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Abstract

We give the Monk formula for double Schubert polynomials and we show how to
use Schubert polynomials to compute in the ring of polynomiak in n variables
regarded as a free module of rank n! over the ring of symmetric polynomials.

1 Introduction

Computations in the ring Z[a;i,..., a;n] of polynomials in several variables are not so easy
because dimensions grow very quickly with the number of variables and with the degree.
The problem is to find linear bases adapted to some specific problems without losing track
of the multiplicative structure. For n = 1, such bases are provided by interpolation theory.
In higher dimensions, a polynomial can have some symmetry, which cannot be efficiently
exploited if the polynomial is just written as a sum of monomiak.

.

For example, if a polynomial is totally symmetrical, we can have recourse to many com-
binatorial objects which render computations independent of the number of variables. To
be able to use symmetry methods in the case of general polynomials, we shall look at the
ring of polynomials in n variables a;i,.. ., a;n as a module over the ring Sym[a;i,..., a;n] of
symmetric polynomiak. It is easy to show that the set of monomials of degree less than
(n - 1,.. ., 2, 1, 0) (componentwise) is a linear basis of this module, which is free of rank n!.

We shall use a more interesting basis for this free module over Sym[a;i,..., in]> consisting
of Schubert polynomials in the a;,- and y, (where the i/, are a second set of indeterminates).
These Schubert polynomials are the universal coefficients in the generalized Newton interpo-
lation formula (they generalize Newton's interpolation polynomials (a;i - yi) ... (a;i - t/n))-
Moreover they are the natural basis in the geometric interpretation of the ring of polynomials
as the equivariant cohomology ring of the flag manifold. Last,. but not least, their combi-
natorics extends the one of Schur functions (the natural basis of the ring Sym[a;i,..-., a;n])>
with constructions on permutations replacing the handling of partitions and Young tableaux.

2 Background

Let Z[x] := Z[a;i,. . ., a;n] be the ring of polynomials in the independent variables a;i,.. ., a;n.
We denote by s,, t = l,..., ra - 1 the elementary (simple transposition that interchanges
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the variables a;, and a;i+i and by 5,, ?= 1,. .., n - 1 the divided difference operator on the
polynomial ring Z[x]:

Z[x] 9 p ^ ^-(p) := (p - S. (P))/(^< - -s.+i) - (1)

In 1973, Bernstein, Gelfand & Gelfand [1] and Demazure [2] made the fundamental observa-
tion that divided differences satisfy, besides elementary transpositions, braid relations:

SiSj = SjS, , C>,5j = 9j9i ,
S, S,+lSt = S,4-iSiS,+i , 9i9i+i9i = ^+i5;9;4.i

l^'-jl>l, (2)

together with the extra relation 9f = 0 replacing 5,2 = 1.
Let ©n be the symmetric group of degree n. 6n is embedded into ©n+i by adding a

fixed point ra + 1. It allows one to define the group:

6c := lim 6, ,
t-»-00

(3)

of permutations of the set of positive integers fixing all but a finite number of them. A
permutation w   ©n will be denoted by w := (w(l),.. ., w(n)). An inversion of w   ©n is
a couple (i, j) of indices such that l^t<j ^ n and w(i) > w{j}. This gives a coding for
a permutation w: the code c(w) of w is set to be a vector of non-negative integers, the i-th
component being the number of positions j > i such that w{j) < w{i). There is a one-to-one
correspondence between elements of ©oo and vectors of N(N>).

A reduced decomposition of a permutation w is a decomposition of u; as a product of ele-
mentary transpositions, of minimal length which is called the length l{w) of the permutation.
The length is also equal to the number of inversions and to the sum of the components of the
code.

There are two natural orders on the symmetric group which makes it a poset ranked by
the length. The permutohedron is the poset with permutations as vertices and edges between
all pairs (w, ws), w   ©n, s a simple transposition. The corresponding order is called the
weak (right) order. We denote by tij the transposition (t, j). The Bruhatohedron is the poset
with permutations as vertices and edges between all pairs (w, wt), w   ©n, t a. transposition
such that \l(w)-l(wt)\= 1.

Here we display the permutohedron for ©3 writing codes instead of permutations, and on
its right, the Bruhatohedron:

2, 1,0
Sl / \ S2

1, 1,0

S2

1, 0,0
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Sl

0, 1,0
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284



Braid relations (2) allow to define 9ui for any permutation va: taking any reduced decompo-
sition s,-, . . . Sik of w, these relations imply that the product 3, i.. . 9^ does not depend upon
the choice of the reduced decomposition, and therefore can be denoted Qu,.

Instead of computing in the algebra of divided diflferences, Lascoux and Schiitzenberger
introduced in 1982 Schubert polynomials [12, 13] as follows. Let x, y be two sets of indeter-
minates x := {a;i,..., a;n}, y := {t/i,..., yn}. For any n and WQ the element of 6n of length
(^), we define the maximal (double) Schubert polynomial Xu,o to be:

n {xi - yj ) >
.+J<n

and in general, for any permutation u;   ©n,

'w~lwo{'f^ifof '

(4)

(5)

in which divided differences act only on the a;, 's. The specializations y, = 0, Vt" of the Xu, are
called simple Schubert polynomials and denoted Xu/.

The combinatorics of Schubert polynomials is closely linked with the combinatorics of
divided differences and of the two orders on the symmetric group. For ©3, simple Schubert
polynomials and Schubert polynomials are:

^

XiX-i

32 I

a;^2
02

^

9,

Xl X^+X^

5\ /^
1

^3,2,1

(x\ - yi)(xi - y2)(x2 - yi)

5l/ X^2

^2, 3, i (xi-yi](x2-yi)

^1

l-2, l,3 TI -yi

^1

(a;i -yi)(. ci-y2)

31

1

^1,2,3

2, 1,2

(xi - yi) + [x-i - yt) Xi,3,2

92

3 Schubert bEises

We refer to Macdonald [14] for the algebraic theory of Schubert polynomials. Let w be a
permutation in Gn and c(w) = (ci, C2,.. ., Cn) its code, then:

.Cl T. C2 rC" -I- \ " n,, r'l rL2 . . 3-tn
.w - -^l -^^ . . . ^. n ~<~ / ^ "« .̂ l ^2 . . "^n i (6)

where a, >0, i'i < n- l, ^ ^ n-2,..., tn $ 0, and (t"i, is,..., t'n) lexicographically smaller
than (ci, C2,..., Cn).

Schubert polynomials are compatible with the embedding Gn ̂ - ©n+i. Thus, {Xw, u?  
6^} is a Z-basis of Z[a;i, 2:2,. . .]. More precisely, let 77 : Z[a;i, 12,... ] ^- Z be the constant
term homomorphism. Then [14, (4. 14)], one has:

Vp Z[a:i, X2,...], P= E 7?(9u, P)X«/.
w66oo

(7)
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Example 3. 1 Let p:=x^+ xix^x^. Then p is equal to:

P = X6, l,2,3,4, 5 - X3,4,2, l - X4, 2,3, l + X2,5,3, l,4

X5^ - X^X3 - X^X2l3 + {X^X3 + T?3;^3 + X^X^Xy) .

It should be noted that this expression of p involves simple Schubert polynomials indexed by
permutations in ©4, ©5 and ©e while the original polynomial only depends upon the three
variables a;i, a;2 and a;3. It is possible to give an expression of p involving only simple Schubert
polynomials in ©3, but the coefficients are now symmetric functions in a;i, a;2, a:3'-

p = (x^XtX^ + x^xs + X^X3 - X^Xs - xtx^ - Xi-cJlJ) Xi,2,3 - (x^X-i
+ X^Xs + X2^ + 2X^X3 + X^ + XiX^ + 2XiX^X3+2XiX2X^+ XiX^ + X^X3

+X^ + X-ixi) X2, 1.3 + (^ + X^X2 + X^ + x^ + x^ +x^+ X^X3 + X^
+3;|) X3, i,2 - (xiX-2X3^ X2,3, l + (a^z^s + a;ia;ja;3 + xix^z^ Xi,s,2 .

Such expansions will be studied in the last part of this paper.

The multiplicative structure of the ring Z[a:i,.. ., a;n], in the basis of simple Schubert
polynomials is described by Monk's formula [16], [14, formula (4. 15')]:

Proposition 3.2 (Monk)

-CyA.u/ ^ X.- (8)
v=w tri, i>r, l(v)=l{w)+l ft=w t. r, t<r, i((t)=;(u/)+l

Since X, ^ = a;i + ... + a;r, proposition (3. 2) is equivalent to:

Proposition 3.3 (Monk)

X^Xw = ^ ., X,/ .
i/=w t.j, i$r<j", i(i/)=;(w)+l

(9)

For example,
X3 X3, i, 5, 4, 2 = X3, i,6, 4, 2, 5 - X3, 5, i,4, 2 - X5, i,3, 4, 2 .

Formulas (7) and (8) have the disadvantage of expressing polynomials in a;i, .. ., Zn in terms
ofSchubert polynomials possibly indexed by permutations belonging to ©m such that m > n.
These two formulas are easily proved by decreasing induction on the length of w using the
Leibnitz formula:

9k{pq)=[9kp)q+(skp)9kq, (10)

in which p and q are two polynomials. Leibnitz's formula generalizes to any 5w. Instead of
(10), we write:

(11)9k{pq) =
~9k p

+
Sk

~9k

where
~Qk

:= (9kp)q and
Sk

~9k :== (sfcp)(5fcg). It is now clear that:

9j9k{pq} =
[^Wk
T|T

\+ s, \9k
~^T

\+ 9j\sk
T|9T

\+ Sj\Sk
'IE

(12)
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reading each tableau as the product of its rows. More generally, given any reduced decom-
position s, i .. . s^ of a permutation w, p and q two polynomials, then 9w{pq) is represented
by the following sum of 2(<u') = 2k terms:

^(w):=E
J=l

ai|---|afc
M--l^

where the symbol stands for either
9i.

or
s.n
^

For now on, we fix the integer n and use only Schubert polynomials Xu, or Xiy, u?   ©n. Let
Sym[x] := Sym[zi,..., a;n] be the subring ofsymmetric polynomiak in a;i,..., a;n. In fact,
one has [14, Chap. V] the following proposition:

Proposition 3.4 The space Z[x] is a free module of dimension n! over the ring Sym[x] with
basis the simple Schubert polynomials Xw, w   ©n:

Z[a;i,..., in] = © Sym[a;i,..., a;n]X,,. (13)
u»e6n

In other words, any polynomial p 6 Z[x] may be uniquely expressed as a sum:

P = ^_ Cu, Xty ,
w6Gn

where the c^'s belong to Syin[x], as illustrated by the previous expansion of zf + x^x^xs.

4 Double Monk's formula

Geometrical problems [5] impose to take double Schubert polynomials Xu, as a linear basis of
the space of polynomials in x with coefficients in y. To recover the multiplicative structure of
this space, we need to describe the products of Schubert polynomials by the single variables
x,. This is given by the following formula which extends Monk's formula (8):

Proposition 4.1

Xr&w ^ Vw(r + i: . x. - S :
l/=w tr,, j>r, l(v}=t(w)+l IM=W t, r, j<r, l(it}=l(w)+l

(14)

Proof. We need only consider two cases. First, we check the proposition in the case w = WQ:
(Xr - yn+i-r)Xu^ is equal to the Schubert polynomial X^ where fi = wo*r,n+i because /x is a
dominant permutation (that is a permutation whose code is a partition in weakly decreasing
order) [14, formula (6. 14)]. This can be rewritten:

a^rXwo = ywo(r)^wo + X^otr n+l

which is exactly (14). Now, the case of any permutation w is easily proved by decreasing
induction on the length of w using the Leibnitz formula to compute 3, (zrXu), i being such
that l(wsi) = l(w] + 1. The initial case contains the extra term yu,o(r)Xu, o 

and this product

gives the term y^r)^w in formula (14). .

The Monk formula (8) corresponds to the specialization y, = 0, Vi of the formula (14).
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Schur functions appear in algebra and geometry as cohomology classes related to determinan-
tal varieties. A more general situation arises when taking a vector bundle V and two flags of
vector bundles: A^ c-^- A^^- ... c-^- An =V and V = Bn -» Bn-i -».... -». BI. Classes of
determinantal varieties are now polynomials in the Chern classes {ii,.. ., a;n}, {t/i,.. ., yn}
of the two flags, and one has the conditions that /(x) = /(y) for all symmetric functions
/, because in that case / is a function of V only [6]. We shall show now that under the
identification of symmetric functions in x and symmetric functions in y, i. e. modulo the
ideal I(x, y) generated by the Cfc(x) - eji;(y) (efc(x) being the fe-th elementary symmetric
function in the variables a:i,.. ., Tn), the eventual extra term in double Monk's formula (14)
vanishes. In other words, the product XrXw, w   6n possibly involves Xu/', w/   ©n+i.\©n
in proposition 4. 1, but this term vanishes if one works in the ring Z[y][x]/I(x, y). Thus, we
now take the ring of coefiicients to be:

Sym[zi,.. ., a;n] ® Z[t/i,._.. , yn]
~^^T-".

The ring Z[y][x]/Z(x, y) is still a free module of dimension n! over the ring K, with basis
either the Xu,, or the X<u, w   ©n. We shall denote this ring by K[x].

Proposition 4.2 Let w e ©n and 1 <^r <, n. In the ring K[x], one has:

3;rXw = !/w(r)^w + ^ X,/ - ^ X^ ,
v=w tr,. j>r, l(v)=l(w}+l 4=w t, r, j<r, l{it)={(w)+l

the summation being limited to permutations belonging to Gn-

(15)

Proof. In formula (14), there exists at most one term implying a permutation in 0n+i. This
term comes from the case u? = wo. Therefore, the proof of proposition amounts to check the
following nullify:

Vr, 1< r ^ n, (xr - t/n+i-r)Xu, o = 0 .

In fact, we are going to prove a more precise statement (i. e. that a certain factor of the
previous expression vanishes).

Lemma 4.3 Let r be an integer 1 ^ r^ n. Then, module the ideal I{x, y), one has:

H (xi-y, )=0.
l<»<r, Kj<n+l-r

(16)

Proof. Given two finite alphabets A and B of respectively / and m elements, then fi(A, B) :=
na A, 6 fi(a-^)is some vexiUary Schubert polynomial for the two alphabets A and B. Since

it is vcMllary, it also has a determinantal expression [14, page 94]:

fi(A, B)=|^+j-. (A-B)li<.., <; ,

where by definition the /ifc(A - B) are the coeflRcients of the rational function in z:

/(A, B):=H(i---fr)/n(i-^).
bgB a A

This function is therefore equal to fl({a;i,..., Xr}, {yi,..., 2/n+i-r}) and is a determinant in
the/ifc({.ri,..., a:r}-{t/i,..., yn+i-r}).

Take now an extra variable u. The product g := ni <,<n(l - 2.d)(l - zu) is equal

to r[i<j<n(l - ^!/j)(l - zu) because the elementary symmetric functions in the xi,..., Xn
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are equal to the elementary symmetric functions in the yi,..., yn. Thus multiplying the
numeratorand denominator of/({a;i,. .., a;r}, {yi, ..., i/n+i-r}) by g, we transform /into the
rational function /({yn+2-r,..., yn, u}» {xr+i, ..., Xn, u}), without changing its value. This
implies that the hk({xi,.. ., Zr}-{yi, .. ., i/n+i-r}) coincide with the hk({yn+2-r,.. ., yn, u}-
{Xr+l, . .., Xn, u}). This transformation shows that the determinant is equal to:

, R({yn+^r,..., yn, u}, {Xr+l,..., Xn, u}) ,

that vanishes because of the factor (u - u). .

The proof of proposition 4.2 follows immediately. .

Example 4.4 Take ©3. The product (a;2-!/2)Xu, o is equal to ̂ ({a;i, a;2}, {t/i, !/2}). Modulo
the ideal Z({a;i, xi, ̂ s}, {yi, 2/2, ys}), one has:

R{{xi, x-t}, {yi, y2}) =
h^Xi +x-2-yi- y-i) ,13(^1 +a;2 - yi - y2)

/ii(a;i+a;2-!/i-y2 ) ^2(^1+^2-yi-y?)

h2(V3 - Xs) ,13(^3 - a-s)

/»i(y3 -a;3) /i2(y3 -a:3)

!/3(y3 -a;3) yj(!/3-2-3)

(ys - a;3) 2/3 (i/3 - 13)

which clearly vanishes.

5 Multiplicative structure

We study the ring Z[a;i,. .., a;n] of polynomials seen as a free module of dimension n! over the
ring Sym[a;i, ..., Xn] ofsymmetric polynomiak, with basis the simple Schubert polynomials
Xw, w   ©n. For this purpose, we have to recover the multiplicative structure on this module.
As explained previously, Monk's formula gives the multiplicative structure of the ring in an
infinite number of variables, and does not preserve the subspace with basis the Xu,, u?   ©n-
This formula does not use the fact that coefficients can belong to Sym[a;i,.. -, a;n]. As
there is at most one term (in Monk's formula) indexed by a permutation /x outside of ©n,
we are thus led to express certain simple Schubert polynomials as a sum with coefficients
in Sym[2;i,..., a;n] of simple Schubert polynomials indexed by permutations of ©n. More
generally, every simple Schubert polynomial in Z[a;i,..., a;n] has an expression in the Schubert
basis Xiy, w   ©n-

Instead of giving identities on Schubert polynomials, we shall give identities in the algebra
of divided differences [13], also called nilCoxeter algebra [4], which imply the identities we
need. In fact, one could have chosen to give stronger identities on sums of words module
nilplactic relations (i <j < k):

9k9i9j = 9i9k9j ,

Q, 9kQi = Q, 9i9k ,

9t9i+i9i = 9w9iQi+i ,

but we prefer to work in the simpler nilCoxeter algebra, which is a quotient of the nilplactic
algebra (two words that are nilplactic equivalent, are equivalent module Coxeter relations).
Recall that symmetric polynomials in xi,..., Xn are scalars for 9i,..., 9n-i. Let fc, m be
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integers and A be the ordered alphabet A:= {Qi,..., 9m}- we consider the noncommutative
symmetric functions of A in the sense of [7]. Thanks to a result of Fomin and Greene [3],
these functions commute in fact with each other. We denote by A* (A) the fc-th elementary
symmetric function: _

Afc(A):= E ^... ^,
«l>-->«fc

and by Sk{A) the fc-th complete symmetric function:

5fc(A):= ^ ^... ^= ^ ^... ^,
«l<-<»k «l<-<*k

since 5? = 0. We also consider \i(A) = EA'(A) ti and at(A) = E5l(A) ('.

Proposition 5. 1 Let m, n and k be integers, A := {3i,..., 9m} and B := {9m+i > . . . i 9m+n}-
We write A+ B := {9i,. .., ^m, 5m+i,.-.., 9^+n}. Then, in the nilCoxeter algebra, one has:

A*(B) = Afc(A + B)S°(A) - Afc-l(A + B)S1{A) + A*-2(A + B)S\A) - .... (17)

Proof. One has fft(A+B) d£f <7t(A)^(B), so that A((A+B) = A((B) A((A). Thus, At(B) =
A((A + B) A,-1 (A) = A((A + B) a-t(A). Extracting the coefficient of tle in both sides, one
obtains (17). .

Given a word w := 9i9j ... 9k, we denote by w+ the word 5.-+i3;+i. . . 9k^\ and we extend
this morphism to the nilCoxeter algebra by linearity.

Proposition 5.2 Let m, k be integers, A := {9i,..., 9m}, B := {9m+i, ---, 9m+k}- Then,
in the .nilCoxeter algebra:

1. There exist elements T,,m such that:

9m^k . . -3m+l = E(-l)fc-t At(A + B) :r'.'n .
t=fc

and satisfying the recursion:

T«,m+l = '^'i,m ~ Tt+l,m 9m+l .

2. There exist elements Ui,m satisfying the following relations:

9i... 9k= i;(-l)fc-t Si(A+ B) Ui,m ,
>=fc

Ui,m+l = Ui,m - 9m+l+k ̂ «+l,m .

S. There exist elements V;,m satisfying the following relations:

9^, . .. Qm^k = E(-l)fc-l 5t(A + ^ vt -m '

i=k

V^l=V.+m-VW.m^-

(18)

(19)

(20)

(21)

(22)

(23)

290



4. Finally, there exist elements W^i,m, such that:

0

9,... 9k=^(-l)k-'W^Si{A+B) ,
«=Jfc

(24)

and satisfying the recursion (21).

Proof. (18) is the special case of proposition 5.1 for k = n. (20) is equivalent to it module
reversing the order on the divided differences. (19) and (21) are equivalent for the same
reason. In other words, we have two different recursions and we prove only the formula for
9\... 9k because in.this case, the proof amounts to control that the extra terms, when passing
from m to m+ 1, cancel each other and thus, that the equality is preserved. But now, this is
implied by the recursion on the set of words as we shall check for simplicity for (24), in the
case k =2. Recursions on the W, are simply recursions on words so we forget to write the 9:
for now, 12 stands for 9i9z. Suppose by induction that we have the formula for fc+m = 4
and let us prove it for Jk+ m= 5. If one checks or assumes that:

12 = 52(1, 2, 3, 4) - (3 + 4)51(1, 2, 3, 4)+43+ 32 - 23 ,

then the statement says, by applying the rule W,,m+i = ^-.m -(m+l+k) W,+i,m, that we
still have the following equality:

12 = 52(1, 2, 3, 4, 5) - (3+4+5)51(1, 2, 3, 4, 5)+5(3+4)+43+32-23.

Now, the extra expression involving 5 is 51(1, 2, 3, 4)5-551(1, 2, 3, 4, 5) - (3+4)5+53+54,
that is 15+25+35+45- 51 - 52 - 53- 54 - 55 - 35 -45+53+54 == 0. .

Now, each identity on words of proposition 5.2 can be translated in terms of Schubert
polynomials. The problem that we consider is to express Schubert polynomials Xu/', w/  
6n+i\©n in terms of Xu,, w   ©n. We need only consider the w of the type (n +
1, n,.. ., m,.. ., 2, l, m) because using the divided differences 3i,..., 9n-i, we get all others.
For these special permutations w/, one has the identity:

9m+k . . . 9m+l (Xm+fe+l,..., 2, l) = xm+k+l,.... k^i,...,2,l, k+l '

which involves the left-hand side of (23).
Finally, we also need the following lemma which connects multiplication of simple Schubert

polynomials by the ei(a;i,.. ., a;n) and multiplication by the A'(9i,..., 5n) in the nilCoxeter
algebra.

Lemma 5. 3 Let p,   ©n and Wn (resp. Wn+i^ denote the maximal permutation of ©n (resp.
©"+!;. Then,

c;(zi,..., ^)X^=^-i^An-(^,..., 3n)X^, . (25)

Proof. Since X^ = O^wn xw
n 

and since 5(i-lwn commutes with the multiplication by

e, (a;i,..., in), it is suflRcient to prove the formula for ^ = Wn and we will do it for all the
e,-(a;i,..., a;n) at the same time. ^ e.-(a;i,..., a;n) X^ is equal to the sum of all monomials
whose exponents are between (n- l, n-2,..., 1, 0, 0) and (n, n- 1,..., 1, 0). But this is the
same for V, ^. (9i,..., 9n) Xu/n+i because the order in which divided diflferences are performed
is such that, at each stage, one has to perform 9j (.. .x^+lx^ ... )=. .. x^x^... that is a
monomial. .
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We are now able to give an algorithm directly on permutations. For that purpose, we consider
operators from 0n-i into ©n, P^,..., P^ defined by:

J^(^) ->n^
P?W -»-^i n^2...

P^(^i) -^^... fik-i n p.k...

Proposition 5.4 Let n, m be two integers such that m ^ n. Let 7^(ra, m) be the polynomial
recursively defined by:

7Z(n, m) :== ^
eiX^,n-i,.., 2. i - Ep^-fc(%(ra- l'A;))

^+-ej+i
if m = n,

J^(7Z(n-l, m)) -P[l(7Z(n-l, m)) , otherwise.
Cj<-e, +i ~ \ /ej<(-ej+2'ej<-e,+i

Then, 7S(n, m) is exactly equal to the Schubert polynomial which is indexed by the permutation
(n+l, n,..., m,..., 2, l, m).

Using the divided differences 9i,..., 9n-i, which commute with the e,-, one can deduce
from proposition 5. 4 the expression of any Schubert polynomial in ©n+i.

6 Applications

Proposition 5.4 has modified Monk's formula (8) into a formula involving only permutations
in Gn and thus, allows to express the product of any Schubert polynomial X^, w   ©n by
any polynomial in a;i,.. ., Zn. More generally, it allows to multiply any linear combination of
Schubert polynomials with coeflBcients in Sym [a;i,.. ., a;n] by a polynomial with coefficients
also in Sym[a;i,.. ., a;nj. To reduce the symmetric coefficients, one uses distinguished bases
of symmetric functions and corresponding algorithms. These algorithms are furnished by
combinatorial properties of partitions or Young tableaux and are independent of the number
of variables.

As an application of the methods described in the preceeding section, we shall mention
the cohomology ring of a relative Grassmann variety. More explicitely, let A and B be two
disjoint alphabets, A := {xi,..., Xm} and B :=:= {a;n, +i,.. ., a;n} of respective cardinal m
and n-m. We shall denote by A+B the alphabet {a;i,.. ., a;m, a;m+i, . . -^n}.

The cohomology space that we have just referred to is the space of polynomials in
a;i,.. ., a;n which are symmetrical separately in 2:1,.. ., a;m and a;m+i< . . . » a:n. This space is a
free module over the ring of symmetricpolynomials Sym[a;i,...,. Cn]. It has a canonical basis
(the Schubert cycles) of cardinal (^), consisting of Schur functions [15] indexed by partitions
smaller than (n - m)m. For example, in the case m = 1, the basis consists in a;$, x\,..., x^'
and the decomposition of a polynomial into this basis is given by Euclid^s algorithm. For
a more general m, the product of two Schur functions belonging to the basis, given by the
Littlewood-Richardson rule [15], will involve partitions not smaller than (n - m)m.

However, one can express this product of Schur functions, thanks to the preceeding sec-
tion, in terms of Schubert polynomials X^, w   ©n. These Schubert polynomials must
be symmetrical in ii,..., Tm and therefore are Schur functions [14]. Because the indexing
permutations are in ©n, then the corresponding Schur functions are indexed by partitions
smaller or equal to (n - m)m, i. e. belong to the canonical basis. In other words, section 5

292



gives a method to decompose any element of the cohomology ring in the basis of Schubert
cycles. For instance, form== 3, n = 5, the square of the Schur function S2i(a;i, a'2, a;3) is
equal to 6452 - C3S2i +e?Sz2 + (64 - 6361)511 + (6461 +65)51 + (e^ - 62)5211 - ( 261+63)5111 +
5222 + 2ei 5221 +  561 while the Littlewood-Richardson rule gives 542 + 5411 + 533 + 2s32i +^222
that involves partitions oytside of (222).
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