimal element u from \hat{P}. We let SC be the set of minimal elements of P, and we call these elements sharp corners. Two sharp corners s_{1} and s_{2} of SC are "adjacent" if
they are not separated by another sharp corner as the boundary of P is traversed. If s_{1} and s_{2} are adjacent elements of SC and the least common multiple $s_{1} \vee s_{2}$ exists, then we call $s_{1} \vee s_{2}$ a dull corner of P. We let DC denote the set of all dull corners of P. Finally, we let $c c$ denote the number of connected components of P, and note that $c c=|\mathrm{SC}|-|\mathrm{DC}|$.

Let $\left\{x_{a}, a \in \hat{P}\right\}$, be a set of commutative variables indexed by the elements of \hat{P}. For each $0 \leq k \leq r-1$ and each pair $a<b$ in \hat{P}, define a weight, $w t^{(k)}(a, b)$, by

$$
\begin{array}{ll}
w t^{(k)}(a, b)=\frac{1-x_{a} x_{b}^{-1}}{q-q^{-1}} & \text { for all } a, b \in P, \text { and } \\
w t^{(k)}(u, a)=x_{a}^{-k} & \text { for all } a \in P
\end{array}
$$

Then for any planar poset \hat{P} with unique minimal element u, define

$$
\Delta^{(k)}(\hat{P})=\prod_{\substack{a, b \in p \\ a \neq b}} w t^{(k)}(a, b)^{\mu_{p}(a, b)}
$$

where $\mu_{\dot{P}}(a, b)$ is the Möbius function for the poset \hat{P}.
The following is our extension of the poset theorem:
Theorem 4. Let \hat{P} be a planar poset with unique minimal element u. Let $P=$ $\hat{P} \backslash\{u\}$. Then

$$
\sum_{\hat{L} \in \mathcal{L}(\hat{P})} \Delta^{(0)}(\hat{L})=\left(q-q^{-1}\right)^{c c-1} \Delta^{(0)}(P)
$$

and, for $1 \leq k \leq r-1$,

$$
\begin{aligned}
& \sum_{\hat{L} \in \mathcal{L}(\dot{P})} \Delta^{(k)}(\hat{L})=\Delta^{(k)}(P)\left(-q+q^{-1}\right)^{c c-1}\left(\prod_{s \in \mathrm{SC}} x_{s}\right)\left(\prod_{d \in \mathrm{DC}} x_{d}^{-1}\right) \\
& \times \sum_{t=0}^{|\mathrm{DC}|}(-1)^{t} e_{t}\left(x_{\mathrm{DC}}\right) h_{k-t-c c}\left(x_{\mathrm{SC}}\right)
\end{aligned}
$$

where $c c$ is the number of connected components of $P, e_{t}\left(x_{\mathrm{DC}}\right)$ is the elementary symmetric function in the variables $\left\{x_{d}, d \in \mathrm{DC}\right\}$, and $h_{k-t-c c}\left(x_{\mathrm{SC}}\right)$ is the homogeneous symmetric function in the variables $\left\{x_{s}, s \in \mathrm{SC}\right\}$.

References

[Ari] S. Ariki, Representation theory of a Hecke algebra of $G(r, p, n)$, J. Algebra 177 (1995), 164-185.
[AK] S. Ariki and K. Koike, A Hecke algebra of $(\mathbb{Z} / r \mathbb{Z}) \backslash S_{n}$ and construction of its irreducible representations, Adv. in Math. 106 (1994), 216-243.
[ATY] S. Ariki, T. Terasoma, and H. Yamada, Schur-Weyl reciprocity for the Hecke algebra of $(\mathbb{Z} / r \mathbb{Z}) / \mathcal{S}_{n}$, J. Algebra 178 (1995), 374-390.
[BM] M. Broué and G. Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993), 119-189.

CHARACTERS OF IWAHORI-HECKE ALGEBRAS OF $G(r, p, n)$

[GP] M. Geck and G. Pfeiffer, On the irreducible characters of Hecke algebras, Adv. in Math. 102 (1993), 79-94.
[Gre] C. Greene, A rational function identity related to the Murnaghan-Nakayama formula for the characters of \mathcal{S}_{n}, J. Alg. Comb. 1 (1992), 235-255.
[HR] T. Halverson and A. Ram, Murnaghan-Nakayama rules for the characters of IwahoriHecke algebras of classical type, Trans. Amer. Math. Soc. (to appear).
[Hfs] P. N. Hoefsmit, Representations of Hecke algebras of finite groups with $B N$-pairs of classical type, Thesis, University of British Columbia, 1974.
[KW] R.C. King and B.G. Wybourne, Representations and traces of Hecke algebras $H_{n}(q)$ of type A_{n-1}, J. Math. Phys. 33 (1992), 4-14.
[Mac] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, 1979.
[Osi] M. Osima, On the representations of the generalized symmetric group, Math. J. Okayama Univ. 4 (1954).
[Pfe1] G. Pfeiffer, Character values of Iwahori-Hecke algebras of type B, Progress in Math., Birkhauser (to appear).
[Pfe2] G. Pfeiffer, Charakterwerte von Iwahori-Hecke-Algebren von klassischem Typ, Aachener Beiträge zur Mathematik, vol. 14, Verlag der Augustinus-Buchhandlung, Aachen, 1995.
[Ram] A. Ram, A Frobenius formula for the characters of the Hecke algebras, Invent. Math. 106 (1991), 461-488.
[ST] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
[Sta] R. Stanley, Enumerative Combinatorics, vol. I, Wadsworth \& Brooks/Cole, 1986.
[Ste] J. Stembridge, On the eigenvalues of representations of refiection groups and wreath products, Pacific J. Math. 140 (1989), 353-396.
[vdJ] J. van der Jeugt, An algorithm for characters of Hecke algebras $H_{n}(q)$ of type A_{n-1}, J. Phys. A 24 (1991), 3719-24.
[You] A. Young, Quantitative substitutional analysis I-IX, Proc. London Math. Soc. (1901-1952).

