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Abstract

Let I be an invariant of cubical complexes which may be expressed as a linear combination of the
number of faces of different dimensions. We prove that / is a nonnegative linear combination of the
entries of the Ron Adin A-vector, if it does not decrease when we add a new facet in a shelliDg. It
is known that the entries of the toric A-vector have this property, and we show that the same holds
for the "triangulation A-vector" which arises from the Hilbert series of the Stanley ring of a cubical
complex. Thus the nonnegativity of the Ron Adin A-vector implies the nonnegativity of all other
cubical A-vectors. We prove this nonnegativity for all cubical complexes obtained as a barycentric
subdivision of a simplicial sphere.

Resume

Soit I un invariant des complexes cubiques qui peat etre exprime comme une combinaison lineaire
des nombres de faces des difFerentes dimensioas. Nous demontrons que si I ne diminue pas quand on
ajoute une nouvelle facette a un effeuillage, alors I est une combinaison lineaire positive des elements
du /i-vecteur de Ron Adin. II est bien connu que les elements du /i-vecteur torique possedent cette
propriete, et nous montrons qu'elle est aussi vraie pour Ie "/i-vecteur de triangulation" qui provient
de la serie de Hilbert-Poincare de 1'anneau de Stanley d'un complexe cubique. Ainsi, la positivit^
du A-vecteur de Ron Adin implique la positivite de tous les autres A-vecteurs cubiques connus. Nous
demontrons cette positivite pour tout complexe cubique obtenu comme subdivision barycentrique
d'une sphere simpliciale.

L Introduction

In the past few years more and more efforts were made to find the cubical analogues to the upper
and lower bound theorems on the f-vectors (f-^fo,.. ., fd--i) of (d - l)-dimensional simplicial
spheres. (Here /, stands for the number of i-dimensional faces. ) In the simplicial case, these results
may be formulated in the most compact way by using the h-vector (ho, ..., hd) of the simplicial
complex, which is a vector of linear combinations of the /, 's. In terms of the /i-vector the Upper
Bound Theorem tells us that we have

^(/»-<i,+t-1) foo,, <[^]
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for every simplicial (d - l)-sphere, and the Generalized Lower Bound Theorem is equivalent to
saying that the /i, 's form a unimodal sequence. Moreover, the A-vector is nonnegative for simplicial
spheres, and the Dehn-Sommerville equations, which generate all linear relations holding for the
/-vector of a simplicial sphere are equivalent to the relations

hi = hd-i for i = 0, 1,... , rf.

References to all these results may be found in [12]. In the proof of the Upper Bound Theorem, the
/i-vector occured in the numerator of the Hilbert series of the Stanley-Reisner ring of a simplicial
complex (see [11]). The cd-index of a simplicial Eulerian partially ordered set was described by
Stanley in [15, Theorem 3. 1] in terms of its A-vector, such that the nonnegativity of the cd-index
of Gorenstein* simplicial posets became a consequence of the nonnegativity of their A-vector.

In the focus of the study of cubical complexes stood the search for the "right" cubical ana-
logue of the simplicial h-vector. Three ^-vectors were introduced, each of which preserved some
properties of the simplicial original. The first was the toric h-vector, defined by Stanley in greater
generality for Eulerian partially ordered sets in [14], which is nonnegative and unimodal for cubical
rational polytopes. Unfortunately, this unimodality does not seem to yield the strongest possible
lower bound results for the /-vector of a cubical sphere. Clara Chan has proved in [4] that the
toric h-vectoT of shellable cubical complexes is nonnegative.

The second A-vector, which we call here triangulation h-vector, was studied by Hetyei in
[7]. This A-vector occurs in the numerator of the Hilbert series of the Stanley ring of a cubical
complex, which is a cubical analogue of the Stanley-Reisner ring of a simplicial complex. It is
also nonnegative for shellable cubical complexes, and in the case of cubical polytopes it arises as
the (simplicial) ^-vector of the triangulation via pulling the vertices. Although for a large class of
cubical convex polytopes the triangulation A-vector has the exotic property of being the /-vector
of a simplicial complex, and this fact provides many examples to an interesting commutative
algebraic conjecture of Eisenbud, Green and Harris, this A-vector seems also to be too large to
help expressing the strongest lower and upper bound inequalities for the /-vector of a cubical
sphere.

The third A-vector, which we call the Ron Adin h-vector, was defined by Ron Adin in [1]. ^From
the very beginning, this A-vector seemed to be winning over the other two. Just like the toric
and the triangulation A-vectors, it is nonnegative for shellable cubical complexes, and the cubical
Dehn-Sommerville equations are equivalent to the relations h, = h^-i for i = 0, 1,..., c?. But
this /i-vector has also further properties reminiscent of the simplicial one. First, the (normalized)
Ron Adin /i-vector of a cube is (1,..., 1), just like in the simplicial case. Second, the conjectured
unimodality of the Ron Adin ^-vector includes for ho <^ h-i the first nontrivial inequality proved by
Blind and Blind in [2], and for hi <: ,13 the cubical lower bound conjecture made by Jockusch in
[8]. Third, as Ehrenborg and Hetyei have shown in [6], the Ron Adin ̂ -vector occurs in a cubical
analogue of Stanley's result [15, Theorem 3. 1] on the cc?-index of simplicial Eulerian posets.

Now we add one more result indicating that the Ron Adin ^-vector is the "right" cubical
analogue to prove strong inequalities about the /-vector of cubical spheres. Our Theorem 2. 2 in
Section 2 implies that every linear combination of the /, 's which does not decrease when we add
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a new facet in a shelling of a shellable cubical complex, is a nonnegative linear combination of the
Ron Adin A, s. As a. consequence, by Clara Chan's proof of the nonnegativity of the tone ft-vector
of shellable cubical complexes, the toric /i-vector is nonnegative whenever the same holds for the
Ron Adin A-vector. In Section 3 we prove that also the triangulation /i-vector has the required
nondecreasing property for shellings. (In [7] only the nonnegativity of the triangulation h-vector
of an entire shellable cubical complex is proved). Therefore both toric and triangulation A-vectors

- are nonnegative for cubical spheres, if the same holds for the Ron Adin /i-vector.

Finally, in Section 4 we prove the nonnegativity of the Ron Adin ^-vector for a special class
of cubical spheres: for those cubical complexes which are obtained from simplicial spheres via
barycentric subdivision. The cubical spheres belonging to this class are not necessarily shellable.

Acknowledgements I wish to thank to Frangois Bergeron and Richard Stanley for fruitful dis-
cussions ajid useful advice. A referee of the Annales des Sciences Mathematiques du Quebec,
(the journal, where the article-version of this work will appear), has helped me to simplify the
presentation of section 3.

1 Prelinainaries

Definition 1. 1 A cubical complex C is a family of finite sets (called faces) on a vertex set V,
such that C is closed under intersection, {v}   C holds for all v ^. V, and for every face a G. C the
set of faces contained in a and ordered by inclusion is isomorphic to the lattice of faces of a cube.

A maximal face of a cubical complex is called a facet, and the number dim(o-) = rank([0, o-]) - 1
is called the dimension of the face cr. The dimension of a cubical complex C is the maximum of
the dimensions of its faces. Given a (c?- l)-dimensional cubical complex C, we denote the number
of its faces of dimension k by fk, and we call the vector (/_i, /o,..., fd-i) the f-vector of C.

The simplest example of a cubical complex is the collection Cd of faces of a standard ri-cube.
This complex may be geometrically realized as the family of vertex sets of the faces of [0, l]d C K .
We call a bijection <f> : V(Cd] - > {0, l}d sending faces into vertex sets of faces of [0, l]d a standard
geometric realization of Cd. Using this realization, we may define balls and spheres as follows.

Definition 1. 2 A collection {F\, F-i,. .., Fk} of facets of the boundary of a d-cube is called a
k

(d- 1)-dimensioned ball or a (d - l)-dimensional sphere respectively, if the set [j conv(^(F, )) is

homeomorphic to a (d - ]. )-dimensional ball or sphere respectively.
t=l

This definition is combinatorial because of the following observation, originally due to Ron Adin
and Clara Chan. Given a collection of facets of 9Cd, let r be the number of facets F, such that
the facet opposite to jF, does not belong to {Fi, F'2,... , Fk}, and let s be the number of pairs of
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opposite facets {F., F;} C {Fi, F-2,.. ., Fk}. (Obviously we have r + 2s = k.) We call (r, s) the
type of the collection {F^F-i,... ̂  Fk}. Using the notion of type we may characterize balls cind
spheres in the following way.

Lemma 1.3 The collection of facets {Fi, ..., Fk} of the boundary of a d-cube is a (d- l)-sphere
if and only if it has type (0, d) and it is a (d - l)-ball if and only if its type (r, s) satisfies r > 0.

Given a face o- of a cubical complex C we call the cubical complex {r   (J : T C o-} the
restriction of C to a, and we denote it by C[<r.

Definition 1. 4 A cubical complex C z'5 pure if all facets of C have the same dimension. We define
shellable cubical complexes as follows.

1. The empty set is a ((-l)-dimensional) shellable cubical complex.
2. A point is a (zero-dimensional) shellable complex.
3. A d-dimensional pure complex C is shellable if its facets can be listed in a linear order

FI,. .. , Fn (called a shelling^, such that for each A;   {2,... , n} the subcomplex C\p^ D (C\^ U
. . . UC|Fit_^) is a pure complex of dimension (d-1) and its maximal dimensional faces form
a (d - l)-dimensional ball or sphere.

By abuse of notation we say that the attachment of C|j^ to C\pi U .. . U C\p^_^ in a shelling
Fo, Fi,..., Fk has type (r, s) if the set of facets of C\p,, n (C\p, U ... U C|j7, _J considered as a
collection of facets of C\p^ has type (r, s).

Lemma 1. 5 When we add a facet of attachment type (r, s) to the shelling of a (d-l)-dimensional
cubical complex, the number ofj-faces increases by

<r^ fd-l-s>

u+v=j-a \u,
u, v>0

.2id-l-s-v

for s ^. j <: d-\, and remains unchanged for all other j '.'.

Definition 1.6 A simplicial complex A is a family of subsets of a finite set V such that {v}   A
for all v G. V and A is closed under taking subsets. The elements o/A are called faces.

Observe that this definition may be rephrased in a way analogous to Definition 1. 1.

We introduce the notion of face, dimension, /-vector and shellability similarly to the cubical
case, and we define the h-vector (ho, ..., hd) of a, (d - l)-dimensional simplicial complex by the
formula

d

s
1=0

d-1

^h, -tt d=f S/,. ^+1. (1-^-J-1.
j=-l

(1)
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2 Invariants in terins of the Ron Adin /i-vector

Definition 2. 1 Let C be a cubical complex of dimension d - 1 with f-vector (/_i, /o,..., fd-i)-
The (normalized) Ron Adin A-vector of C is defined by

d d
, fiA . ̂ . ^hRA{x}=Y. hRA-xt ^E/.-r^^

i=0 j=0

where the polynomials Cj(x) are given by

f l-(-^)d+l

Cj{x)=
1+x

if J = 0,

2,-..,,. (1-^-, +(-1)<-,. ^. ^^^^
1 + x

Observe that we divided the A-vector given by R. Adin in [1] by 2d-l in order to obtain ho = 1.
Due to this normalization, [1, equation (19)] takes the following form.

/.-i = 2d-J . E (^:^ . (AfA + ^4) for 1 ^ j < <f,

Equivalently, after replacing j with j +l, we have

/, = 12J-J- . ((^0 + £tM . ((<^>)+ (^9)+ hR^ for 1 ^^«'- 1, 
(2)

2d-1. (1+ hRA) for j = 0.

Theorem 2. 2 Let I be an invariant of (d - l)-dimensional cubical complexes which may be ex-
pressed as a linear combination of the fi 's. Then I is a nonnegative linear combination of the
/iAA 's if and only if the following hold:

(i) I(Cd~1) ^ 0, i. e., the value of I on the face complex of a {d - l)-cube is nonnegative.

(ii) in any shelling of any (d - l}-dimensional shellable complex, adding a facet of attachment
type (1, i) (where z = 0, l,..., rf - 2). or of attachment type (0, ri - 1) does not decrease I.

d-1

Proof: Assume first that the conditions (i)-(ii) hold, and we have I = ^ Qj . fj. Then, using
J=-l

equation (2), for every (d - 1) dimensional cubical complex C we may write

I(C) = ^ a,. /, =a-i+ao. 2d-l. (l+AfA)
J=-l

d-l

. E.. -(C^^)^kM-(Gd ^^C--;. --9)+ÎJ+11 .
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d-1
Observe that o;_i + ^ Qj . 2d--7-l . (^7^1) ls ̂ e value of -^ on the face complex of a (d - l)-cube.

j=b \a~3'
Hence we have

id-l 1. A4I(C) = 7(Cd-1)+ao . 2d-1 . ^

+I:^-2^-1. |E^
J=l \<=1

.'u-(C'^i)+C--r-li))+^.J+l

= ^. w^^. ^^. ^. ((/_-^_^(/_-^_^
d-l {d-\

+E^-|E^-2^-1-
.=2 \. ;=.

d-i \ fd-i-1

,d-j-l)+[d-j-l+11; !. J ]+ Q. -i . 2d~t I + ^?A . ^-r

It is easy to verify that forl ^ i ^d-1, the coefficient of hRA in the last sum is the double of the
change of I when we add a facet of attachment type (1, ?- 1) to a (c?- l)-dimensional shellable
cubical complex. In fact, foTJ=i, i+l,..., d-2 the number of ̂ '-faces added is

e--;:--3-2-+C--r-3-2--(C--;--3+2-C--r-;. )).
and, using the identity (^^) = (^ + (^^), we may write this as

^. ((/-r-Mr-^)-
The number of (i - l)-faces added is 2d-t 1, the number of (d - l)-faces added is 1.

Finally, the coefficient of h^A is the change of I when we add a facet of attachment type
(0, d- 1) to a (c? - l)-dimensional shellable cubical complex. Therefore the coefficient of each hi
is nonnegative by our assumptions.

The converse is a corollary of the proof of [1, Theorem 5]. D

Remark 1 Observe that Theorem 2. 2 provides an alternative definition for the Ron Adin h-
vector.

Example The toric h-vector. In [4] Clara Chan proves that the tone ̂ -vector of a shellable cubical
complex is nonnegative. In her proof she shows that at the adding of each new facet in a shelling,
the toric /i;'s change by a nonnegative number. By Theorem 2. 2 the A, 's may be expressed as
nonnegative linear combinations of h§A, ..., h^-A. Hence the tone A-vector of a cubical sphere is
nonnegative if the same holds for the Ron Adin /i-vector.
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3 The A-vector of the Stanley ring

In this section we study the A-vector introduced in [7], and show that Theorem 2. 2 is applicable
to it.

Given a cubical complex C over vertex set V, the Stanley ring K[C} of this C over a field K
is defined as the factor of the polynomial ring K[x^ : v e. V] by the ideal I(C) generated by
all monomials a;,,, . x^-. . x^ such that {vi,..., Vk} is not contained in any face of C, and by all
binomials Xu- Xv- x^' . Xyi such that {u, v} and {u/, v'} are diagonals of the same face.

In [7, Theorem 3] we have shown that the Hilbert-series of the Stanley ring K[C] of a (<f- 1)-
dimensional cubical complex C is given by

d-1

We have introduced

H(K[C], t)=l+^f,. ^(k-l)i. tk.
«=0 k=l

. d^l
/.A d^f J S /; . S(iJ) . j\ when 0<j^d-l
I] - } i=j

1 when j = -1

(3)

(4)

and we have transformed (3) into the following equivalent form.

d-l

E/;f^. +t+l (1-f) d-i-1

^WC], f)= t'=-l

)d(!-<) (5)

The vector (/Ai,... , /J^. i) is the /-vector of a simplicial complex associated to C. When C is the
boundary complex of a cubical polytope then (/Ai,... , /^. i) is the /-vector of a triangulation of
the boundary. Thus we call the A-vector defined by

^hf. xi d={ ^/A. ^. (l-^-i
t=0 t=-l

the triangulation h-vector of C.

In the proof of the main result of this section we will apply the following lemma.

Lemma 3. 1 Let $a, i>,c(<) denote the formal power series Y, ka . {k+ I)6 - (k + 2)c . tk, where a, b
*;>0

and c be natural numbers. Then the following hold.

(i) We have $a, fc,c(<) = ^ ^^^. i. fc'+c+i» w^ere Aa, &, c(<) !5 a polynomial with integer coefficients,
of degree at most a + 6+ c.
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(ii) Ifb>0 then the degree of Aa,b,c(t) is at most a + 6+c- 1.

(iii) Ifb>0 or c=0 then Aa,b,c(t) has only nonnegative coefficients.

The three statements of the lemma may be proved by induction on a+ 6+ c, using differential
. equations for $a,6,c(<)-

Remark 2 The polynomials Aa, j>, c(<) are generalizations of the Eulerian polynomials. It is well
known that for6= c = 0 the coefficient A^o. o (where i = l,..., a) is the number of those
permutations <7 of the set {1,..., a}, which have (i-1) rises, i.e., which satisfy |{j   {1, 2,..., a} :
<^(j) < ^{3 +1)}1 = ^ - 1. See, e.g. [5, Section 6. 5].

Remark 3 In the case when a ^ 6> c, the polynomial Aa, i>,c(^) occurs as a special case of a
generalization of Eulerian polynomials, see [13, Chapter 4, Exercise 26].

Theorem 3.2 The invariants h^, h^,..., and h^ are nonnegative linear combinations of the Ron
Adin h-vector.

Proof (Sketch): We need only to show that the conditions of Theorem 2. 2 are satisfied.

Let us compute the change of H{K[C}, t) when we add a shelling component of type (r, s) to a
(d - l)-dimensional shellable cubical complex, where r>0or5=d-l. Using Lemma 1.5, after
some calculation we obtain that this change is

_ t . As, r,d-l-r-sW
J'^ = -n _ f\d -.

Hence the change of E hf . tj is t . A,, r,d-i-r-, (<), which is a polynomial with nonnegative coeffi-
3=0

cients by part (iil) of Lemma 3. 1.

Finally, similar calculations show that the value of T-C(K[Cd~'i], t), i.e., the Hilbert series of the
Stanley ring of a standard (d - l)-cube is equal to

KW-1], ')=.^^).
Hence the triangulation /i-vector of a standard (d - 1) cube satisfies

^/iA. (J=Ao, d-i.o(<),
J=0

and is also nonnegative by part (iii) of Lemma 3. 1. D
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Remark 4 The proofs of the Theorems 2. 2 and 3. 2 allow us to express the triangulation A-vector
of a (rf- l)-dimensional cubical complex in terms of its Ron Adin A-vector. We have the following
formula.

d-l

S hf . ti = h^ . Ao,,-i.o(<) +2 . ^AfA . <. A, -i,i.d-. -i(<) +h^A-t. A^,^(t). (6)
t'=l 1=1

Remark 5 The polynomials Aa, &,c(<) used in equation (6) are not covered in Remarks 2 and 3.
It is an interesting problem to find a combinatorial interpretation of all nonnegative A^;, 's.

4 Cubical barycentric subdivision of a simplicial sphere

In this section we prove that the Ron Adin A-vector of a cubical complex, which was obtained by
barycentric subdivision of a simplicial sphere, is nonnegative.

Definition 4. 1 Given a simplicial complex A, its first cubical barycentric subdivision is the
cubical complex C(A) defined as follows.

(i) The vertex set o/C(A) is the set of nonempty faces o/A.

(ii) The faces o/C(A) are the intervals of the face poset o/A, i. e., all sets of the form

[<7, r] ^/ {A6A : a^ACr}.

Remark 6 The partially ordered set Int(P) of intervals of a partially ordered set P is studied in
[13, Chapter 3, Exercises 7, 58]. Our definition is close to the special case, when P is the poset
of faces of a simplicial complex, the only difference being that we do not consider the intervals
containing the minimum element of P. When P is the face poset of a polytope, then we obtain
barycentric covers studied by Babson, Billera, and Chan in [3].

It is easy to verify that C(A) is a cubical complex, and that a geometric realization of A may
be extended to a geometric realization of C(A) by barycentrically subdividing the realization of
A into a cubical complex.

We can express the /-vector (/°i,..., fd-i) of C(A) in terms of the /-vector (/_i,..., fd-i) of
A as follows.

Aa = E (J t x) -^ holds for A: = 0, l,..., <f- 1. (7)
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Theorem 4. 2 The entries of the Ron Adin h-vector of the cubical subdivision C(A) of a simplicial
complex A may be expressed as nonnegative linear combinations of the entries of the (simplicial)
h-vector o/A.

Proof (Sketch): By Definition 2. 1 and equation (7), the Ron Adin /i-vector (h§A,... , hfA) of

C(A) satisfies the following.

thRA. tt = tf^-c, (t)=co(t)+i f (i+i)-/, -c^)
,=0 k=0 k=lj=k--i \'" "/

d d-\ /". _,_ i \ d-l J+lfj + r <j+r
= c°W+EE_(J, :lJ-/. -^)=<:°(<)+E/. -Z(^:i]-^).

k=l j=k-l \K ~ 1/ J=0 k=l \A' ~

Substituting Definition 2. 1, after some calculation we get

^ (j +1^ ^^ 21-d - (1 - <)d-j-2 . <. ((! + ()J+l - (2 . f)^+l) + (-l)d-^+l . ^+1
fc=l . k-1. Ck(t) = 1+t

Observe that (1) may be written as

d-1 d

z
i=0

E^-^+l=E/l. -f-(l+^-t-
J=-l

Putting all these observations together, after some calculation we get

^-. <.. 1±^^. ^,. ((^)--<.. (^)"-1).
Using /io = 1 we get

d

^hRA. ti = Ac. I
»=0

+
2 (1+t) d-1

+t ' l-t \l+t 2d-1

td+l , t f{l+t)d-1 2-td>
+hd'[T^t+r^'[~^~~TTt,

d-1

+ i-7' ^ Ki"
1=1

'l+t t-1

-f.. (l+t>
2

d-i-V

Here ho is multiplied with

^ 2d-1 . (l -<)+2d . * -*. (1 +<)d _ 2d-1 . (1 +f) -t. (1 +f)(i 2(i-1 -<. (!+ <)d-1
^0(0 -2^. (l+<). (l-f) = 2d-i. (l+f). (l-<) = 2^-(l-t)

and hd. is multiplied with

^ 2d-1 - (1 -<) . td+l +<. (1 +<)d -2d . tw _ t . (l+<)d-l-2d-l-fd+l
2d-i. (i+t)^(T-Q ~ 2d-l. (l-f)W) d=f
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t /'/l+^\t-1 /l-l-^d-'-l\
Let also denote y^ . ^(-^-) -<l . [~^~) ] bY ̂ W for ? = 1, 2,... , ^ - 1. It is
straightforward to verify that we have

td-^(j)=^-iW for i= 0, 1,... d,
and thus it is sufficient to prove that ^, (() is a polynomial with nonnegative coefficients for i <, ̂ .
For z" = 0 we have

M) =

1-1 _ ^ (d-1} . ^
2^-i -f. (1 + <)d-1 

_ 

^-^ ~ 

k {~j') ' tj^ 

_ ̂

 (d71) 1 - <J+1

2d-1 1 -12d-1 . (!-<) 2d-1 . (!-<)

which is clearly a polynomial with nonnegative coefficients. Similarly, for0< z ^ ^ we have

<f>iW =
1-t :Tr-ti-(m=m'"-^-(l-t-(^)'2")
fi+ty-1 , ^"(T) i-<'+^
-2-; -t-^^-25=2T-T^T;1

which is again a polynomial with nonnegative coefficients.

Corollary 4. 3 Zf A is a Cohen-Macaulay simphcial complex (e. g. a simplicial sphere), then the
Ron Adin h-vector of its cubical barycentric subdivision C(A) is nonnegative.

.It is known that there exist unshellable tridngulations of the (d- l)-sphere for rf ̂  4 ([9] gives
a construction), but it is not known whether any cubical barycentric subdivision of a simplicial
sphere is unshellable.

Conjecture 4.4 For d ̂  4 f^ere exist a simplicial complex A such that its geometric realization
is homeomorphic to a (d - l)-sphere, anrf C(A) is not a shellable cubical complex.
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