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ABSTRACT. Up-down permutatioiis, uitroduced naany years ago by Andre under the
name alternating permutations, were studied by Carlitz aad coauthors in a series of
papers in the 1970s. We return to this class of pennutations and discuss several sets
of polynomiak associated with them. These polynomials aUow us to divide up-down
pemutations into various subcliuses, with the aid of the exponential formula. We
find coinbinatorial interpretations, and explicit-albeit complicated-expressions for
the coefficients of these polynomials. One of our mterpretations leads to a new type
of sequence that is equuiuinerous with the up-down pennutations, and we give a
bijection.

I Introduction

We recall that an up-down pernautation of length n is a string of numbers
aiaz-'-an, where {01, 02,... , an} = {1, 2,... , n} and, for each i, a^ is greater
than both a2»-i and a2:+i. Thus, for example, 263514 is an up-down permutation
of length 6. These were first studied by Andre [Anl], [An2], who called them
alternating permutations. Although Netto devoted a section to them in his early
treatise on combinatorics [Ne], they were rediscovered by Entrmger in the 1960s
[El]. A subsequent paper of Entringer [E2] apparently piqued the interest of
Leonard Carlitz, who (with occasional coauthors) made an extensive study of these
and related objects in a series of papers in the 1970s. (See [Cl], [C2], [C3] and
[CS], in particular, as well as other papers cited in these works. ) Carlitz objects to
Andre's terminology, on the ground that it implies a (spurious) connection with the
alternating group, and calls them up-down permutations, a name we will adhere
to. At around the same time, Melzak treated them briefly in his book [Me]. With
the same objection, he referred to them as zigzag sequences.

The basic result is due to Andre: if En denotes the number of up-down permu-
tations of {1, 2,..., n}, and £'0 = 1, then

(1. 1)
("

sec t + tan ( = ^ fn -^
n=0

n!
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SOME POLYNOMIALS ASSOCIATED WITH

In particular,

^ _ t2" ^ _ (2"+1
(1. 2) sec(=^^n^y and tanf = ^^n+i ̂ ^ ̂ ,

n=0 n=0

The En are often called Euler numbers, although this name is used about as often
instead for the coefScients ofsech-c, either explicitly or implicitly, e. g., in [GKP],
[No], [Kn], or in some of Carlitz's other papers. For this reason, it is also common
to refer to the En of even sufRx as secant numbers and to those of odd suffix
as tangent numbers. These numbers have arisen recently in work of Arnold on
singularities of functions [Ar], and they can be given by something like a Pascal's
triangle (see [Ar] or [Du]).

In addition to the Carlitz school, there is a good deal of other work on enumer-
ating permutations with respect to various patterns. Much of this is summarized in

.[GJ]. We particularly wish to mention a g-analogue of (1. 1.), due to Stanley [Sta]
and Gessel [Gl]. Two interesting recent papers relating to these matters are [Stg]
and [RZ]. Our work begins with an extension of (1. 1).

II Some polynomials

We consider

(2. 1)
^ . . tn

(sect + tanf)z =: ̂  On(z)^
n=0

Differentiating with respect to t we find that

tn-1
(sec t + ta.nt)x x sect = ^<In(.c) 7--;-^

n=l

Therefore

V2'. /^<"_-^-. ^<k^... _(2L
w^=xi. a^xy^L. E^-w)\.

n=0 '" ifc=0 j=0ifc=0

00

=t^^. ^EVU{z)
n=0 ~ fc+2j=n

and hence

(2. 2) an+i(x) = i ^ [.2j)E2j an-23(x)

Since ao(a:) = 1, (2. 2) implies that fln(z) is a monic polynomial of degree n mx,
which moreover is an even function of x if n is even, and an odd function of a; if n
is odd. (The latter fact also follows from (sect + tan<)-1 = sec(-<) +tan(-().)
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UP. DOWN PERMUTATIONS

The first several polynomials are QQ (a') = 1, ai(x) = a;, a^(x) = a;2, 03(2;) =
a-3 + x, a4(x) = z4 + 4.c2, as(x) = x5 + 10x3 + 5x, and a6(.r) ='a;'6 + 20.E4 +46a;2.
Note that an(l) = En; thus the coefBcients of a»(a;) represent a division of the
up-down permutatioas of an n-set into a number of subclasses. We shall have more
to say about this presently, but let us first return to the generating function (2. 1).
If we differentiate with respect to x, we obtain

(2. 3)

Evidently

(2. 4)

^ .. . <"
On (a;) -y = (see f + tan t)x log(sec ( + tan ()

n=l

^ _ t2n+1

log(sec( + tan <) = ^ ̂ ^ ̂ n+l)\
n=0

and substituting this into (2.3) we find that

a"(a;)=E(2/+i)^an-2^-l(a:)
The polynomials an(a-) are also ofbuioinial type, i. e.,

an(x + y)
n

-iQ ajfc(a:)an_t(y)

If we knew a combinatorial interpretation of log(sect + tan<), we could invoke the
exponential formula (an excellent reference for this is [Wi]) to find a combinatorial
interpretation of our polynomials. But this is easy from (2.4): log(sec< + tan <)
is the exponential generating function for up-down permutations that end with 1.
(Note that these are necessarily of odd length.) For these permutations are clearly
equinumerous with up-down permutations of even length one less-we need only
cut the 1 off and diminish all the other elements by 1-and we know that f;2n
enumerates these.

The exponential formula then tells us that an(x) counts combinatorial objects
comprising up-down permutations that end in 1. Since fln(l) = En, these objects
are going to be ordinary up-down permutations. To illustrate what is happening,
let us consider an example.

Ill Up-down perinutations of length 5: an example

We seek to explain the fact that 05(2;) = a;5 + lOz3 + 5.c. Clearly this represents
a division of the 16 up-down permutations of length 5 into classes of size 10, 5 and
1, but on what basis?

The term 5x is easy to explain. This term represents the 5 up-down permutations
of length 5 that end with 1, which are 24351, 25341, 34251, 35241 and 45231.
The significance of the x is that only one up-down permutation ending in 1 is
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necessary to make these 5-thus x only appears to. the first power. The other 11
up-down permutations of length 5 will be made up from several shorter alternating
permutations that end with 1.

Moving to the other extreme case, the term a;5 corresponds to the up-down
permutation 15243. We read any up-down permutation from left to right until we
encounter the element 1. We cut off the 1 and everything that precedes it, and
we relabel the remaining k (say) elements with {1, 2,..., k} in an order-preserving
fashion. In this case this leaves us with 4132; in general we will always have a
down-up permutation of some length k at this stage (where if<; = 0, asin the
preceding paragraph, then we are already done). There is a simple involution
between down-up and up-down permutations of length k: subtract every element
from k +1. In the present case we have now arrived at the up-down permutation
1423, and we repeat the procedure as many times as necessary to deal with all the
elements. We will have to use it 5 times here, since when we apply it to 1423 we
will get 132, and then 12, and then 1. So 15243 comprises 5 copies of the up-down
permutation 1. From our point of view, this sort of behavior is the archetype-any
part of an up-down permutation made up of copies of 1 goes from the smallest
available element to the largest and back.

(This algorithm may be described more simply as reading from left to right
looking first for the 1, then for the largest element to the right of 1, then for the
smallest element to the right of that, and so forth. The description in the preceding
paragraph seems to be preferable for a g-analogue of this theory.)

The other 10 up-down permutations of length 5 comprise two copies of I and one
copy of 231 (which is the unique up-down permutation of length 3 that ends with
1). For example, 34152 decomposes into 341-5-2; 341 is a 231-type permutation,
and 52 would be relabeled as 21 and subtracted to 12, which decomposes into two
copies of 1. Since these 10 permutations decompose into three pieces each, we get
a term lOa;3.

The 10 is really a (^), in the sense that the coefficient of xn~2 in an(x) is always
Q). One may prove this by induction using (2. 1) without difficulty, but it is more
interesting to give a combinatorial explanation, and this is not hard. If we break
an up-down permutation of length n into n - 2 pieces of odd length, we must get
one piece of length 3 and the rest of length 1. That is, we must get one piece of
231-type and n - 3 1's. We may choose any three elements to be in the 231 piece,
and this determines the permutation completely. Let us give an example to show
how.

Suppose we look at alternating permutations of length 11, and we choose 2, 6 and
8 to be in the piece of length 3. Then the permutation must begin with 1, and 11
must come next since it will become 1 after the original 1 is cut off. After 11, the
next candidate to be a new 1 is the element 2, so the piece of length 3 must come
next since it contains 2. We put 2, 6 and 8 into a 231 pattern, i. e., 682, and then
continue zigzagging. The result is 1-11-6-8-2-10-3-9-4-7-5. The reader may check
that, after applying the algorithm to this three times, we obtain 162534, which is
the length 6 counterpart of 15243 and hence comprises six 1's.
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UP-DOWN PERMUTATIONS

TV General expression for the coefficients

la view of the even/oddness property of On(x), we have

(4. 1) an(x)=^a(n, 2k)xn-'sk
k

for some coefficients cr(n, 2A;), where we have seen already that a(n, 0) = 1 and
a(n, 2) = Q). Substituting (4. 1) into (2. 2), we get

(4. 2) a(n + 1, 2m) = ^ ̂ .) ̂2, a(n - 2j, 2m - 2j)
We may attempt to find a general expression for a(n, 2k); either by induction,

using (4. 2), or by counting, informed by the exponential formula. Let us first
calculate a(n, 4), and then tackle the general case. Here we are breaking up-down
permutations of length n into n - 4 pieces, where "pieces" means throughout this
section "up-down permutations ending with the smallest element" (we note again
that these are necessarily of odd length). There are two general ways of doing
this: either one piece has length 5, and the others length 1; or two pieces have
length 3 and the rest length 1. The first case is similar to the argument for a(n, 2).
We may choose any 5 elements and arrange them in any of the 5 patterns 24351,
25341, 34251, 35241, or 45231, and this determines the permutation completely.
For example if we pick n = 9, the elements 2, 3,4, 6, 9 and the pattern 34251, then
the permutation begins with 1, and the block containing 9 comes next, with 9 at
the end. Subtracting the pattern 34251 from 6 we get 32415, and putting 2, 3,4, 6,9
in the appropriate locations we find that the permutation so far is 143629. The
smallest remaining element is 5 and the largest 8, so the whole permutation is
143629587. Thus in general there are 5(^) = £4 (^) permutations of this sort.

In the second case, the decompositioa into 2 pieces of length 3 and the rest of
length 1, we have (^) ways to choose the elements that will be in the length 3
pieces. Suppose for example that n = 12 and we have chosen 3,4, 6, 8, 9, 11. The first
of these numbers that would appear at the end of a piece is 11 (the hierarchy being
1, 12, 2, 11, 3, 10 and so forth), and we can choose any two of the other 5 elements
to be in the same piece as 11. Suppose we take 3 and 6. The permutation is now
determined. It begins 1-12-2. Then 3, 6 and 11 appear in a 213 pattern, so we have
1-12-2-6-3-11 so far. The smallest remaining element is 4, and it therefore is the
next thing to become 1. But 4 was one of the elements in our original choice of sue
elements, the other unused ones being 8 and 9. So they come next in a 231 pattern;
thus we are up to 1-12-2-6-3-11-8-9-4 and finally 1-12-2-6-3-11-8-9-4-10-5-7.

It follows from the above considerations that a(n, 4) = E^^) + (^) (^); this may
also be proved by induction. a(n, 6) may be written neatly as 61 (^) + 280 ("^ ).

Theoreni. The general form of a(n, 2k) is

a(n, 2k) =s^+^ 6{2k, j)
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where a(n, 0) = 1 and

S(2k, j)= ^

'2k+j-

ki+-+k, =k
*, S1

J-l\r.. ^k+j-2k, -2}
^ ~)E2kl[""\k7t ~)E^X---
^k+j-2h-----2k, ^-j^

2k, "^ ^)E2k'
A few remarks on this expression are in order. Note that 2k is the amount by

which the number of elements exceeds the number of pieces. Also j counts the
number of pieces whose size exceeds 1, which we will refer to as "large pieces".
Thus there are 2k + j elements in the j large pieces, and moreover, 2fc, is one less
than the number of elements in the i"th large piece. Finally, the alert reader will
have noticed that the last binomial coefficient in the expression for S(2k, j) equals
1.

Proof. We give a combinatorial proof; an inductive proof is also possible. The
parameter j is at least 1 since, if k > 0, there is at least one large piece. j does
not exceed k since the minimum size of a large piece here is 3. We choose 2k + j
of our n elements to be in the large pieces; of course this can be done in (^j)
ways. Some one of these 2k + j elements must be encountered first as we build
the permutation by zigzagging. This element is in a piece with some even number
2ki of the other chosen elements. There are ( ^-1) ways to choose the elements
for this piece, and E'zfci patterns that they may be arranged in. Of the remaining
elements, one must be encountered next in the zigzag pattern (possibly after some
singleton elements which are not among the 2k + j chosen ones), and some even
number 2A; of the chosen elements are in the same piece, arranged in one of £'2*2
patterns, so there are (2fc+-'2-^) E2k, choices for this piece, and so on.

V Soine niore polynoinials

Another generating function that is amenable to this sort of treatment is

(5. 1)

We have

)~x =:SC"(-r)^T
n=0

(l-sin()-r=:^c^)

9
^(l-smt)-c =x(l-smt)-1-1 cost(5. 2)

(5.3) =.r(l-sm<)--c(sect+tant)

^From (5.3) and (1. 1) we get the recurrence

(5. 4)
n

Cr,^(x)=X^^)En-iCk(x)

The first few polynomials are co(.r) = 1, Ci(.c) = -c, c^x) = x2 + x, 03(2:) =
x3 + 3.F2 + .r and £4(2:) = .c4 + 6r3 + 7x't + 2x.
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In what follows we will require the expansions of-log(l-sin f) and (1-sint)"1.
Since these functions are respectively the integral and derivative of sec t + tan <, we
have

(5. 5)

(5. 6)

("
-log(l-sint)=^^_i^

n=l
00 ("

(l-sin<)-l=^^+^
n=0

If we differentiate (5. 1) with respect to x and equate coefficients using (5. 5), we
get the derivative formula

C'n(x)=^(n)E^Cn^(x)
J=l

Moreover, the polynomials Cn(a") are of binomial type.
(5.5) has a simple combinatorial interpretation, as the exponential generating

function for up-down permutations that begin with 1 (there are at least two natural
bijections between these and general up-down permutations of length one less).
Since (1 - sin()-r = exp(-.clog(l - sin f)), the exponential formula tells us that
(1 - sin()-a generates some sort of combinatoriEd structures comprising up-down
permutations that begin with 1. To explain just what these are, let us set

(5. 7). Cn(x)='^if(n, k)x .
n-k

ifc=0

Then n - k will be the number of "pieces" (t. e., up-down permutations beginning
with 1; let us also again refer to a piece whose size exceeds 1 as a "large piece"),
ajid k is the excess of elements over pieces. For example, let "us look at C3(.i") =
.c3 + 3x2 + x. There is only one up-down permutation of length 3 that begins with
1, namely 132, and it is generated by the x term. In general, cs(x) generates 3-
digit strings containing one 1, one 2 and one 3, which one reads by first finding
the 1. Anything from the 1 onwards (reading left to right) must be an up-down
permutation, so that 123 is not a permissible string. To read 213, say, we find the 1,
check that everything from there onwards is (or would be, if it were relabeled in an
order-preserving fashion) an up-down permutation, and cut it off, relabel the rest
in an order-preserving fashion, and repeat. So 213 is an up-down permutation of
length 2 preceded by one of length 1, and so is 312. 231 is an up-down permutation
of length 1 preceded by one of length 2, and these three strings are counted by the
3-c2 term. 321 is three up-down permutations of length 1 strung together, and is
generated by the a;3 term. So these strings are sequences in which everything from
the 1 until the end is in an up-down pattern, and if we cut all that off and relabel
the rest in an order preserving fashion, what remains still has this property, and
continues to have it as we keep cutting pieces off and relabeling. We will refer to
them as zigzig sequences, or zigzigs for short. In general, the coefficient of xn in
Cn(.i;) (t'. e. 7(n, 0)) is always 1, and represents the zigzig sequence n(n- 1) . . -21.
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As before, we can find j(n, k) in general by a combinatorial argument. We have
7(n, n) = ^no, since zigzig sequences always have at least one piece, unless they are
empty. f(n, n - 1) = En-i, since here we are simply counting the number of zigzigs
made up of one up-down permutation that begins with 1. Working from the other
end, 7(n, 1) = (^) , since here we have one piece of size two and all the rest of size
1, and once we choose which two elements are to be in the size two piece, the zigzig
is completely determined. Similarly 7(", 2) = (^) + 3Q).

Let us work out 7(0, 3) with care, since it already contains most of the complexity
of the general case. Here we have three more elements than pieces, and there are
several ways in which the excess elements might be distributed. We might have one
piece of size four and all the others of size 1. In this case we may choose any four
elements to be in the size 4 piece, and we may arrange them in either a 1324 or a
1423 pattern, and this determines the zigzig completely. For definiteness, suppose
n = 8 and we choose 2,4, 5, 7 and the pattern 1423. Then the zigzig ends with 1,
and is immediately preceded by the piece of size 4, which is 2745. The remaining
elements precede 2745 in increasing order from right to left. Thus the zigzig is
86327451. In general there are 2Q) such zigzigs, and the 2 arises because £'3 = 2.

We might instead have one piece of size three, one of size two, and the rest of
size 1. It also makes a difference whether the piece of size 3 appears to the right of
the piece of size two, or to the left. (Both possibilities can be handled at once, but
the argument will be closer to the general case if we distinguish them. ) Suppose
first that the piece of size 3 is on the right. We choose 5 elements to be in the large
pieces. One of these 5 elements is smaller than the others, and in this instance it
must be put at the beginning of the size three piece. We may choose any two of the
other four elements to complete this piece, and then everything is determined. For
concreteness, suppose that n = 9 and we begin by choosing 1,3,5,6,8, and that we
further choose 3 and 8 to complete the piece of size three. Then the zigzig sequence
must be 975642183. In general we get (^) (^) in this case. If the piece of size two is
to the right of the piece of size three, we get instead Q) (^). The two terms could
be combined and simplified to 10 Q); in other words, ̂ ).

Finally we could have three pieces of size two, and the rest of size 1. Here we
must choose 6 elements to be in the pieces of size two. Of these, one is smallest,
and any of the other 5 may be put in the same piece. One of the remaining four
elements is the smallest, and any of the other three may be put with it, and the
zigzig sequence is now determined. For example suppose that n = 14 and we choose
2,4,8, 10, 11, 13. Let's pair 11 with 2 and 8 with_4. _Then the zigzig is 14-12-10-13-
9-7-6-5-4-8-3-2-11-1. In general there are (^)(^)(f) such zigzig sequences. Thus
7(n, 3)=2Q)+10(^)+15Q).

To write the genereil case, set

(5. 8) T^)=E{kn+j)cr(k'j)

Then j is the number of large pieces, k is the excess of elements over pieces, and
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we have

^, j)= E
(trxt +i^>.x

ki+-+k, =k
t. >l

k+j-ki-----kj^-j )^,
The proof is just as in the case Jfc = 3. We first choose the k+j elements that

will be in the large pieces. One of these is smaller than all the others, so must
appear at the beginning of the rightmost large piece. There is some number Jfci > 1

of other elements in this piece, and they may be arranged in Eki ways. Then one
of the remaining k+j-ki-1 elements is smaller than all the others, and so forth.

VI A bijection

In view of the generating function (5. 6), zigzig sequences are equinumerous with
up-down permutations that are one unit longer. In this section we describe a
bijection between these two types of sequences. The bijection has its genesis in a
recurrence for the En that we have not yet mentioned. If /(a;) = sec a; + tan x, then
one easily finds that f"(x) = f(x)f'(x), and on equating coefScients a recurrence
relation that we shall write as

(6. 1) ^=EC:il)^£"-.
j=l

One may interpret this by reading an up-down permutation from left to right until
both 1 and the largest element n+1 have been encountered. What lies to the right
after this is either an up-down or a down-up permutation of some length n - j,
according to whether 1 precedes or succeeds n + 1. This length may be any integer
from 0 to n- 1; there are (^I. ) choices for the elements in this permutation and
En-j ways that they may be arranged. The other piece is an up-down permutation
of length j + 1 that either ends with 1 or with n + 1. In either case there are Ej of
these.

We now describe the bijection. To go from an up-down permutation of length
n+1 to a zigzig sequence of length n, the basic idea is to bubble the largest element
n + 1 to the front of the sequence and then delete it. We illustrate this with the
case n = 3. Here we are mapping the 5 up-down permutations of length 4, namely
1324, 2314, 2413, 3412 and 1423, to the 5 zigzig sequences of length 3, which are
132, 231, 213, 312 and 321. We begin by asking whether 1 appears to the left of
the maxima! element n+ 1 (4 in this case), or to the right. If 1 is on the left, then
we subtract every element from n + 2; otherwise we do nothing. In the case n = 3,
this leaves us with 4231, 3241, 2413, 3412 and 4132. The rightmost piece of the
zigzig sequence is now found by reading from the 1 to the end, sowe get 1, 1, 13, 12
and 132 respectively, leaving behind 423, 324, 24, 34 and 4 respectively. If only the
largest element remains, as in the last case, then we are done. Otherwise we repeat
the procedure, now asking whether the smallest remainiug element precedes n + 1
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or not. If it does not, then we do nothing. If it does, then we perform an operation
which we will call switching, which is a slight generalization of our initial step of
(in some cases) subtracting all elements from n + 2. We can think of this in either
of two ways. If we have a Jk-digit string and we want to switch it, we can either
relabel the string with the elements 1, 2,... , fc, preserving the order, then subtract
every element from * + 1, and then restore the original labels; or we can think of
this as looking at the fc-digit string and switching the smallest element with the
largest, the second smallest with the second largest and so forth.

In the present case this means we leave 423 alone, change 324 to 342, change
24 to 42 and change 34 to 43. The next piece now starts at the smallest element
and goes to the end, so we get 23, 2, 2 and 3 respectively with 4, 34, 4 and 4
respectively left behind. We repeat this procedure until all that is left is the largest
element. In this case there is only one sequence where there is anything left to do,
namely 34. We switch this to 43 and cut off the 3, and we are all done. Thus the
up-down permutations 1324, 2314, 2413, 3412 and 1423 map respectively to the
zigzig sequences 231, 321, 213, 312 and 132.

Let us try a more complex example, the up-down permutation 352817496. 1
precedes the maximal element 9, so we begin by subtracting all the elements froin
10 (in other words, switching) to get 758293614. Then 14 is the rightmost piece of
the corresponding zigzig sequence, and we are left with 7582936. Here 2 precedes
9, so we have to perform switching again. This entsiils interchajiging 2 with 9, 3
with 8, 5 with 7, and 6 with itself, and brings us to 5739286. Now 286 is the next
piece removed, and we are left with 5739. Again 3 precedes 9, so we switch to get
7593, and remove 3. In 759 the maxima! element again appears to the right of the
minimal one, so we switch to 795 and remove 5, then switch 79 to 97 and remove
7. Thus the zigzig sequence corresponding to 352817496 is 75328614.

We illustrate the procedure for going from a zigzig sequence of length n to an
up-down permutation of length n + 1 with the exeimple 7625413. The first step is
to put n + 1 at the beginning of the sequence; in this case we get 87625413. The
sequence will now have a down-up pattern at the beginning, which in this example
only lasts for two elements. However long it persists, we switch that part of the
sequence, leaving the rest alone, in this case arriving at 78625413. The sequence
will now have an up-down pattern at the beginning which persists for at least
one element more than the down-up pattern at the previous step. If the up-down
pattern extends all the way to the end of the sequence, then we are done; otherwise
we switch the up-down elements, leaving the others alone. In this case the up-down
pattern goes as far as 786, so we switch this to 768 and have 76825413. We keep
repeating these steps until we arrive at an up-down permutation. In this example
the down-up pattern goes as far as 768254, which we switch to 452867, thus arriving
at 45286713, which is an up-down permutation of length 8.

That these two procedures invert each other is fairly clear after doing the last two
examples in the other direction. In the first case one is switching and removing up-
down pieces at the right, and the minimal elements in the removed pieces increase.
In the second case one is switching and adding up-down. pieces on the right, and
the minimal elements in the added pieces decrease. Thus we have a bijection.
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VII Soine concluduig reniarks

Here we briefly mention several related matters that we have either omitted to
save space, or have not fully worked out as yet. We may treat the generating func-
tion (sec t)x in a similar manner. In so doing we are going down a path previously
trodden by Carlitz and Scoville [CS], but as our perspective is slightly different,
we still get some new results. Specifically, we consider

secxt=:^bn(x)
n=0

f2»
w-

Then bn(x) is a polynomial of degree n in .c, with similar properties to On(x)
and Cn(x), and with the further property that bn(x) interpolates between up-down
permutations of even length and those of odd length, in the sense that bn(l) = E-^n
and bn(2) = £'2n+i. Our interpretation of the coefficients of bn(x) allows us to
give a combinatorial explanation of this. (Indeed, this is our main contribution
to the theory of these polynomiak, which first arose in [No].) These polynomials
are related to On(x) and Cn(.c), since sect + ta.nt = sect (1 + sinf), or, better yet,
sec<(sec( +tan<) = (1 -sin<)-l.

We could use (5.2) instead of (5.3) to obtain a recurrence relation for the poly-
nomials Cn(-c). This would yield

Cn+l(2-) «?©<-ly Cn-^(x + 1)

which implies that these polynomials might profitably be written in terms of rising
factoriak. We are also able to calculate the coefficients in this expansion; they may
be related to the 7's of section V using Stirling numbers of the first kind.

Finally, we remark that, as we alluded to in section III, one can work out a
^-analogue of at least some of these results. The main tools are the ̂ -exponential
formula introduced by Gessel in [G2], which we used previously in [Jo], and the
g-analogue of (1. 1) that we mentioned in the introduction.
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