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NECKLACE ALGEBRAS AND WITT VECTORS ASSOCIATED
WITH FORMAL GROUP LAWS

CRISTIAN LENART

ABSTRACT. N. Metropolis and G.-C. Rota [Adv. Math, 50, 1983, 95-125]
studied the necklace polynomials, and were lead to define the necklace algebra
as a combinatorial model for the classical ring of Witt vectors (which corre-
spends to the multiplicative formal group law). In this paper, we define emd
study a generalized necklace algebra, which is associated with an arbitrary
formal group law F(X, Y) over a torsion free ring A. The map from the ring
of Witt vectors associated with F(X, Y) to the necklace algebra is constructed
in terms of certain generalizations of the necklace polynomials. We present
a combinatorial interpretation for these polynomiak in terms of words on a
given alphabet. The actions of the Verschiebung and Frobenivs operators, as
well as of the p-typificaiion idempotent aie described and interpreted combina-
torially. A formal group-theoretic generalization of the cyclotomic identity is
also presented. In general, the necklace algebra can only be defined over the
rationalization A 0 Q. Nevertheless, we show that for an important family of
formal group laws over Z, namely F<, (X, Y) = (X+Y-(]. +q)XY)/(l-qXY),
g   Z (which contains the multiplicative formal group law), we can define the
corresponding necklace algebra over Z; furthermore, the generalized necklace
polynomials turn out to be numerical polynomials, and they can be interpreted
combinatorially when g is a prime power. These results enable us to define ring
structures on the group ofWitt vectors and the group of curves associated with
the formal group laws Fy(X, Y). We also discuss the universal p-typical formal
group law.

1. THE CLASSICAL NECKLACE ALGEBRA AND RING OF WlTT VECTORS

In [7], Metropolis and Rota studied the properties of the so-called necklace
polynomials, which are defined for every n in N by

M(x, n):=^^(^)xd in Q[a-];
d\n

as usual, ^ denotes the classical Mobius function. For every m in N, M(m, n)
represents the number of primitive necklaces (i. e. dsymmetric under rotation)
with n colored beads, where the colors are chosen from a set of size m. Hence,
M(x, n) are numerical polynomials (i.e. they take integer values for integer a;).
Metropolis and Rota were lead to define for every torsion free commutative ring
A with identity the necklace algebra Nr(A) (over A). This algebra is the set
A°° of infinite sequences of elements of A with componentwise addition, and
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multiplication defined by

(a. /?)":= ^(tj)a, /3,;
[«J]="

here [i, j] and (i, j) denote, as usual, the lecist common multiple and greatest
common divisor of i and j, respectively. Note the convention of writing a for
an element (ai, 0:2,... ) in A°°; similarly, if A is a map from a set X to A°°, we
write h(x) = (hi(x), h^x), ... ). Following [7], we define a map M: AQ -+ AQ°°
by Afn(6) := M(b, n), where AQ is the rationalization A ® Q.

The algebra Nr{A) has two remarkable operators for every r in N, namely the
Verschiebung operator \ri and the Frobenius operator t^ the former is defined by

a; if n = rivr.n(a):=l 0' o^thenvise. (1. 1)
The algebra Arr(A) is closely related to the ring of Witt vectors W(A) (see e. g.
[5] pages 233-234), and the ring of unital formal power series 1 + tA[[t]} under
cyclic sum and cyclic product (see [7]). To explain this relationship, we introduce
the ghost ring Gh(A}, which is just A°° with addition and multiplication defined
componentwise. We also define the following maps:

T: W(A^) -^ Nr(AQ), T(a) := ̂ V^M(^),
n>l

w: IV(AQ) -. G>A(AQ) , w»(a) := ̂ " rfa^ ,
d\n

g: TVr(AQ) ̂  Gft(AQ) , ^(a) := ̂  ̂  ,
d\n

c: ̂Vr(AQ) -. 1 +MQ[M], c(a) := H (y-^) ,
n>l

E: Gh(A^) -. 1 + MQ[M], E{a} := exp ( ̂ ^Lf" ) .
. n>l

Theorem 1.2. (cf. [7], [3], [12];
1. All the above maps are ring isomorphisms, and the following diagram is

commutative.

TIV(AQ) Nr(Aq) -l+MQ[[t]]

(1. 3)

G/i(AQ)
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2. The image of\V(A) in 1 + ^AQ[[fj] is precisely 1 + tA[[t}]. We also have
that T(W(A)) = Nr(A) for A = Z, but not in general.

3. We have that

("W-IIlT^.
">l

The following generalization of the cyclotomic identity (due to V. Strehl
[11]) holds:

M(m, n) / i \ M(k, n)
in 1 + tZ, [[t}],

n^l \J--""' / n^l \-L-"" / .(^4)
where fc, m   Z.

__^("'") = n f__v
^-W) -^^-rr^)

We conclude this section by recalling that Dress and Siebeneicher interpreted
the necklace algebra A^r(Z) as the Bumside-Grothendieck ring of almost finite
cyclic sets [3]. They also interpreted the map T in this context, and were lead
to a combinatorial interpretation of the ring structure of F^(Z). This enabled
them to give a surprising generalization of the ring of Witt vectors W(A) in [2],
namely the Witt-Bumside ring Wc(A) associated with a profinite group G.

2. FORMAL GROUP LAWS AND GENERALIZATIONS OF WlTT VECTORS AND
NECKLACE ALGEBRAS

In this section, we generalize the constructions in §1 in the context of formal
group laws. We shall see that the classical case corresponds to the multiplicative
formal group law.

We start this section with a brief survey of formal group laws and Witt vectors
associated with them (cf. [4]). A (one-dimensional, commutative) formal group
law over a ring A is a formal power series F(X, Y) in A[[X, V]] with the following
properties:

1. F(X, 0)=F(0, X)=X;
2. F(X, Y)=F(Y, X);
3. F(X, F(Y, Z)}=F(F{X, Y), Z).

As in the previous section, we assume that A is a torsion free commutative ring
with identity. Therefore, the formal group law F(X, Y) has a logarithm

log^(X)=^;a^n, ai=l, a^ AQ,
n>l

that is a formal power series satisfying \ogp(F(X, V)) = \ogF{X)+\ogp-(Y). The
substitutional inverse of logj^(X) is denoted by expp(X).

In particular, for every integer g, we consider the formal group law over Z
X+Y-(q+l)XY

F, (X, V):= 1-qXY (2. 1)
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with logarithm

n]^m=Effl q-xn [n], :=l+q+... +qn-1

n>l

Note that we have written \ogy(X) instead of log^. (X), for simplicity; the same
notational convention will be applied throughout. Let us also note that Fo(X, Y)
is the multiplicative formal group law, while -F_i(X, Y) gives the addition formula
for the hyperbolic tangent. We will also refer to the universal formal group law
Fu{X, Y), which is defined over the Lazard ring L. It is known that LQ is
the Q-polynomial algebra Q[m2, m3,... ], where m. are the coefficients of the
logarithm of Fu(X, Y); furthermore, according to Lazard's theorem, Z is a Z-
polynomial algebra in infinitely many variables (see [4], [I], or [9]). It is worth
mentioning that the formal group law Fq(X, Y) is relevant to algebraic topology
in the following sense: the ring homomorphism from the Lazard ring (which is
isomorphic to the complex cobordism ring, see [1]) to Z mapping the coefficients
of the universal formal group law to the coefficients of Fg(X, Y) is precisely the
Euler characteristic for q = 1, the Todd genus for q == 0, and the L-genus for
q=-l (see e.g. [8]).

We define the map

WF : AQ°° ̂  G^(AQ) , w^(o) := ̂  a^/d an, /d.
d\n

The group of Witt vectors FFF(AQ) has underlying set AQ°°, and is defined by
insisting that WF be a group homomorphism. Let C{F^ A) denote the group of
curves in the formal group law F(X, V), that is the group tA[[t}} with addition
specified by

a(t)+Fl3{t):=FW)^(t)).
The third condition in the definition of a formal group law allows us to iterate
the notation +p, whence it makes sense to write ̂  . We define the map

EF: G'A(AQ) -^ C(F, AQ), £F(a) := exp^(a(<)) ,

where a(t) := Sn>i ""<". The map HF: l^F(AQ) -^ C(F, AQ) defined by HF :=
EFowF is known as an Artin-Hasse type exponential map ctssociated with F(X, Y).
It is easy to check that

HF(a)=^Fantn.
n>l

For every positive integer r, the Verschiebung operator Vr is defined on WF(AQ)
and on Gh(AQ) as in (1. 1), and on C(F, AQ) by

v, a(<)=a(r). (2. 2)
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The Frobenius operator fr is defined on C?/i(AQ) and C(F, AQ) by

f^a=ra.n and f. a(t) = a(ptl/T)+p a(p2 tl/T)+p ... +p a(pr t^T) ,
(2. 3)

respectively, where /? is a primitive r-th root of unity (see [4]). The Frobenius
operator is also defined on W-F(AQ) such that it commutes with HF. Clearly,
V, acts on WF(A), Gh(A) and C(F, A), while f, acts on Gh(A} and C(F, A).

WF(AQ) HF -C(F, AQ)

EF (2. 4)

Gh(Aq)

Theorem 2. 5. (cf. [4], [6];
1. Addition in IVF(AQ) is defined by polynomials with coefficients in A, whence

A°° is a subgroup o/W (AQ) (this is the group of Witt vectors WF'{A)).
2. The maps WF , E , and H are isomorphisms of abelian groups.
3. The image of WF (A) mC(F, AQ) is precisely C(F, A).
4. The Frobenius operator tr acts on WF(A). The maps WF , EF, and HF

commute with the actions of the operators Vr and tr.

Note that if F{X, Y) is the multiplicative formal group law Fo(X, Y) over A,
then WF(A) coincides with the additive group of W(A). As pointed out in [4],
it is quite remarkable that in this Cdse we are able to define a multiplicative
structure on WF(A) such that vo gF [s a, ring homomorphism, for some map
v: G'A(AQ) -^ G/i(AQ) of the form Vr, {a) = knOn with kn   Q. In §5 we will
prove that this actually happens for every formal group law Fy(X, Y).

We now define and study the necklace algebra associated with the formal group
law F(X, Y). In general, we are only able to define it over AQ, so we will denote it
by .NrF'{Al^). The module structure of A^rF(AQ) is the same as that of ̂ Vr(AQ).
In order to define the multiplicative structure, we need to associate with F(X, Y)
generalized necklace polynomials. Let us consider the incidence algebra over AQ
of the lattice D(n) of divisors of n (see e.g. [10]). Let (F be the element of this
algebra defined by

CF(6?i, rf2 ) :=0d2/di ,

for every <^i, c?2   £>(n) with d^d-i. Since ai = 1, the element ^F has a convo-
lution inverse, which will be denoted by fi . It is easy to see that ^"(^i, ^) =
rfi/c?2^(^i, ^2) = d-i/d^^d^/di), and that ^(di, d-i) = ju(c?2/c?i). We now define
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the polynomials

MF{x, n) := ̂  /2J:'(J, n) ad id in AQ[a-]
d|n

Clearly, M°(a;, n) = M(.r, n), and MF(l, n) =0 forn > 1. In order to give a
combinatorial interpretation for the polynomials MF(x, n), we recall from [7] the
polynomials S(x^n) := nM'(x, n). Let us also recall that n in Nis a period o! the
word w (on a given alphabet), if there is a word u such that w = ulwl/", where
|w[ denotes the length of w; the smallest period is called the primitive period. A
word with primitive period equal to its length is called aperiodic. It is not difficult
to prove, via Mobius inversion, that 5(m, n) represents the number of aperiodic
words of length n on an alphabet with m letters. Necklaces can be defined ds
equivalence classes of words under the conjugacy relation (that is w ^ w if and
only if there are words u, v such that w = uv and w' = vu); moreover, primitive
necklaces can be defined as equivalence classes of aperiodic words.

Proposition 2. 6. The polynomials M (x, n) can be expressed in the basis {S{x, i)}
of the AQ-module AQ[a;] by the following formula:

MF(x, n)=^rF(^, n) S(x, d),
d\n

where rF(i, n) := E, |<^F(1^') CFO» .
It turns out that this proposition is a special case of Theorem 3. 3, so we

postpone the proof until then. Let us note that rF(n, n) = 0 for n > 1, and
that T°(t, n) = Tl(t, n) = 0 unless i = 1; indeed, we can pair the chains in D(n)
contributing to T°(t, n) such that each pair consists of a chain containing z, and
the same chain with i removed. We now explain the combinatorial significance
of the above formula in terms of a combinatorial object which we call factorized
word. This is a word w (on a given alphabet), together with an expression of the
following form:

w=(... (Kl )t2)... )tk.

Clearly, |wo| = |w|/(ii. .. ik)- The word wo will be called the root of the fac-
torized word. We define the type of the factorized word to be the element
(_l)fca^[a., ... a,-^ in AQ. In this section, as well as in §3 and §4, we usually
think of the formal group law F{X, Y) as being the universal one; then the type
of a factorized word is a signed monomial in the polynomial generators of ZQ.
With these definitions, we can now state the following corollary of Proposition
2. 6:

Corollary 2. 7. For all m, n in N, MF(m, n) enumerates by type the factorized
words of length n on an alphabet with m letters.
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We now relate 7VrF(AQ) to the other groups in diagram 2.4, by defining the
following maps:

TF: ̂ F(AQ) -. AT^(AQ) , TF{a) := ̂  VnMF(a, ) ,
n>l

gF: NrF(Aq) -. Gh(Aq) , g^(a) := ̂  a^/, a,,
d\n

CF : NrF(Aq) -^ C(F, AQ), cF(a) := Yf [a^ tn;z-^
n>l

here M^(b) := MF(6, n), the Verschiebung operator Vr on ̂ Vr-F(AQ) is defined
as in (1. 1), and

[b}p a(t) := expp(b log^(a(f))) for b  

For every map r: Gh(AQ) -* G'A(AQ) of the form fn(ct) = ^n^n with A;n  
Q, we define a multiplication in 7Vr'F(AQ) by insisting that v ogF be & ring
homomorphism. For F(X, Y) = Fo(X, Y) and kn = n, we obtain the necklace
algebra defined by Metropolis and Rota. The ring structure of ArrF(AQ) will only
be important in §5; until then, we regard Nr (A<Q) only as an abelian group.

Proposition 2.8. All the above maps are isomorphisms of abelian groups, com-
muting with the action of the Verschiebung operator, and the following diagram
is commutative.

WF(AQ) TF ArrF(AQ) -C(^AQ)

EF (2. 9)

Gh(AQ)

Diagram 2. 9 for F(X, Y) = Fo(X, Y} is not exactly the same as diagram 1. 3.
In order to explain how to relate them, we define the following homomorphisms:

A: Gh(Aq) -^ Gh(Aq), A^(a) := rza^,

^:C(Fo, AQ)-^l+MQ[M], iW)):=

(2. 10)
1

1 - a(t) .
We can easily check that

w= Xow°, g= \og°, c= ioc°, E= ioE°o\~1.
A first result which validates our constructions is a formal group-theoretic

generalization of the cyclotomic identity; in some cases, we are able to derive
from it nice explicit identities.
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Proposition 2. 11. The following formal group-theoretic generalization of the
cyclotomic identity (V. Strehl's form) holds:

YF [MF(u, n)]p uF = YF [MF(v, n)]? utn in C(F, AQ),
^ ' ^ (2. 12)

where u, u   AQ. Jn particular, for Fo{X, Y) we obtain (1. 4), and for F-i{X, Y)
we obtain

7(f;A:, m)=7(f;m, /;), . (2. 13)
where fc, m   Z, and

Hn>i(i + zt2n-l)M^2n-1) - n^, (i - ^n-l)MO, 2n-l)
c; ?'JJ := 

rin>i(1 + ^2n-l)My'2"-1) + F[n>i(l - it2n-~i)M^n-^
in Z[[t]].

3. VERSCHIEBUNG AND FROBENIUS OPERATORS

In the previous section, we have defined for all positive integers r the Ver-
schiebung operator Vr and the Frobenius operator fr on Gh(R'), WF(R), and
C(F, R), where R is one of the rings AQ or A. We have also defined Vr on
NrF(A^) and NrF(A). We have seen that the isomorphisms in diagram 2. 9 com-
mute with the actions of these operators. It is natural to define fr on.7Vr-F(AQ) in
a compatible way with the isomorphisms mentioned above. It turns out that, in
general, fr is not an operator on NrF(A). Let us recall the well-known identities
concerning the interaction of the Verschiebung and Frobenius operators on any
of the rings on which they act (see [4], [7], [3], [12]):

v, v, =v,,, f. f, =f^,
f,V, =r!d,
frV, = (r, 5) fr/(r,, )V, /(^,, ) = (r, s) V,/(^,, )^/(r,, ) ; (3. 1)

these identities are most easily checked in G'A(AQ). In this section, we intend
to express and interpret combinatorially the action of the Frobenius operator on
NrF(AQ).
Theorem 3. 2. The Frobenius operator ir acts on TVr^(AQ) as follows:

rn rn

f""a=r£TF^'^a"
Note tha^if r\d and d ^ rn, then rr(rn/[r, d], rn/d) = 0. On the other hand,

according to the observations about /x° and r0 in §2, we have that To(rn/[r, d\, rn/d)
0 unless [r, d} = rn, in which case it is equal to d/rn; hence, we recover the formula
in [7] for the action of fr on Nr(A), namely

fr,n0-=^^d,.
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where the summation ranges over the set {d : [r, c[\= rn}.
We now interpret combmatorially the action of fr on NrF(AQ) by computing

f^MF(m)form, n N.
Theorem 3. 3. We have that

f^ MF(x) = r ^ ̂ (J, n) a^ ̂  . (3. 4)
d\n

The above polynomial can be expressed in the basis {S(x, i)} of the A^-module
AQ[x] by the following formula

(3. 5)^nMF{x)=r^rF(^, rn)S{xr, d).
d\n

Let us note that frV, MF(a;) can be easily computed now, by using (3. 1).
Proposition 2. 6 follows from (3. 5) by setting r := 1. Let us also note that
ro(n/(f, rn) = 0 unless d = n, in which case it is equal to 1/(''"); hence' (3-5)
implies Theorem 4 (p. 100) in [7], namely the fact that fr,nM(x) = M(x'r, n).

We now define the repetition factor of a word w to be the quotient of |w| by
the primitive period of w. With this definition, we can interpret (3. 5) as follows.
Corollary 3.6. For all m, n   N, l/rfr, nMF(m) enumerates by type. those fac-
torized words of length rn on an alphabet with mr letters, for which r divides the
repetition factor of the root.

4. THE p-TYPIFICATION IDEMPOTENT

We denote, as usual, by Z(p) the ring of integers localized at a prime p, that is
{m/n   Q : '(n, p) = 1}. Let A(p) := A (g) Z(p). Recall from [4] that a curve a(t)
in C(F, A) is called p-typical if log^(a(<)) is of the form ̂ ;^>o /3n<p . There is a
remarkable idempotent e? on C(F, A(p)), which is a projection onto the subgroup
of p-typical curves; we will call it the p-typification idempotent. It is expressed in
terms of Vr and fr as follows:

^p= E ^(r)v-f-.
[r,P)=1

The p-typification idempotent has an important role in formal group theory, since
the curve £pt in C(Fu, L(p)) is an isomorphism over L(p) between the ym versal

formal group law and the universal p-typical formal grup law (see [4] or [9 ).
We~can°define-£p. on Gh(A} (not just'GA(A(p))), ^F(A(p)), and TV^(AQ). The
action on Gh(A) is very easy to describe, namely:

a^ ifn=pfc
£p,n Q = <| o otherwise.

In order to describe the action of £p on ArrF(AQ), we need some additional
notation. First, we denote by Vp(n) the p-valuation of n (that is the largest
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integer A; such that pk\n). Now assume that m^pfc, fc > 0, and consider the
poset £>p(m) obtained from the lattice of divisors of m by removing all non-zero
powers of p. Let ̂  denote the convolution inverse of C^ in the incidence algebra
(over AQ) of this poset. We will write ̂ (m) for ̂ (l, m) if m ^ pk, k> 0;
otherwise, we set ̂ (m) = 0.
Theorem 4. 1. The idempotent  p acts on ArrF(AQ) as follows

up(n)

^na=E<(;T)^-
fc=0

In particular, the idempotent e? acts on Nr(A^p)) by
p^(") ( n

£p'na=~Tfi{p^))Qpv^-

(4. 2)

(4. 3)

Finally we interpret combinatorially the action of £p on NrF(A<^) by comput-
ing £p, n MF(m) for m, n   N.
Theorem 4.4. We have that

Vp(n)

£?," MF(x) = ^ ̂ F(p*, n) Op* .E-P* m AQ[.r] . (4. 5)
k=0

The above polynomial can be expressed in the basis {S{x, i)} of the A^-module
AQ[a;] by the following formula

t»p(n) /Vp(n)-k

'"-»Fw = Z( £ ^ (i, ^) ̂ . ) s(., pt).
fc=0 \ «=0

(4. 6)

We can interpret (4. 6) combinatorially as follows.

Corollary 4. 7. For all m, n   N, £p,nMF(m) enumerates by type those factor-
ized words of length n on an alphabet with m letters for which the root length is
a power of p.

5. SPECIAL CASES

The main special case which we consider is the family of formal group laws
Fy(X, Y), g.. . Z, over Z defined in (2. 1). Recall that the classical ring of Witt
vectors and the necklace algebra of Metropolis and Rota correspond to g = 0 (in
other words, to the multiplicative formal group law). According to the general
constructions, we have the group of Witt vectors Wq(Z) and the necklace algebra
Arr?(Q), where the multiplicative structure of the latter depends on the choice
of a map v: Gh(<^) -^ Gh(Q) of the form ^(o) = knOn with kn   Q; more
precisely, this structure is defined by insisting that v o gq be an algebra map.
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Let us consider first the case q = 1 and v = Id. We have that

^(a)=sad-

d\n

Hence, according to [12], Z°° is a subring of A?'rl(Q), and this is precisely the
aperiodic ring Ap(Z). Multiplication in Ap(Z) is defined by

(Q. /?)^= ^ Q, ^,.
[«'J]="

^, From now on, we set r := A, where A was defined in (2. 10). In order to simplify
notation, we set 'gq := vog'1 and T9(d, n) := nr9(<f, n). Theorem 5. 3 represents the
main result of this section, generalizing the classical necklace algebra construction
(which can be recovered for g = 0); its proof is based on the following two lemmas.
Leinma 5. 1.

1. If q = I mod p for a given prime p, then [pm]g is divisible by p for any
positive integers l, m.

2. The polynomials n/dTq{d, n) in Q[q] are numerical polynomials for all pos-
itive integers d, n with d\n.

Lemma 5. 2. For every q ^ 1, we have that

<n [ij}_\ S(q^^d)

n>l
-VMt£. r'6Mn)£(ffil+r'(nMn)^
where Cr, s = 6r, s-

Theorem 5.3.
1. The polynomials M?(a;, n) are numerical polynomials in x and q.
2. Multiplication in 7Vr9(Q) is defined by numerical polynomials Pn, i.j(<l) in

Q[g], with [i, j] dividing n, in the sense that

(a-/3)n=^(i, j)Pn^W^^.
[»,j]l"

Hence, there is a Z-algebra structure on Nrq(Z).
3. The Frobenius operator ir acts on ̂ Vr9(Z).
4. The map Tq induces a group isomorphism between IV9(Z) and Nrq(Zi).

The main thrust of Theorem 5. 3 is the existence of necklace algebras A^r9(Z)
for all 9   Z. We now use the maps Tq and Hq to define multiplicative structures
on W^^(Z)andC(F9, Z).
Corollary 5. 4. There are ring structures on W9(Z) and C(F9, Z) such that the
restrictions of the maps Tq, Hq and cq are ring isomorphisms, and the restriction
of Xowq is a ring homomorphism.
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Thus, we have identified a family of formal group laws not mentioned in [4], for
which the corresponding groups of Witt vectors and curves have ring structures
compatible with the maps in diagram 2. 9.

Recall the formula ir,nM{x) = M(xr, n) in [7], which holds in 7Vr(A), and
which was generalized to A^rF(AQ) in (3. 5). We present here a conjecture, which
attempts to provide a different generalization of the original formula of Metropolis
and Rot a.

Conjecture 5.5. We have that

^nM9(x)=^Qr^(q)M^xr, d) m {x, q],
d\n

where Qr, n, d(<l) in Q[?] o^e numerical polynomials.

If 9 is a prime power p , we are able to give a combinatorial interpretation for
the polynomials M9(a;, n). Our ingredients are: the field GF($), an alphabet F
with m letters, and the free monoid (F x GF(g))* generated by F x GF($). We
let GF(g) \ {0} act on this monoid by

(0, (ci, u;i)... (c,, u;, )) ^ (ci, 0a;i)... (c,, ^, ).
Note that the equivalence relation determined by the orbits of this Action is not
a congruence. We define a q-word as an orbit in (F x GF($))* \ (F x {0})*. We
call 5   N a period of the q-woid [w} if there is WQ in (F x GF($))* of length s
and 0:1,... , u;t in GF(?) such that [w] = [((^iWo) ... (^wo)] (here Owo is defined
in the obvious way). The primitive period of w, aperiodic ^-words, g-necklaces,
dnd primitive ^-necklaces can now be defined in the usual way. Let us denote
n Mq(x, n) by Sq(x, n). We claim that these polynomials are uniquely defined by
the relations

^[n/rf], 5g(a:, <f)=[n]^n; (5. 6)
d[n

indeed, we have that

(\ogqo M^n(x) = (A o w')n(z, 0, 0,... )= [n], a;" .
Examining (5. 6), we obtain the combinatorial interpretation mentioned above.

Proposition 5. 7. For every m, n C N, Sq{m, n) represents the number of ape-
riodic q-words of length n, and M9(m, n) represents the number of aperiodic q-
necklaces of length n on the given alphabet F with m letters.

We suggest that the constructions of Dress and Siebeneicher [3], [2] could be
extended to the above setting.

We conclude this section with a brief reference to the universal p-typical for-
mal group law Fv{X, Y) corresponding to the prime p, which is defined over
the summand V of L(?) determined by the restriction of the idempotent of ̂ Q
mapping m^ to itself if A; is a power of p, and to 0 otherwise (see e. g. [4] or
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[9]). The group WV{VQ) is defined as the subgroup of WU(W consisting
of those infinite sequences a of elements of VQ for which 0'fc = 0 whenever k
is not a power of p; we define 7Vrv(VQ) similarly, and abbreviate the sequence
(ai, 0,.. :, 0, Qp, 0;..., 0, ^, 0,... )m^y(VQ), ^rv(VQ), orG^(VQ)to(ai, ap, Q^,.

It is known that V is a polynomial Z(p)-algebra. Various polynomial generators
for V exist, such as Hazewinkel's generators Vk, k ~^ 1, and Arakifs generators
Wfc, fc ̂  0 (see [9]); these are defined recursively in terms of m(. ) := mp. by

fc-1 k
Pm(k) = S m(') vpk-t and pm(k) = S m(t) w^'-i ' ^5'8^

.=0 - »=0

where wo = p. It turns out that we can express these generators very easily using
the necklace algebra Arrv(VQ) associated with Fv(X, Y).
Proposition 5.9. We have that

TV(ui, V2,... )=fp (1, 0, 0,... ) and TV(wo, wi, W2,... ) = (p, 0, 0,... ).
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