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ABSTRACT. We introduce a new poset property which we call EC-sheIlabiUty.
It is more general than lexicographic sheUability, but still implies sheUabil-
ity. We prove that intersection lattices Tl\ of orbit arrangements A\ are EC-
sheUable for a very large class of pitrtitions >. This allows to compute the
topology of the link and the complement for these arrangements. In particu-
lar, for this class of A's, we are able to settle the conjectiire of A.Bjomer, stating
that the cohomology groups of the complement of the orbit arrangements are
torsion-free.

We also present a class of partitions, for which Tl\ is not shellable.

1. INTRODUCTION

Let Abe a central subspace arrangement and let M^. be its complement. The
problem of computing the cohomology groups of M^ is one of the central questions
in the theory of subspace arrangements. One usual way to do that is to prove that
the intersection lattice L^ of the ajrangement A is shellable. Several combinatorial
tools have been developed to handle this task. The most known are probably:
lexicographic shellability (EL- and CL-shellability) and recursive atom ordering
(see [B80, BWa82, BWa83, BWa94]). These methods are technically involved, but
unfortunately, still unsufficient for many important cases.

We introduce a new poset property, which we cedl edge compatible shellability
(or shortly EC-shelIabiIity). It is more general than the lexicographic shellability,
but still implies shellability. The general idea is then to prove that C. ^ is EC-
shellable, which in particular means that £^ is shellable, and so via formulae of
M.Goresky, R. MacPherson, [GM], and G. M.Ziegler, R.Zivaljevic, [ZZ], one can
obtain the topology of the complement M^. and the link V^.

We believe that this new method has especially good potential in the case, when
the poset is an intersection lattice of some subspace arrangement with a nice
combinatorial description. For example, we are able to show that the intersection
lattices HA of a large class of orbit arrangements A\ are EC-shellable.

We shortly sketch the contents of the article.
Section 2. Most of the general notions used in the paper are introduced.

If some unclarity still remains, the reader is refered to the standard textbooks:
R.P.Stanley "Enumerative Combinatorics, vol. I", [St], for the combinatorial part,
and J.R.Munkres "Elements ofAlgebraic topology", [Mu], for the topological part.
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Section 3. Here all of the new theoretical tools are concentrated. The notion of
EC-shellability is introduced. We also give a parallel definition of CC-shellability
and prove that they both imply shellability. Finally, we consider an even more
general notion of S-orderings.

Section 4. It is proved that U\ is EC-shellable, whenever a certain condition
on A (which we call condition (NES)) is fulfilled. We also come up with a class of
partitions A, for which Il\ is not shellable.

Section 5. The recursive atom ordering technique is applied to prove the shella-
bility of the intersection lattice of orbit arrangements in a few more cases.

Section 6. The results of the previous two sections are applied for the special
caseA=(Am, l().

Section 7. Topological consequences ofTheorems 4. 1 and 5. 1 are derived. We
apply formulae of Goresky, MacPherson and Ziegler, Zivaljevic to the case of orbit
arrangements.

Section 8. A formula for the Mobius function of the lattice HA is given. It is
needed for the computation of the reduced Betti numbers of the complement M^^.

2. BASIC NOTIONS AND DEFINITIONS

In this section we give a short summary of the standard notions used throughout
the text.

A poset P is called bounded if there exist a top element 1 £ P and a bottom
element 0   P such that 0 <^x <:! foi allx e. P. All the posets we will consider in
this text will be finite and bounded. We say that v covers y if-c > y and there is
no 2 such that a-> z >y, we denote that by x -+ y. We call z   P an atoin if a-
covers 0. We say that CC P is a chain if any two elements of C are comparable.
For a finite poset P we will denote its chain complex by A(P). We say that P is
pure if A(P) is pure. Such posets are also often called graded.

Definition 2. 1. A simplicial complex A is called shellable if its facets can
be arranged in linear order F\, F^,..., Fi, in such a way that the subcomplex
(U, ^1 F, ) n Fk is pure and (dimFfc - l)-<ftmens!ona/ for all k = 2,.. ., t. Such
an ordering of facets is called a shelling order.

Definition 2. 2. A poset P is said to be EL-sheIlable if one can label edges with
elements from a poset A so that for every interval [x, y] in P,

(i) there is a unique rising maximal chain c in [x, y] (rising means that the
associated labels form a strictly increasing sequence);

(ii) c -< c/ for all other maximal chains c/ in [x, y}.
Here the symbol "^" means "lexicographically preceeding". We will often say "lex-
icographically less" or just "less".

The notion of EL-shellability was first introduced in Chapter 2, [B80]. See also
[BWa83] for further investigations and [BWa94] for the non-pure version.

Let £{P) denote the set of covering relations in P, i. e.

£(P)={(x, y)\x^y},
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then labeling the edges in the Hasse diagram of P with elements from a poset A
is nothing else but a map /i : £(P) -- A. One can also consider a more general
notion. Namely let

S'(P)= {(x, y, m)\x . <-y, x, yQ. m, m is a maximalchain}.

Then a map p. : £*(P) -* A means that we are labeling the edges in our Hasse
diagram "with respect" to the maximal chains, which they belong to. Such a map
is called a cham-edge labeling if the following condition is satisfied:

Condition (L). // two maximal chains c=(6 = XQ-* xi~* ... -* Xn = I)
and c' =(0= x'o ->. x\ -* ... -^ x'n= 1) coincide along their first d edges then
their labels also coincide along these edges, that is, if Xi = x', for i=0,..., d then
^(.c. -i, a:., c) = /x(^_i, ̂ , c')fori=l,..., d.

If [x, y] is an interval and r is an unrefinable chain from 0 to a;, then the pair
([x, y], r) will be called a rooted interval with root r, and will be denoted [a;, y]r.
Let c be any maximal chain of [x, y], then rU c is a maximal chain of [0, y]. Take
some maximal chain m of P which contains rUc and let o-r(c) be the string of labels
associated to the edges of the chain c with respect to the chain m. The condition
(L) guarantees that o-r(c) is independent on the choice of m.

Definition 2.3. A poset P is called CL-shellabIe if there exists a chain-edge la-
beling p. such that for every rooted inierval [x, y]r in P,

(i) there is a unique rising maximal chain c in [x, y]r;
(ii) c -< c/ for all other maximal chains c' in [x, y]r.

The notion of CL-sheIlability was first introduced in Chapter 2 of [BWa82], it was
effectively used there to prove the shellability of Bruhat orders of Coxeter groups.

Definition 2.4. A pure poset P is said to admit a recursive atom ordering if
either P consists of Q and I or there is an ordering of its atoms 01, 02,.. ., a<, which
satisfies:

(Rl) /or all j = 1, 2, ..., <, [a;, 1] admits a recursive atom ordering in which the
atoms o/[a,, i] that come first in ike ordering are those that cover some
a,, where i < j;

(R2) for all i < j, i/a,, aj < y and y does not cover aj, then there is a k < j
and an element z such that aje, aj < z < y-

Recursive atom orderings were first considered in [BWa83]. It is proved there
(Theorem 3.2) that a graded poset admits a recursive atom ordering if and only if
it is CL-shellable.

We say that a poset P is semimodular if for any x, y   P, such that x and
y both cover the same element 2, there exists an element t, which covers both x
and y. A poset P is called totally semimodular if all intervals are semimodular.
Totally semimodular posets are interesting because according to Theorem 5. 1 in
[BWa83] a graded poset P is totally semimodular if and only if for every interval
[x, y] of P, every atom ordering in [x, y] is a recursive atom ordering.

We use the notation A = (Ai,.. ., Ap) for the partition of the number n = E?=i A»
into blocks of sizes Ai,.. -, Ap and we always have these blocks ordered after their
sizes, i.e. \i > >2>. ... >. ̂ p- By Hn we denote the partition lattice of the set
[n]. It is a poset with elements all different partitions [n] ordered under refinement.
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A finite collection A = {A'i,..., A'(} of linear proper subspaces in ]R" is called a
subspace arrangement. A subspace arrangement is called central ifOe Ki, i =
l,..., t. We will only consider central subspace arrangements. The intersection
semilattice C. ^, of an arrangement ^ = {A'i,.. ., A'(} is the collection of all non-
empty intersections A', ; n . -. n J<,y, 1 ^ ii < ... < fp ^ <, ordered by reverse
inclusion: x ^y w-yC x. When A is central, LA is always a lattice.

In this paper we will deal with a special class of subspace arrangements which
were first defined in the subsection 3. 3 in [B94]. Here follows the definition. If
TT = (Bi,. .., Bp) is a nontrivial partition of the set [n], then let Kv = KB^ n . . .D
KB^ = {x   Rn\i, j   Bk =^ x, = Xj, for all 1 < i, j, ̂ n, l < k <p}. The type
of T is the sequence of block sizes |Bi| arranged in aon-increasing order. Given a
non-trivial number partition A h n, let

Ax = {K,\v   Un and type (v) = \}

A\ is called an orbit arrangeinent, expressing the fact that A\ is the orbit of
any single subspace Kv under the natural action of Sn on R".

Let HA = C^. Note that Hn = H(2, i,..., !). The main goal of this paper is to
study the topological properties of A\ through the combinatorial analysis of its
intersection lattice Tl\.

3. TOOLS

We generalize the known definition of lexicographic shellability.

Definition 3. 1. We say that a pure posei P has a edge compatible labeling,
or/or short just EC-Iabeling, if we can label edges with elements of some poset A
so that in any interval all the maximal chains have different labels and the following
condition is satisfied:

Condition (EC). For any interval [x, t], any maximal chain c in [x, t] and
y, z G c, such that x<y < z <t, if c}[x^] is lexicographically least in [x, z] and
cl[y, (] ts lexicographically least in [y, t] then c is lexicographically leasi in [x, t\.

t

if cis lex.
least here-:

.
-. 'then it is also

lex. least here

and here

Proposition 3.2. For any pure posei P and for any edge labeling the following
conditions are equivalent.

(1) Condition (EC);
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(2) Condition (EC'}. For any interval [x, t], c a maximal chain in [x, t], and
y, z   c, sucA (Aa( a; <-y <- 2, i/cj^,, ] ts lexicographically least in [x, z]
and c|[y,(] is lexicographically least in [y, t] then c is lexicographically least
in [x, t],

(3) Condition (BS) ("bad subchain"). For any interval [x, t\, any maxima!
chain c in [x, t], such that c is not lezicographically least in [x, t] and
rk[x, t] > 2, there exist elements y, z   c, such that c|[y,, ] is a proper sub-
chain of c and c|[y^j is not lexicographically least in [y, z].

(4) Condition (BS'). For any interval [x, t], any maximal chain c in [x, t], such
that c is not lexicographically least in [x, t], there exist elements y, q, z e. c,
sacA that y«- g <- z and c|[y^] is not lexicographically least in [y, z].

Proof. It is obvious that (1) => (2) and (3) 0 (4).
(2) =» (3). Condition (EC') can be reformulated in the following way: if c is not

lexicographically least in [x, t], then either c|[r^] is not lexicographically least in
[x, z] or c\[y, t] is not lexicographically least in [y, t], that proves Condition (BS).

(4) =» (1) Consider an interval [r, f], c a maximal chain m[x, t], y, z ^c, x < y <
z <t, such that c is not lexicographically least in [x, t\, but c|[r^] is lexicographically
least in [x, z] and c|[y, (] is lexicographically least in [y, t]. Then there exist p, g, r   c,
such that p <- g «-r and c|[p^j is not lexicographically least in [p, r]. Obviously
either y^por r ^ 2'. Assume y ^ p (the other case goes along the same lines),
then p, q, rG c\[s, t]- Since c|[p, r] is not lexicographically least in [p, r], we-conclude
that c|[y, t] is not lexicographically least in [y, t\, that gives a contradiction. D

Definition 3.3. A pure poset P is said to have a coinpatible chain-edge la-
belmg, or just CC-labeling, if there exists a map p : £'(P) -» A, which is a
chain-edge labeling and such that in any interval all the maximal chains have dif-
ferent labels and the following condition is satisfied:

Condition (CC). For any rooted interval [x, t\T, any maximal chain c in [x, t]r
and y, z   c, such that x<y < z <t, i/c|^^] is lexicograpkically least in [x, z]r
and c|[y, t] " lexicographically least in [y, t]r' then c is lexicographically least in [x, t]r,
where r' = rUc[[r, y].

Remark 3.4. Proposition 3.2 generalizes in a straightforward manner to the case
of CC-labelings, one only has to consider rooted intervals instead of the usual ones.
We leave the details to the reader.

Theorena 3.5. For any pure poset P the following implications are satisfied:

EC-labelable ==^ CC-labelable ==» shellable
^ ft

EL-shellable =^ CL-shellable

Proof. CC-labelable => shellable. We will prove that the lexicographic ordering
of the maximal chains in P gives a shelling order on the facets of A(P).

Consider two maximal chains, c and d, such that c -( d. Say c = (a-i,.. .,.1'*),
d = (yi, -.., 2/t) and let p = min{t'|.c,+i ̂  y,+i}, ? = mm{j\j > i, Xj = y, }.
Denote I = [a;p,.c,]. c|/ and <i|/ are two different maxima! chains in Ir, where
r = (a;i,...,. Cp) = (yi,..., yp). Hence one of them should be lexicographically
preceeding to the other one. Since c <; d we get c[/ -< d\j in Ir. So d\j is not lexico-
graphically least in Ir, hence, according to the condition (BS'), there exist elements
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y, <- y,+i <- y, +2, such that p<: s <: q-2 and d|[y,, y.+2] is not lexicographically
least in [y,, y, +2\(yi...., y. )- Let Vs ̂  V' ̂ - !/»+2 be the lexicographically least chain
in [y<, y»+2](y,,..., y. ). Take c' = (yi,.. ., y,, !/, y, +2, ..., Vk), then c/ n d 3 end and
c1 .< d. This proves that the lexicographic ordering of the maximal chains in P

gives a shelling order.
The proof of the other implications in the theorem is a straightforward verifica-

tion and is left to the reader. D
Because of the Theorem 3. 5 and following the tradition we call a poset P EC-

shellable (resp. CC-sheUable) if it has a EC-labeling (resp. CC-labeling).
It is known that shellability does not imply EL- or CL-shellability, see [VW, Wal]

for counterexamples. If the other implications in Theorem 3. 5 are strict is still open.

Theoreni 3.6. For any poset P ike following two statements are equivalent:
(a) P is shellable and it is possible to label edges with elements of some posei

so that the induced lexicographic ordering of the maximal chains of P gives
a shelling order;

(b) P is EC-shellable.

Proof, (b) =^ (a) It is proved in the Theorem 3.5
(a) =» (b) The argument in the proof of Theorem 3. 5 shows that the condi-

tion that the lexicographic ordering of the chains is the shelling order is equiv-
alent to condition (BS'), which in its turn by Proposition 3. 2 is equivaleDt to
EC-shelIability. D

All the discussion above can be easily generalized to the case of aon-pure posets.
Although, we have to demand one more condition (which is usually satisfied any-
way): ijt(x <- y) ^. ^(. c i- ^) /or any x, y, z e P such that y ^ z.

It is known that if the poset is CL-shellable, then the poset A, used for labeling,
can be exchanged to Z. The same is true for EC- and CC-shellable posets, both
in pure and non-pure case. The reason for that is that one only needs to compare
the edges between the same rank levels (in the pure case) or with the same smaller
element (in the non-pure case). This question, however, is still open for the EL-
shellable posets.

4. MAIN THEOREMS

Let B to denote the multiset of positive integers, which are the sizes of the blocks
in A, i.e. B = {\i,.. -, >p}. Here and throughout this chapter we are using symbols
"{" and "}" to denote multisets, hopefully no confusion with the usual sets should
occur.

Let A = (Ai,..., Ap), let us define the numbers s^Oandfc ^2 by Ap = Ap-i =
... = Ap_.+i = 1 and Ap_. = k > 1.

Theorem 4. 1. Let \=. (\i,..., \p) and B be the multisei of the sizes of the blocks
from X as described above. HA is EC-shellable if the following condition on \ is
satisfied:

Condition (NES) (no equal-sum subsets). It is impossible to partition B into
three disjoini multisets

B=Bi UBsUBs,

sucA that the following three conditions are satisfied:
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(a) BI is not empty;
(b) jBi and B^ do not contain any number in common;
(c) E. Bit=Ej B, J-

Reniark. Note that if the condition NES is satisfied for a partition A, then, in
particular, HA is pure.

Proof. D
Assume that A is a partition such that t ^ k >3. Take U\ and delete all the

covering relations a; <- y, where x ^ 0, corresponding to the mergings of k singleton
blocks into one Jb-block. After that delete all the elements which were not atoms,
but which became atoms after the deletion of relations as above. In other words,
we delete the elements which cannot be obtained without forming a ^-block out of
singletons. We call the obtained poset Pure(R\).

A different way to view this poset is just to say that it is a "union of the longest
maximal chains" of HA.

Theorem 4.2. Let \ be a partition and B be the multiset of the sizes of the blocks
in A. Let P be equal to the poset Pure(Il\) ift> k'^3 and to just DA otherwise.
Then P is not Cohen-Macaulay (in particular not shellable) if it is possible to write
B as a union of three disjoint muliisets:

B =Bi UBzUBs,

so thai the following conditions are satisfied:

(I)E^, ^_=E. B, ^O' . ., . _. ,, .
(2) Bi and Bt are two minimal multiseis saisfying (1), in other words, Bi

B-i have no number in common;
(3) if \B-i\ = mi, |52| = "»2 and mi ̂  mz tAen et'(Aer mi ̂  2 or mz ̂  1;
(4) none of the numbers from Bs can be written as a sum of two numbers from

BiUBt;
(5) none of the mvltiseis Bi and B^ contains only 1 's.

Note. If P is not shellable then U\ is not shellable either. If< ̂  fc orfc=2 it
is obvious, otherwise one needs the Rearrangement Lemma 2. 6 from [BWa94].

Proof. D

5. THE RECURSIVE ATOM ORDERING TECHNIQUE

Theorem 5.1. Let A = (Ai,.. ., Ap_,, 1<) (ften (Ae following two conditions guar-
antee that U\ is CL-shellable (hence shellable).

(1) s ^ 1 or Ap_, =k=2;
(2) Condition (NES).

Moreover the condition (2) can be weakened to allow X to have blocks of sizes u, v
and u+v if there are no block sizes in \ less than u+v, except for u and v.

Proof. D
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6. APPLICATIONS

In this section we will closer investigate shellability of V. \ for the special case
\=(km, lt)=(k,..., k, l,..., l).

m t

Theorem 6.1. Let \ = (km, 1<), we have:
(I) ift<k then HA has a EC-labeling (hence is shellable);

(II) if k= 2 then HA is CL-shellable;
(Ill) if m= I then HA is EL-shellable;
(IV) ift>^k, k>3, m>3 then DA is not shellable;

Proof.

(I) Follows from the Theorem 4. 1.
(II) Follows from the Theorem 5. 1.

(Ill) The homotopy type and Betti numbers of these lattices, also known as
Hn, ii: were first computed in Theorem 1.5, [BWe]. Their EL-shellability
was proved in [BWa94]. They were also important in connection with a
problem in complexity theory, see [BLY], [BL].

(IV) Follows from the Theorem 4. 2.

That completes the proof. D

7. TOPOLOGICAL CONSEQUENCES

In this section we will consider the topological consequences ofTheorems 4. 1 and
5. 1.

First let us introduce some notations. Assume that we have a ceatrsil subspace
arrangement A = {K^, ..., Kt} in R". We define V^. = J^i n ... n ^'( and MA =
IR" \ t<4, so V^ is the union of the subspaces in our arrangement and MA is the
complement to it. When the arrangement is central, V^ is contractible, so, in order
to get hold on its topological properties, one often considers 1^4 n 5"-l instead.
Also to determine cohomology of Af^ is a central question in the theory of subspace
arrangements. Shellability is one of the tools which has been proved to be usefull
to do that.

The two following results are of fundamental importance for determining the
topology of the arrangement A from the combinatorics of its intersection lattice
LA.

Proposition 7.1. (Goresky and MacPherson, [GM]/ For every subspace arrange-
ment A and all dimensions i:

(7. 1) Hi(M^^.  D ^=od, m(z)-. -2(6,.c).
xGL >6

Proposition 7.2. (Ziegler and Zivaljevic, [iZ]}. For every arrangement A in
there is a homotopy equivalence

(7. 2) VA n 5"-1 =^ wedge(A(6, a;) * 5dim(a:)-1)
x6^°

The next proposition is an easy consequence of these results.
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Proposition 7.3. Let A be a subspace arrangement in Rn, such that £^ is pure
and shellable. Assume that for any x G CA we have codim(x) - rk(x) = c, where c
is some constant. Let r be the codimension of the highest dimensional subspaces in
A, then r = c+ 1. Then the cohomology groups of MA are torsion-free and their
Betti numbers are given by the following formulae:

(7. 3) y(M^) =.gE.e£^ 1^(0^)1. ifi=r-^.
otherwise

Furthermore, V^. C[Sn~1 has the homotopy type of the wedge of(n-r-l)-spheres.

Proof. Let A = A(0,.c), for a;   £<4. We know that C, A is shellable hence we
can conclude that A is also shellable. In peirticular it means that

A-(A) = \fi(0, x)\, if»=rk(r)-2
0, otherwise

and that A has the homotopy type of a wedge of (rk(a:) - 2)-spheres. Insert that
into the formulae in Theorem 7. 1. The term on the right hand side of 7. 1 does not
disappear iff codim(r) - 2 - i = rk(a;)-2, that is if i = codim(a;) - rk(a-) = c = r-1.

If we look at equation 7.2, we see that because

(rk(r) - 2) + (dim(z-) -l)+l=n-r-l

we can conclude that V^C\Sn~1 has the homotopy type of the wedge of (n - r- 1)-
spheres. D

Corollary 7.4. Let\= (\i,..., Xp) be a partition, which satisfies condition (NES)
in Theorem 4. 1 or conditions in Theorem 5. 1. Then the cohomology groups of M^
are torsion-free and their Betti numbers are given by the following formulae:

(7. 4)

 .,
)={ )1' .y:=n:p-1

l*/ 10, otkerujise

Further, V^^ HSn~1 has the homotopy type of the wedge of (p- l)-spheres.

Proof. If the partition A satisfies the condition (NES) in the Theorem 4. 1 or
the conditions in Theorem 5. 1, then it is easy to see that A\ (and hence £^J is
pure, and it was proved that it is shellable. Also one can see that for any x   C^
we have codim(z) - rk(a;) = n -p- 1. So all the assumptions of the proposition
7. 3 are fulfilled A\ is obviously an arrangement in R", where n = Y^^ A,-. The
dimension of the highest dimensional subspaces is p and so the formulae 7.4 follow
immediatelly from 7.3 and we also conclude that VA^ n 5"-1 has the homotopy

' type of the wedge of (p - l)-spheres. D
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8. SHELLABILITY OF Hn, t(/), COMPUTATION OF THE MOBIUS FUNCTION OF HA

Let us denote ii\ = ^(HA). To compute ^\ we will need an auxiliary class of
lattices. The following definition is adopted from Bjorner and Welker, [BWe].

Definition 8.1. Forn>^ 2, k ~^ 2, and I ^ 0, let Hn,t(/) be the family of all
partitions IT of the set {1, 2,..., n} such thai each block B of v satisfies at least one
of the following requirements:

(i) \B\ = 1,
(ii) k<\B\^ n,
(iii) Bn {1, 2,..., Q^0.

Ordered by refinement, IIn,t(0 is a lattice. Observe that B[n,*(0) = Hn,* and
Hn, 2(/) = Un. We Will denote ^(Hn, t(/)) = ^n, t(0.

Given a partition A = (Ai,..., Ap), let 6(A) denote the number of blocks in A,
i.e. b(\) = p and let s(\) = {max j \ \, ^ 1} = {#j| \, ^ 1}.

Proposition 8.2. Let A = (Ai,.. ., Ap) 6e a partition. Take x   HA, T ^ 0 and
write x in the block form: x = (Bi,..., 5;, B;+i,..., Bm), such thai |Bi| ̂  . . . >
|Bn, |, \B, \ > 1 and |B,+i| = ... = |B^| = 1. TAen

[.c, i]=;n^(,(A))(0

Proof. Denote k = \(s(\)). Let us define a map / : [a:, l] -» Hm. If B =
B,, U--. U5. < then let/* (5) = {ii,..., i(}. Take y   [.c, l], y = (Vi,.. .. Y, ) and
define /(y) = (/*(Yi)..., /*(Y?))   Hm. Every block of y is either a singleton, a
union of at least k singletons or a union of at least one of the blocks B\,..., Bi and
an arbitrary number of singletons.

These cases correspond exactly to (i), (ii) and (»"«') in Definition 8. 1, so / defines
a bijection / : [,c, l] -» flm, k(l)- On the other hand, both [a;, 1] and I[m, ib(0 are
ordered under refinement, so it is easy too see that / is actually a poset map. Hence
[z, i] =; Dm,t(/). D

Proposition 8.3. Un, k(l) is shellable for alln'^1, k~^ 2, and I ̂  0.

Proof. Consider IIm. i for m = n+lk-l. It has been proved in the Theorem 6. 1,
[BWa94], that Hm, t(0 is EL-shellable for anym^ fc ̂  2. Let x   Hm, t be some

I

partition of shape (k, k,..., k, 1, 1.. ., 1), then according to the Proposition 8.2 we
n

get [a;, 1] 2; Hn, *(0- Since every interval of an EL-shellabk poset is EL-shellable
(see Lemma5.6 in [BWa94]), we conclude that IIn,t(0 is EL-shellable, hence simply
shellable. D

Proposition 8.4.

(8. 1) ^=- ^ n($)-^),
A refines 6

where n(6) is equal to number of partitions of [n] of shape 8 and fi(8) = /j. i, (s), k(s{8)).
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Proof. Immediate from Proposition 8.2 and definition of Mobius function. D
Next we would like to specialize the formula 8. 1 to the case when the partition A

satisfies the condition (NES). First of all, let us notice that it 6 = (I01, 2aa,..., nan)
then it is well known that

(8-2) n(6) = ^!... ^!l!-... n!an
Let ^, i(/) = rankff. (nn, t(/)), i.e. /%^(/) is the !th reduced Betti number of

V-n. kW- It has been proved in [BWe] that these numbers satisfy the following
recursive formula:

(8. 3) ^». ^/)= ("fc-?71 ) .^~-^, ^+l-^~-1^-

Summing up over all i with a sign (-1)', we obtain

(8.4) pn, fc(Q + (" ̂l_\ ^ . ̂-k+l, k(l) + / . ̂n-l, t(0 = 0.
In particular, if A satisfies (NES), then

b(S) - s(6) ̂  6(A) - s{\) < k.

But itn- I < k, then it is easy to derive from formulae 8.3 and 8.4 that

^k(l) = (-1)"-3 . V = (-1)"-3 . /n-'-1 . /'.
Corollary 8.5. If the partition \ satisifes condition (NES), then

(8. 5) ^(HA). =- E "(5). (-l)i({)-3-^)!. ^)t^-<(<)-1,
A refines 6

n!

where 6 = (1°', 2a2,..., nan) anrf n(^) = , ^, '^, ^, a»-
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