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Invariants of cubical spheres

GABOR HETYEI

Abstract

Let I be an invariant of cubical complexes which may be expressed as a linear combination of the
number of faces of different dimensions. We prove that I is a nonnegative linear combination of the
entries of the Ron Adin A-vector, if it does not decrease when we add a new facet in a shelling. It
is known that the entries of the toric h-vector have this property, and we show that the same holds
for the “triangulation h-vector” which arises from the Hilbert series of the Stanley ring of a cubical
complex. Thus the nonnegativity of the Ron Adin h-vector implies the nonnegativity of all other
cubical h-vectors. We prove this nonnegativity for all cubical complexes obtained as a barycentric
subdivision of a simplicial sphere.

Résumé

Soit I un invariant des complexes cubiques qui peut étre exprimé comme une combinaison linéaire
des nombres de faces des différentes dimensions. Nous démontrons que si I ne diminue pas quand on
ajoute une nouvelle facette & un effeuillage, alors I est une combinaison linéaire positive des éléments
du h-vecteur de Ron Adin. Il est bien connu que les éléments du h-vecteur torique possedent cette
propriété, et nous montrons qu’elle est aussi vraie pour le “h-vecteur de triangulation” qui provient
de la série de Hilbert-Poincaré de I’anneau de Stanley d’un complexe cubique. Ainsi, la positivité
du h-vecteur de Ron Adin implique la positivité de tous les autres h-vecteurs cubiques connus. Nous
démontrons cette positivité pour tout complexe cubique obtenu comme subdivision barycentrique
d’une sphére simpliciale.

Introduction

In the past few years more and more efforts were made to find the cubical analogues to the upper
and lower bound theorems on the f-vectors (f-1, fo,---, fa-1) of (d — 1)-dimensional simplicial
spheres. (Here f; stands for the number of i-dimensional faces.) In the simplicial case, these results
may be formulated in the most compact way by using the h-vector (ho,. - -, ha) of the simplicial
complex, which is a vector of linear combinations of the f;’s. In terms of the h-vector the Upper
Bound Theorem tells us that we have

hi < (f°_d.+i—1> for 0< i < [4]
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for every simplicial (d — 1)-sphere, and the Generalized Lower Bound Theorem is equivalent to
saying that the k;’s form a unimodal sequence. Moreover, the h-vector is nonnegative for simplicial
spheres, and the Dehn-Sommerville equations, which generate all linear relations holding for the
f-vector of a simplicial sphere are equivalent to the relations

h,‘=hd_,' fori=0,1,...,d.

" References to all these results may be found in [12]. In the proof of the Upper Bound Theorem, the
h-vector occured in the numerator of the Hilbert series of the Stanley-Reisner ring of a simplicial
complex (see [11]). The cd-indez of a simplicial Eulerian partially ordered set was described by
Stanley in [15, Theorem 3.1] in terms of its h-vector, such that the nonnegativity of the cd-index
of Gorenstein® simplicial posets became a consequence of the nonnegativity of their h-vector.

In the focus of the study of cubical complexes stood the search for the “right” cubical ana-
logue of the simplicial h-vector. Three h-vectors were introduced, each of which preserved some
properties of the simplicial original. The first was the toric h-vector, defined by Stanley in greater
generality for Eulerian partially ordered sets in [14], which is nonnegative and unimodal for cubical
rational polytopes. Unfortunately, this unimodality does not seem to yield the strongest possible
lower bound results for the f-vector of a cubical sphere. Clara Chan has proved in [4] that the
toric h-vector of shellable cubical complexes is nonnegative.

The second h-vector, which we call here triangulation h-vector, was studied by Hetyei in
[7]. This h-vector occurs in the numerator of the Hilbert series of the Stanley ring of a cubical
complex, which is a cubical analogue of the Stanley-Reisner ring of a simplicial complex. It is
also nonnegative for shellable cubical complexes, and in the case of cubical polytopes it arises as
the (simplicial) h-vector of the triangulation via pulling the vertices. Although for a large class of
cubical convex polytopes the triangulation h-vector has the exotic property of being the f-vector
of a simplicial complex, and this fact provides many examples to an interesting commutative
algebraic conjecture of Eisenbud, Green and Harris, this A-vector seems also to be too large to
help expressing the strongest lower and upper bound inequalities for the f-vector of a cubical
sphere.

The third k-vector, which we call the Ron Adin h-vector, was defined by Ron Adin in [1]. ;From
the very beginning, this kh-vector seemed to be winning over the other two. Just like the toric
and the triangulation h-vectors, it is nonnegative for shellable cubical complexes, and the cubical
Dehn-Sommerville equations are equivalent to the relations h; = hy_; for : = 0,1,...,d. But
this h-vector has also further properties reminiscent of the simplicial one. First, the (normalized)
Ron Adin h-vector of a cube is (1,...,1), just like in the simplicial case. Second, the conjectured
unimodality of the Ron Adin A-vector includes for kg < h; the first nontrivial inequality proved by
Blind and Blind in [2], and for A; < ks the cubical lower bound conjecture made by Jockusch in
[8]. Third, as Ehrenborg and Hetyei have shown in [6], the Ron Adin h-vector occurs in a cubical
analogue of Stanley’s result [15, Theorem 3.1] on the cd-index of simplicial Eulerian posets.

Now we add one more result indicating that the Ron Adin k-vector is the “right” cubical
analogue to prove strong inequalities about the f-vector of cubical spheres. Our Theorem 2.2 in
Section 2 implies that every linear combination of the f;’s which does not decrease when we add
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a new facet in a shelling of a shellable cubical complex, is a nonnegative linear combination of the
Ron Adin k;’s. As a.consequence, by Clara Chan’s proof of the nonnegativity of the toric h-vector
of shellable cubical complexes, the toric h-vector is nonnegative whenever the same holds for the
Ron Adin h-vector. In Section 3 we prove that also the triangulation h-vector has the required
nondecreasing property for shellings. (In [7] only the nonnegativity of the triangulation h-vector
of an entire shellable cubical complex is proved). Therefore both toric and triangulation. A-vectors
"-are nonnegative for cubical spheres, if the same holds for the Ron Adin h-vector.

Finally, in Section 4 we prove the nonnegativity of the Ron Adin k-vector for a special class
of cubical spheres: for those cubical complexes which are obtained from simplicial spheres via
barycentric subdivision. The cubical spheres belonging to this class are not necessarily shellable.

Acknowledgements I wish to thank to Francois Bergeron and Richard Stanley for fruitful dis-
cussions and useful advice. A referee of the Annales des Sciences Mathématiques du Québec,
(the journal, where the article-version of this work will appear), has helped me to simplify the
presentation of section 3.

1 Preliminaries

Definition 1.1 A cubical complex C is a family of finite sets (called faces) on a vertez set V,
such that C is closed under intersection, {v} € C holds for allv € V, and for every face o € C the
set of faces contained in o and ordered by inclusion is isomorphic to the lattice of faces of a cube.

A maximal face of a cubical complex is called a facet, and the number dim(c) = rank([§,o])— 1
is called the dimension of the face 0. The dimension of a cubical complex C is the maximum of
the dimensions of its faces. Given a (d — 1)-dimensional cubical complex C, we denote the number
of its faces of dimension k by fi, and we call the vector (f_1, fo,- .., fi-1) the f-vector of C.

The simplest example of a cubical complex is the collection C? of faces of a standard d-cube.
This complex may be geometrically realized as the family of vertex sets of the faces of [0,1]¢ C R%.
We call a bijection ¢ : V(C?) — {0, 1} sending faces into vertex sets of faces of [0, 1]¢ a standard
geometric realization of C%. Using this realization, we may define balls and spheres as follows.

Definition 1.2 A collection {Fi,F>,...,Fi} of facets of the boundary of a d-cube is called a
' k

(d — 1)-dimensional ball or a (d — 1)-dimensional sphere respectively, if the set U conv(@(F)) is
=1

homeor'norphic to a (d — 1)-dimensional ball or sphere respectively.

This definition is combinatorial because of the following observation, originally due to Ron Adin
and Clara Chan. Given a collection of facets of 8C¢%, let r be the number of facets F; such that
the facet opposite to F; does not belong to {F1, F3,..., Fi}, and let s be the number of pairs of
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opposite facets {F;, F;} C {Fi, F,...,Fi}. (Obviously we have r 4+ 2s = k.) We call (r,s) the
type of the collection {Fi, F3,...,Fr}. Using the notion of type we may characterize balls and
spheres in the following way.

Lemma 1.3 The collection of facets {Fi, ..., Fi} of the boundary of a d-cube is a (d — 1)-sphere
if and only if it has type (0,d) and it is a (d — 1)-ball if and only if its type (r,s) satisfies 7 > 0.

Given a face o of a cubical complex C we call the cubical complex {r € C : 7 C o} the
restriction of C to o, and we denote it by C|,.

Definition 1.4 A cubical complez C is pure if all facets of C have the same dimension. We define
shellable cubical complexes as follows.

1. The empty set is a ((—1)-dimensional) shellable cubical complez.
2. A point is a (zero-dimensional) shellable complez.

3. A d-dimensional pure complez C is shellable if its facets can be listed in a linear order
Fi,...,F, (called a shelling), such that for each k € {2,...,n} the subcomplez C|g, N(C|r U
---UCJF,_,) is a pure complez of dimension (d—1) and its mazimal dimensional faces form
a (d — 1)-dimensional ball or sphere.

By abuse of notation we say that the attachment of C|g, to C|p, U --- UC|F,_, in a shelling
By, Fi,..., Fy has type (r,s) if the set of facets of C|r, N (C|p U --- UC|F,_,) considered as a
collection of facets of C|r, has type (r,s).

Lemma 1.5 When we add a facet of attachment type (r,s) to the shelling of a (d—1)-dimensional
cubical complez, the number of j-faces increases by

T r\fd—1-s P
utv=j—39 U v

u,v>0

for s < j < d—1, and remains unchanged for all other j .

Definition 1.6 A simplicial complex A is a family of subsets of a finite set V such that {v} € &
for allv €V and A is closed under taking subsets. The elements of A are called faces.

Observe that this definition may be rephrased in a way analogous to Definition 1.1.

We introduce the notion of face, dimension, f-vector and shellability similarly to the cubical

case, and we define the h-vector (ho,...,hq) of a (d — 1)-dimensional simplicial complex by the
formula
d _ d-1 _ '
Sohiott &Y f 6 (1) (1)
1=0 1=-1
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2 Invariants in terms of the Ron Adin h-vector

Definition 2.1 Let C be a cubical complez of dimension d — 1 with f-vector (f_1, fo,..., fi-1)
The (normalized) Ron Adin k-vector of C is defined by

d
hRA(:c) = Z hf“ A zd:fj-—l « 5(e),s
=0

=0
where the polynomials cj(z) are given by
; (_x)d+1

() 14z
C\T) = .
294 . g3 . (1 - z)d-j + (_1)d—j . g+l

14z

ifj =0,

f1<j<d

Observe that we divided the h-vector given by R. Adin in [1] by 2¢~! in order to obtain Ao = 1.
Due to this normalization, [1, equation (19)] takes the following form.

A (d—i
fin =237 (3_;) (B4 + b)) for1<j<d.

Equivalently, after replacing j with j + 1, we have

{.zd-f-l-(<di;1l)+>fhf“-((df;il)+(3:§:1))+hfﬁ) frlgjsd=1

=1

fi=

=1

2¢-1. (1 + Aft4) for j = 0.

Theorem 2.2 Let I be an invariant of (d — 1)-dimensional cubical complezes which may be ez-
pressed as a linear combination of the fi’s. Then I is a nonnegative linear combination of the
hEA’s if and only if the following hold:

(i) I(C*1) >0, i.e., the value of I on the face complez of a (d — 1)-cube is nonnegative.

(ii) in any shelling of any (d — 1)-dimensional shellable complez, adding a facet of attachment
type (1,1) (where i = 0,1,...,d — 2). or of attachment type (0,d — 1) does not decrease I.

~ - d-1
Proof: Assume first that the conditions (i)-(ii) hold, and we have I = }~ «; - f;. Then, using
=1 -

equation (2), for every (d — 1) dimensional cubical complex C we may write

d-1

I€) = 3 aj-fi=aa+a-2¢7 - (1+ A
=1
.. 9d—j-1 RA RA
G (1) o5 (51 (7))

251



d-1 ;
Observe that a_; + 'Zo a;-2¢-3-1. ( df;.il) is the value of I on the face complex of a (d — 1)-cube.
J=

Hence we have

IC) = I(C*¥ )4 ap-2%1 pP4

= i1 [ d—i d—i—1
2 A 1'(§h‘m' ((d—j—l) § (d—j—l)) +hm)

J=1

RA d-1 RA P = defit d-1 d—2
= hO I(C )+h1 -lag-2 +Zaj-2 . d=3 =1 + d—j—1

i=1

d-1 RA d-1 dmil d—: d—1—-1 dei RA '
+Ehi . Zaj-2 = d=f=1 + d—j—l) + i1 27 + h% - ag-s-

=2 =1

It is easy to verify that for 1 S i < d—1, the coefficient of Af4 in the last sum is the double of the
change of I when we add a facet of attachment type (1,2 — 1) to a (d — 1)-dimensional shellable
cubical complex. In fact, for j =7,+1,...,d — 2 the number of j-faces added is

d—:-1 : d—i1-1 : o [(d—1-1 d—i—-1Y\
.2d—]—-2 '2d—l—J — 9d-5-2 .
(52 (G210)) . ((d—j—?)J’?‘_ (45123)):

and, using the identity (:I:) = (2) + (kil), we may write this as

: d—1 fd—1-1
d-j-2
e (S35 (6005)
The number of (i — 1)-faces added is 2¢~*~1, the number of (d — 1)-faces added is 1.

Finally, the coefficient of A5 is the change of I when we add a facet of attachment type
(0,d — 1) to a (d — 1)-dimensional shellable cubical complex. Therefore the coefficient of each h;
is nonnegative by our assumptions.

The converse is a corollary of the proof of [1, Theorem 5]. O

Remark 1 Observe that Theorem 2.2 provides an alternative definition for the Ron Adin A-
vector. - e

Example The toric h-vector. In [4] Clara Chan proves that the toric h-vector of a shellable cubical
complex is nonnegative. In her proof she shows that at the adding of each new facet in a shelling,
the toric h;’s change by a nonnegative number. By Theorem 2.2 the k;’s may be expressed as
nonnegative linear combinations of AF4, ..., k4. Hence the toric h-vector of a cubical sphere is
nonnegative if the same holds for the Ron Adin h-vector.
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3 The h-vector of the Stanley ring

In this section we study the A-vector introduced in [7], and show that Theorem 2.2 is applicable
to it.

. Given a cubical complex C over vertex set V, the Stanley ring K|[C] of this C over a field K
is defined as the factor of the polynomial ring K[z, : v € V] by the ideal I(C) generated by
all monomials z,, - Z,, - - - Z,, such that {v;,...,v} is not contained in any face of C, and by all
binomials z - z, — Zu - T» such that {u,v} and {u’,v’} are diagonals of the same face.

In [7, Theorem 3] we have shown that the Hilbert-series of the Stanley ring K [C] of a (d = 1)-
dimensional cubical complex C is given by

d-1 [e*)
HK[CL) =1+ fi- Y (k=1) -t~ (3)
1=0 k=1
We have introduced
d-1
. :-5(4,7)-7! when0<j;<d-1 A
po ;f (4,7) -7 n0<; , (4)
1 when ;7 = —1

and we have transformed (3) into the following equivalent form.

d-1 ) )
Z ng . tz+1 . (1 _ t)d—t—l

H(K[C),t) = == T . (5)

The vector (f5,..., f,) is the f-vector of a simplicial complex associated to C. When C is the

boundary complex of a cubical polytope then (2, ..., et 1) is the f-vector of a triangulation of
the boundary. Thus we call the h-vector defined by

, .
Zh? i def Z f t:+1 t)d—z—l
=0 ) 1=-1

the triangulation h-vector of C.

In the proof of the main result of this section we will apply the following lemma.

Lemma 3.1 Let ®.4.(t) denote the formal power series 3 k® - (k+ 1)®- (k + 2)¢ - t¥, where a,b
k0

and ¢ be natural numbers. Then the following hold.

Agp(t : .
(i) We have ®,,.(t) = —%, where Aqp(t) is a polynomial with integer coefficients,

of degree at most a + b+ c.

253



(i) If b > 0 then the degree of Aap.(t) is at mosta+b+c—1.

(i5) Ifb>0 or c =0 then Ayp(t) has only nonnegative coefficients.

The three statements of the lemma may be proved by induction on a + b + ¢, using differential
.-equations for @, (t).

Remark 2 The polynomials A, .(t) are generalizations of the Eulerian polynomials. It is well
known that for b = ¢ = 0 the coefficient A%,, (where i = 1,...,a) is the number of those
permutations o of the set {1,...,a}, which have (z—1) rises, i.e., which satisfy |{j € {1,2,...,a} :
o(j) < o(j + 1)} =i — 1. See, e.g. [5, Section 6.5].

Remark 3 In the case when a > b > ¢, the polynomial A, .(t) occurs as a special case of a
generalization of Eulerian polynomials, see [13, Chapter 4, Exercise 26].

Theorem 3.2 The invariants hy', hT, ..., and ha,A are nonnegative linear combinations of the Ron
Adin h-vector.

Proof (Sketch): We need only to show that the conditions of Theorem 2.2 are satisfied.

Let us compute the change of H(K|C],t) when we add a shelling component of type (r,s) to a
(d — 1)-dimensional shellable cubical complex, where r >0 or s = d — 1. Using Lemma 1.5, after
some calculation we obtain that this change is

AH(K[C),t) = t- As(,;,d:lt-);—s(t)

d .

Hence the change of 3 th -9 is t+ Asrd-1-r—s(t), which is a polynomial with nonnegative coeffi-
=0

cients by part (iii) of Lemma 3.1.

Finally, similar calculations show that the value of H(K [C¢1], 1), i.e., the Hilbert series of the
Stanley ring of a standard (d — 1)-cube is equal to

1 AO, -1,0 t
HK[C™),8) = (—;ﬁ

Hence the triangulation h-vector of a standard (d — 1) cube satisfies

d
SRt = Aoa-10(t),

=0

and is also nonnegative by part (iii) of Lemma 3.1. ]
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Remark 4 The proofs of the Theorems 2.2 and 3.2 allow us to express the triangulation A-vector
of a (d — 1)-dimensional cubical complex in terms of its Ron Adin A-vector. We have the following
formula.

d d-1
SThP = hBA Aga1o(t) +2- SohFA b Ay pgmia(t) +REA t Ag_i00(t). (6)

i=1 . i=1

Remark 5 The polynomials A, () used in equation (6) are not covered in Remarks 2 and 3.

It is an interesting problem to find a combinatorial interpretation of all nonnegative A}, ’s.

4 Cubical barycentric subdivision of a simplicial sphere

In this section we prove that the Ron Adin h-vector of a cubical complex, which was obtained by
barycentric subdivision of a simplicial sphere, is nonnegative.

Definition 4.1 Given a simplicial complez A\, its first cubical barycentric subdivision is the
cubical complez C(A) defined as follows.

(z) The vertez set of C(A) is the set of nonempty faces of A.
(11) The faces of C(A) are the intervals of the face poset of A\, i.e., all sets of the form

[o,7] € {Ae A :0CACT}

Remark 6 The partially ordered set Int(P) of intervals of a partially ordered set P is studied in
[13, Chapter 3, Exercises 7, 58]. Our definition is close to the special case, when P is the poset
of faces of a simplicial complex, the only difference being that we do not consider the intervals
containing the minimum element of P. When P is the face poset of a polytope, then we obtain
barycentric covers studied by Babson, Billera, and Chan in [3].

It is easy to verify that C(A) is a cubical complex, and that a geometric realization of A may
be extended to a geometric realization of C(A) by barycentrically subdividing the realization of
A into a cubical complex.

We can express the f-vector (f5,,..., fi,) of C(A) in terms of the f-vector (f_1,..., fi_1) of
A as follows.

d-1 ]+1
fE:Z( k )-f,- holds for £k =0,1,...,d —1. (7)
j=k
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Theorem 4.2 The entries of the Ron Adin h-vector of the cubical subdivision C(A) of a simplicial
complez A may be ezpressed as nonnegative linear combinations of the entries of the (simplicial)
h-vector of A.

Proof (Sketch): By Definition 2.1 and equation (7), the Ron Adin h-vector (h§4,..., hl*) of
-C(A) satisfies the following.

d -1
Y RfA -t = sz—l ck(t) = co(?) +i 2 (]+1) ~ek(?)

=0 k=0 k=1 j=k-1
d—-1 i+l /-
- a4y T (’“) £ - exlt) Co(t)+ij'Z(iJ_r:ll)-6k(t)-
k=1 j=k-1 j=0 k=1

Substituting Definition 2.1, after some calculation we get

E J i 2 (t) - 21-d . (1 _ t)d—j-2 .t ((1 4 t)j+1 e (2 . t)J+1) 4 (_1)d—j+1 . td+l
Z\k—1) ™ T 14t '

Observe that (1) may be written as
d-1 .
Y f-tt = Zh (1)
7==1 =0

Putting all these observations together, after some calculation we get

d . l4hgettt ot & AN A
RA i _ d 5 ;3 i —_t | ——
2 b S 2 b ((2) ! (2) )

1=0 1 1 t 1=0

Using ho = 1 we get

d d-1
: 1 t 2 (1+1)
RRA ¢ = h,- ? s
;0 . (1+t+1—t (1+t 2d-1 ))
gl .y 14841 2.4
+hq - + (¢ d_) =
1+t 1=¢ 2d-1 1%

B ()7 ()

=1

Here hg is multiplied ﬁith

aet 2771 A=t 420t —t-(14+2) 2114 —t- (1484 24—t (1+2)%
%o(t) = 2d-1.(1+1)-(1—-1) To29-l.(14¢t)-(1—-t)  24-1.(1-—t)

and hy is multiplied with

¢ (t) aet 2d—l'(1—t)'td+1+t‘(1+t)d—2d-td+l _ t'(1+t)d—1—2d—l‘td+1
4 2-1.(1+1)-(1—¢t) 24-1. (1 —t) '
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t L4y o Lyl :
Let also denote ek ( ; ) —t‘-(—;—) ) by #i(t) for : = 1,2,...,d = 1. It is

straightforward to verify that we have

. ¢ (%) = ¢4_i(t) fori=0,1,...d,

and thus it is sufficient to prove that ¢;(¢) is a polynomial with nonnegative coefficients for 7 < 5"

For 7 = 0 we have

d—1
9d-1 _ a1y , g ¥ .
¢o(t)= 2d—l_t-(1+t)d—l _ jé:o(J ) =dz"1 (djl . 1 — ¢+
24-1.(1 —1) 29-1.(1-1) 2 1=t

which is clearly a polynomial with nonnegative coefficients. Similarly, for 0 < z < % we have

w0 = 15 (57 (3)7) - (59 5 (e ()

; —o. [d=2- e
(L () 1-ew)
2 92d-2i 1 _¢

=0

which is again a polynomial with nonnegative coefficients. ]

Corollary 4.3 If A is a Cohen-Macaulay simplicial complez (e.g. a simplicial sphere), then the
Ron Adin h-vector of its cubical barycentric subdivision C(A) is nonnegative.

Tt is known that there exist unshellable triangulations of the (d — 1)-sphere for d > 4 ([9] gives
a construction), but it is not known whether any cubical barycentric subdivision of a simplicial
sphere is unshellable.

Conjecture 4.4 For d > 4 there exist a stmplicial complez A\ such that its geometric realization
is homeomorphic to a (d — 1)-sphere, and C(A) is not a shellable cubical complez.
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