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Summary

We present a variation of Kraskiewicz insertion, adapting it to permutations of Sn. It maps a
permutation to a pair of shifted tableaux of the same shape. It is shown that it is eqmvalent to
Haiman's shifted mixed insertion but it exhibits some properties that are different from those of
shifted mixed insertion. For example, it has a natural notion of a reading word.

1 Introduction

We assume that the reader is familiar with the Robinson-Schensted insertion algorithm and
jeu de taquin. A good reference is [9]. The insertion algorithm maps a permutation to a pair
of standard Young tableaux of the same shape.

Edelman and Greene developed a variation of Robinson-Schensted algorithm that enables
them to count the number of reduced words of a permutation [3]. This insertion maps each
reduced word to a pair of tableaux. The symmetric functions related to these tableaux turn
out to be stable Schubert polynomials [1, 4, 10].

There is an analogue of EdeIman-Greene's insertion and a related theory of stable Schu-
bert polynomials in the context of Bn, the group of signed permutations. The algorithm was
developed by Kraskiewicz [6] to enumerate the reduced words of a given signed permutation.
The shifted tableaux that he used are different from those in the other algorithms. We
propose a variation of Kraskiewicz insertion algorithm that maps a permutation to a pair
of shifted tableaux, one of which is of the same type as those used by Kraskiewicz and the
other is a standard shifted Young tableau.
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There are already insertion algorithms that map elements of Sn to pairs of shifted
tableaux, for example, Worley-Sagan insertion [11, 8] and Haiman's shifted mixed insertion[5].
It turns out that the new variation we are proposing is closely related to Haiman s shifted
mixed insertion.

2 Notation

Definition 2. 1 We define a shifted shape T to be an arrangement of n boxe$, filled with
numbers, into I rows of strictly decreasing lengths Ai, A2,... , A;. Each row is indented 1 box
to the right of the row above. The sequence A = (Ai, A2,..., A/) is called the shape of T and
is denoted by sh(T). The number of boxes in T is called the size of T.

Example: The figure shown below has size 8 and shape (5,2, 1).

Definition 2.2 Let T be a shifted tableau filled with integers from 1 to n and such that

1. the entries in each row increases from left to right, and

2. the entries in each column increases from top to bottom.

Then T is called a standard shifted Young tableau. Denote the set of such tableaux of size
n by Q,n.

Example:

517
16
8

The set of permutations is denoted by Sn- We treat a permutation TT = TTi^z... TT^ as a
sequence of distinct numbers from 1 to n. The reverse of TT, denoted by 7rr, is the permutation
^nTTn-l ... 7T27!'l-

Very often we are interested in certain subsequences of a permutation that satisfy certain
properties. For example, in the theory of Robinson-Schensted algorithm, the length of the
longest increasing subsequence is reflected in the length of the first row of the pair of Young
tableaux. Here, we are interested in unimodal subsequence.

Definition 2.3 Let v = v-iTT^ . . . TT^ be a sequence of distinct numbers. If there exists k,
k > 1 such that

5Ti >7T2 > ... > TTfc < TTfc+i < ... < TTn,

then v is called a unimodal sequence. We define TT\. = TTi^ .. . Vk to be the decreasing part of
v and n-T= ̂ ^4.1^+2 ... ^n to be the increzising part O/TT.
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Definition 2.4 Let P be a shifted tableau filled with distinct entries. Denote the entries in
the ith row of P by P,. If for each i, P, is a unimodal subsequence of maximum length in
Plpl-1... p,+lpi then P is called a unimodal tableau.

If the entries in P are from 1 to n, then P is called a standard unimodal tableau. We
denote the set of standard unimodal tableaux of size n by Pn.

Example:

2(3

3 Kraskiewicz Insertion

Even though the Kraskiewicz insertion algorithm works on reduced words of signed permu-
tations, we can use it on permutations of Sn as well. This is made possible by the fact that
each permutation, when written as a sequence of distinct numbers, corresponds to a reduced
word of some signed permutation.

We will abuse nomenclature and call the proposed insertion algorithm Kraskiewicz in-
sertion algorithm as well. So the Kraskiewicz insertion maps a permutation Tr. to a pair
of tableaux (?, (?). We call P and Q the insertion tableau and the recording tableau of
TT respectively. The insertion tableau is obtained by constructing a sequence of unimodal
tableaux each obtained by the steps described below.

0=p(°), p(l\ p(2\..., p(n)=p

Each ?(') is obtained from P('-l) and TT,.

Input: pr, and P('-1). Output: P^.

Step 1: Let a = TT. and R be the first row of P(i~^.
Step 2: Insert a into R as follows:

. Case 0: R= 9. If the empty row is the kth row, we write a indented k-l boxes away
from the left margin. This new tableau is P(i). Stop.

. Case 1: Ra is unimodal. Append a to R and let P{i) be this new tableau and stop.

. Case 2: Ra is not unimodal. Let b be the smallest number in R'\ bigger than a. Put a
in 6s position. Let c be the biggest number in R[ smaller than b. Put b in c's place.

Step 3: Repeat Step 2 with a = c and R equals to the next row.

The recording tableau Q records the changes in shapes of P(t). The box in Q that corresponds
to the box where the insertion procedure ends in P(t) is filled by i.

This makes Q a standard shifted Young tableau of the same shape as P. We denote the
insertion map by
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(P, Q).
Example: Let v = 3142. We list the sequence of unimodal tableaux P(i) obtained during
the insertion process.

pW = [3j pW = |3|l| pW =|3|l|4

P= |4 Q= |lL2j3

Theorem 3. 1 Kraskiewicz insertion maps permutations of Sn to {(P, Q)   Pn x 2n :
sh(P) = sh(<3)}. Moreover, it is a bijection.

Associated with this insertion algorithm is a set of relations called the B-Knuth relations.

Definition 3.2 Let v, cr be permutations of Sn- Suppose TT = v-i... Vk-iWxyzTk+4 ... 7i'n and
a = v-i.. . 7Tk-iw'x'y'z'TTk+4---^n- If wxyz ~ w'x'y'z' or zyxw ~ z'y'x'w'is one of the
forms shown below where a <b< c< d, we say that TT is elementary B-Knuth related to a.

abdc ~ adbc (1)
acdb ~ acbd (2)
adcb ~ dacb (3)
bade ~ bdac (4)

Let ff, o"   .S'n. If there exists a sequence of permutations TT = TT^^, 7r^2\ ..., TT^ ^ = cr 5uc/i
that each TT^ is elementary B-Knuth related to 7r(t+l), then we say that TT and a are B-Knuth
related. We denote this by v ^ a.

It is well known that 2 permutations give rise to the same insertion tableau under
Robinson-Schensted algorithm if and only if they are Knuth related. We have the analogue
here as well.

Theorem 3.3 Let 7r, <7   .S'n. Denote the insertion tableaux of TV and a under Kraskiewicz
insertion by Py and Pg respectively. Then

P. =P<r iffTT-CT.

This insertwn algorithm has several beautiful properties. We describe some of these here.
The notion of a reading word of a standard unimodal tableau is obvious.

Definition 3.4 Let vp denote the sequence of entries of a standard unimodal tableau P
when read from left to right starting from the bottom row of P. This sequence is called the
reading word of P.
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This is an analogue of the reading word in the theory of Robinson-Schensted algorithm. It
can be shown that when we apply Krdskiewicz insertion on vp, we get back P as the insertion
tableau.

The recording tableau of Kraskiewicz insertion also has some nice properties. We can
describe how the recording tableau changes when we

1. delete TTi

2. reverse v.

The first case involves what is known as the delta operator A. We follow the notation in
[9, Section 3. 11].

Definition 3.5 Let Q be a standard shifted Young tableau. Define A(Q) to be the resulting
tableau after applying the following operations:

1. Remove the entry 1 from Q.

2. Apply jeu de taquin into this box.

3. Deduct 1 /rom eac/i of the remaining boxes.

This is essentially the same as [9, Definition 3. 11. 1] but here, we are applying A to a shifted
Young tableau. In the notation of [5], A(<3) is the tableau which is obtained by subtracting
1 from every box in Q(l -* oo).

Theorem 3.6 Let T 6 5n and suppose

^^... TTn -^ (P, Q),
A-

7T2 TTr (R, S).

Then

5=A(Q).

The second case involves the process called evacuation.

Definition 3. 7 Let Q be a standard shifted Young tableau with |(3| = m. We define the
evacuation of Q, denoted by ev{Q), to be a shifted Young tableau of the same shape as Q
such that each box (z, j) has entry m- k + \ iff sh(^. k(Q)) and sh(Afc-l((5)) differ in box
(iJ)-

Again, this is essentially the same as [9, Definition 3. 11. 1] but we are defining it on shifted
Young tableainc instead. An alternate definition can be found in [5, Section 8]. Observe that
if Q is of size m, then

ev(A(Q))=ev((3)|^.
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Theorem 3.8 Let v e Sn and

Then,

7T

^ ^ (P, Q),
.
r K {R, S).

S = ev((?).

The experienced reader will recognize that these correspond exactly to the situations in
the theory of Robinson-Schensted algorithm.

Example: Let TT = 18547263   5g. Applying Kraskiewicz insertion to TT gives

and to 8547263 gives

2)3 m

4|6

The reader can check that the second recording tableau can be obtained by applying A to
the first recording tableau. Applying Kraskiewicz insertion to TT'' = 36274581 gives

5|8

8

6|7

It can be verified that third recording tableau can be obtained from the first by evacuation.

4 Shifted Mixed Insertion

We describe briefly Haiman's shifted mixed insertion. The reader should refer to [5] for the
details. The shifted mixed insertion algorithm maps a permutation TT of Sn into a pair of
tableaux (T, Q). We call T the insertion tableau and Q the recording tableau. The insertion
tableau looks like a standard shifted Young tableau except that we allow numbers which are
not in the first box of any row to have a bar above them. If the number has a bar above it,
we call it a barred number. Let us denote the set of such tableau of size n by 7n and call the
diagonal formed by the first boxes of all rows the first diagonal.

As in the description of Kraskiewicz insertion, we construct a sequence of tableaux

0 ^ y(0) y(l) j'(n-l) j'(n) ^ y
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r where T(t) is obtained by inserting TT, into r('-1). The recording tableau Q records the
changes in shapes of T{i). So Q is a standard shifted Young tableau of the same shape as T.

For details, please see [5, Definition 6. 7]. We denote it as

^J^{P, Q).

Input: IT, and T{t~^. Output: T^.

Step 1: Let a = T. and R be the first row of r(1-1).
Step 2: Let b be the smallest number in R which is bigger than a. Put a in Vs place. If

no such b exists, append a to R and end.
Step 3:

. Case 1: b is from a box in the first diagonal of T^~l}. Repeat Step 2 with a = 6 and
R equals to the next column.

. Case 2: b is not from the first diagonal and b is unbarred. Repeat Step 2 with a = b
and R equals to the next row.

. Case 3: b is not from the first diagonal and b is barred. Repeat Step 2 with a= b and
R equals to the next column.

Example: Let T = 3142. Haiman's shifted mixed insertion maps it to:

1 12 I 3

The shifted mixed insertion possesses a number of properties similar to those of the
Kraskiewicz insertion. Thus the next result is not totally unexpected.

Theorem 4. 1 Let v   Sn and

^ -^ (P, <3)
H

7T (r, r)
Then Q =T'. Furthermore, there exists a shape preserving bijection, $ from 7n to P^ such
that $(T) = P.

This bijection between "Pn and 7n gives an easy formula for enumerating the number of
unimodal tableaux.

Corollary 4. 2 The number of standard unimodal tableaux of shape \ is given by

2n- # 0/ rou;s 0/ A x the number of standard shifted Young tableaux of shape \
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It is not obvious how to arrive at this formula without using this bijection.
In the same vein, we can make use of other properties of the shifted mixed insertion to

derive new results for the Kraskiewicz insertion and vice versa. For example,

Theorem 4.3 Let v be mapped to a unimodal tableau P with shape (Ai, A;,... , A;). Then
the length of a longest unimodal subsequence in v is \i.

becomes

Theorem 4.4 Let v e. Sn and suppose

TT JL, (r, T')

where sh(T) = A. T/ien Ai is (/ie /en^/i o/t/ie longest unimodal sequence in TT.

Recall the famous result [7] that given any sequence of distinct numbers of length n, it
necessary contains an increasing or a decreasing subsequence of length at least \\/n~\. In [2],
the analogue for the length of a unimodal subsequence was given. The bound is attributed
to J. M. Steele, V. Chvatal and others. We give a different proof of this result.

Theorem 4. 5 ([2]) Let -K be a sequence of distinct numbers of length n. Then it contains
a unimodal subsequence of length at least f/8"^1-1'].

Proof: We can assume TT is a permutation of Sn- and apply the Kraskiewicz insertion algo-
rithm to TT. Let P be the iusertion tableau that is obtained and let sh(P) = (Ai, A2, - . . i ^t)-
From Theorem 4. 3, the longest unimodal subsequence of TT is equal to Ai. Clearly, P must
sit inside the shifted shape (Ai, Ai -l, Ai-2,... , 2, 1). This shows that Al(^l+l) ^ ". Solving
this inequality gives the desired bound. .

5 Conaparison and Open Problems

Though the Kraskiewicz insertion and the shifted mixed insertion are equivalent, we find
that the respective insertion tableaux reveal somewhat different information. For example,
the reading word for a standard unimodal tableaux is easily "readable" from it, whereas the
shifted mixed insertion has not been shown to have a similar property. But this does not
mean that Kraskiewicz insertion is better. As we have seen, the formula for the number
of standard unimodal tableaux of size n is obtained via shifted mixed insertion. Hence, it
would be preferable to treat these two insertion algorithms as different representations of
the same theory.

Of course, this does not deter us from asking if there is an easy way to "read" the insertion
tableau of shifted mixed insertions or whether we can count the number of standard unimodal
tableau without resorting to shifted mixed insertion. There are many more such questions
that can be looked into.
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