HOMOTOPY IN @Q-POLYNOMIAL DISTANCE-REGULAR GRAPHS

Heather A. Lewis!

1. Introduction.

Let I denote a Q-polynomial distance-regular graph with diameter d > 3. In [7],
Terwilliger showed that if I is the antipodal quotient of a distance-regular graph with
diameter D > 7, then the dual eigenvalues of I satisfy a certain equation. We say
that T is a pseudoquotient whenever this equation is satisfied. In our main result,
speaking a bit vaguely for the moment, we show that if I' is not a pseudoquotient,
then each cycle in " can be “decomposed” into cycles of length at most six. We state
this result precisely using homotopy.

The outline of this abstract is as follows. In Sections 2-4, we present material
on homotopy. In Sections 5-6, we examine @Q-polynomial distance-regular graphs.
Specifically, in Section 5 we show that if I' is a Q-polynomial distance-regular graph
with diameter and valency at least three, then the intersection number p3, is at least
two; consequently, the girth is at most six. In Section 6 we say what it means for I’
to be a pseudoquotient. Finally, in Section 7 we present our main theorem.?

' By a graph we mean a pair I' = (X, R), where X is a finite non-empty set (the
vertices) and R is a set of distinct two-element subsets of X (the edges). Observe
that I is undirected without loops or multiples edges. Fix a graph I' = (X, R). Let =
and y be vertices in X and let [ be a nonnegative integer. By a path in I' of length
! from z to y we mean a sequence

p = (:I:anxla"-sxl:y) (x;GX,OSZSl)
such that
{zi-1, z:} €R (1<i<l).
We call z the initial vertex of p and y the terminal vertex of p. Given p as above,
we define p~! to be the sequence

p_l = (y=x1,17[_1,...,$0=x)'

Observe that p~! is a path in T'.
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Let p be a path in I'. We say that p is closed if the initial vertex and terminal
vertex of p are the same. If p is closed, then we call the initial vertex the base vertex
of p. For each z € X, let ¢(z) denote the set of all closed paths with base vertex z.

2. The Homotopy Relation.

Let I' = (X, R) be a graph, and pick any z € X. In this section, we consider
a binary relation ~ on (z) called the homotopy relation (Definition 2.2). We also
define what it means for a path in 9(z) to be reduced (Definition 2.5). We then show
that each element of 7(z) has exactly one reduced representative (Theorem 2.6).

Definition 2.1. Let I' = (X, R) be a graph, and fix z € X. Pick any p € ¥(z), and
write

p = ($=170,$1,...,.Z'[=$)-

An element ¢ € ¥(z) is said to extend p if there exists an integer ¢ (0 < ¢ <) and
a vertex y € X such that ’ :

q = (x=x07z17"'7xi—l’xi?y,xi’xi+la°"7xl=x)-.

Observe that if g extends p, then the length of g is two greater than the length of p.

Definition 2.2. Let I' = (X, R) be a graph, and fix £ € X. We define the binary
relation ~ on ¥(z) as follows: for all p, ¢ € ¥(z), write p ~ ¢ whenever there exists a
nonnegative integer n and paths p = py, p1,.-., Pn = ¢ € ¥(z) such that p; extends
pi— for all 7 (1 <7 < n). We call this relation homotopy, and we say that p and ¢
are homotopic if p ~ ¢q. Observe that ~ is an equivalence relation.

Definition 2.3. Let I' = (X, R) be a graph, and pick z € X. Let 7(z) denote the
set of equivalence classes of ¥(z) under homotopy. For every p € ¥(z), let [p] denote
the element of m(z) that contains p.

Definition 2.4. Let I' = (X, R) be a graph. Fix z € X, and pick u € 7(z). We say
that p € ¥(z) is a representative of u if u = [p].

Definition 2.5. Let I' = (X, R) be a graph. Fix z € X, and pick p € ¥(z). We say
that p is reduced if p does not extend ¢ for all g € ¥(z).

Theorem 2.6. Let I = (X, R) be a graph. Fizz € X, and pick anyu € 7(z). Thenu

has ezactly one reduced representative. Furthermore, this is the unique representative
of u of minimal length. We denote this representative by .
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3. The Fundamental Group of a Graph.
Let I' = (X, R) be a graph, and pick z € X. In this section, we show that
concatenation in ¢ (z) induces a group structure on 7(z) (Theorem 3.3).

Definition 3.1. Let ' = (X, R) be a graph. Let p and g be any paths in I" such that
the terminal vertex of p is the same as the initial vertex of ¢, and write

b = (x07z1"")xl—17$l)a
q = ($l=y0,yl7"'7ym)-

By the concatenation of p and ¢ we mean the sequence
pg = (1:01:”17 ey Zi-1, Tt = Yo, Y1y - - - 7ym)-

Observe that pq is a path in I'.

Note: Whenever we write pg for paths p and ¢ in T, it will be assumed that the
terminal vertex of p is the same as the initial vertex of g.

Definition 3.2. Let I = (X, R) be a graph. Fix z € X, and pick any u, v € 7(z).

(i) We define uv to be element [pg] € m(z), where p is any representative of u and
g is any representative of v.

(ii) We define u~! to be the element [p~!] € 7(z), where p is any representative of
u.

(iii) We define e to be the element [(z)] € 7(z).

Theorem 3.3. Let " = (X, R) be a graph, and fizz € X. With reference to Definition
3.2, the following hold for all u, v, w € 7(z):

(1) (wo)w = u(vw),

(ii) ue =u = eu,

(iii) vu™l = e =u"lu.

In particular, concatenation on ¥(z) induces a group structure on m(z). We call this
group the fundamental group with respect to .

Note: The fundamental group is sometimes referred to as the first homotopy group.
‘It is usually written as 7(T,z) or m(',z), but we have chosen to drop I' from the
notation in this abstract since there is no ambiguity about the identity of I'.
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4. The Subgroups =(z, 7).

Let I' = (X, R) be a graph and pick any z € X. In this section we define the
essential length of an element of 7(z) (Definition 4.3), and we use this concept to
define a collection of subgroups 7(z,7) of m(z) (Definition 4.4). ‘

Definition 4.1. Let I' = (X, R) be a graph, and fix £ € X. Pick any path p € ¢(z),
and write

p .= ([B=2aL5 =T),

We say that p is cyclically reduced if [ = 0 or if p is reduced with z; # z;_;.

Lemma 4.2. Let ' = (X, R) be a graph, and fizz € X. Let p be any reduced element
of ¥(z). Then there erists a unique cyclically reduced closed path q and a unique path
T such that :

p = rgrl.

Definition 4.3. Let ' = (X, R) be a graph, and fix € X. Pick any u € m(z) and
write @ = pgp~', where ¢ is cyclically reduced. By the essential length of u, we
mean the length of g.

Definition 4.4. Let I' = (X, R) be a graph, and fix £ € X. For every nonnegative
integer 1, let 7(z, ¢) denote the subgroup of 7(z) generated by the elements of essential
length at most <.

We summarize some elementary results about these subgroups in the following
lemma.

Lemma 4.5. Let I’ = (X, R) be a graph, and fizx x € X. Then
(i) m(z,i) C w(z,i+ 1) for every nonnegative integer i,
(ii) n(x,0) = n(z,1) = n(z,2) = {e}.

Recall that a graph I = (X, R) is connected if for every z,y € X there exists a
path from z to y. Let I' = (X, R) be a connected graph, and pick z, y € X. By the
distance 8(z,%y), we mean the length of the shortest path in I" from z to y. By the
diameter of I' we mean the maximal distance between any two vertices in X.

Theorem 4.6. Let ' = (X, R) be a connected graph with diameter d. Fiz any zeX.
Then w(z,2d + 1) = 7(z).
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5. The intersection number p3, > 2 in any Q-Polynomial
Distance-Regular Graph.

For the rest of the abstract, we restrict our attention to distance-regular graphs.
In this section, we show that if a distance-regular graph I' is @Q-polynomial with
diameter and valency at least three, then the intersection number p, is at least two
(Theorem 5.1); consequently, the girth is at most six (Corollary 5.3).

We shall begin this section by briefly reviewing the key definitions and basic
results related to @-polynomial distance-regular graphs. For general information
about distance -regular graphs and the @-polynomial property, see Bannai and Ito
[1] or Brouwer, Cohen, and Neumaier [2].

Let I' = (X, R) denote a connected graph of diameter d > 1. We say that I’ is
distance-regular if for all integers h, %, j (0 < h, 7, j < d) and for all z, y € X with
d(z,y) = h, the numbers

Py ={z € X |08(z,2) =14,0(y, 2) = j}|

depend only on A, i, j, and not on z or y. We call the pﬁ‘j the intersection numbers
of . Note that if I is distance-regular, then T is regular with valency & := p};.

Let T' be a distance-regular graph of diameter d. Let Ao, Ay, ..., Aq denote the
distance matrices for I'. Then Ag, A;,...,Aq form a basis for a commutative semi-
simple -algebra M known as the Bose-Mesner algebra. The algebra M has a second
basis Ey, Ei, ..., Eq such that

Eo+Fi+...+E;=1,

E;E; = 6;;E; (0<4, 5 <d),
Ey = |—)1(-|-J,
E; = E! 0<i<d),

where I is the identity matrix and J is the all-1s matrix [2, Theorem 2.6.1]. We refer

to Ey, E1,...,Eq as the primitive idempotents of T .
By the Krein parameters of I' (with respect to the above ordering Ey, E, ..., E4

of the primitive idempotents), we mean the real scalars ¢f; (0 < h, 4, j < d) such that

d
EoE = 5> ¢"E (0<i j<d),
leh.:O

where o denotes entry-wise matrix multiplication [2].

Suppose that E is a primitive idempotent of I'. We say that E is a Q-idempotent
if there exists an ordering Ey, E = E\,..., E4 of the primitive idempotents of I such
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that the corresponding Krein parameters satisfy
g¢i; =0 ifli—j|>1 (0<4,j<d),
. q; 0 ifli—jl=1 (0<4,5<d).
We say that I is Q-polynomial if I" has at least one @-idempotent.
Let I' = (X, R) denote any distance-regular graph of diameter d, and let E denote

any primitive idempotent of I'. There exist real scalars 65,0}, . .., 0; such that
1 d
E = — ) 6;A. 1

If E is a Q-idempotent of I', then we say that the sequence 6;,6;,...,0; is a Q-
sequence.

Let I' = (X, R) be a distance-regular graph of diameter d > 1. By the standard
module for I we mean the vector space V = X of column vectors, whose coordinates
are indexed by X. We equip V with the inner product

(u,v) = vv  (u,veV).

For each vertex z € X, let Z denote the vector in V with a one in the z coordinate
and zeros elsewhere. Observe that {Z |z € X} is an orthonormal basis for V.

Theorem 5.1. Let I' = (X, R) be a Q-polynomial distance-regvlar graph with diam-
eter.d > 3 and valency k > 3. Then the intersection number pi, > 2.

Definition 5.2. Let I' = (X, R) be a distance-regular graph of valency at least
two. By the girth of I, we mean the minimal integer ¢ > 0 such that there exists a
cyclically reduced path p € ¥(z) of length i, where z is any vertex in X.

Corollary 5.3. Let I' = (X, R) be a Q-polynomial distance-regular graph such that
the valency is at least three. Then the girth of I' is at most siz.

6. Pseudoquotients.

Let I' = (X, R) denote a @Q-polynomial distance-regular graph of diameter d > 3.
In this section, we examine a property that I' must satisfy if it is the quotient of a
distance-regular antipodal graph of diameter D > 7. We use this property to define
what it means for I" to be a pseudoquotient (Definition 6.6).

Lemma 6.1. (Leonard [3]) Let T = (X, R) be a Q-polynomial distance-regular graph
of diameter d > 3. Suppose that 63,071, ...,0; is a Q-sequence. Then there erists a
unique real number A such that

P =0, =AM0_;—6;) (3<i<Zad).
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Moreover, A # 0.

Corollary 6.2. (Leonard [$], Bannai and Ito [1, Theorem 5.1, p. 263]) Let T =
(X, R) be a Q-polynomial distance-regular graph of diameter d > 3. Let 6,0],...,6;
be a Q-sequence for I'. Then ezactly one of the following occurs:

Case (1) 0; =65 +h*(1—¢")(1 —s*¢"" )™ (0<i<d), (2)
Case (ii) 6; =0 +h%i(l+1i+s") - (0<i<Ld), (3)
Case (iii) 6; =65 + s* (0<i<d), (4
Case (iv) 6y =6;+h" (s —1+(1—-s"+2i)(-1)) (0<i<d), (5)

where q, h*, s* are appropriate complex numbers.

Let I = (X', R') be a distance-regular graph of diameter D. Define a relation ~
on X' as follows: for all z, y € X', write z = y whenever z = y or d(z,y) = D. The
graph I is said to be antipodal whenever = is an equivalence relation.

Suppose that I is an antipodal distance-regular graph of diameter D, and let =
be as above. By the quotient of I, we mean the graph I' = (X, R) where

X = the set of equivalence classes of =,
R = {{u,v} |u, v € X, 3z € u, Iy € v such that {z,y} € R’}.

(For more information on antipodal distance-regular graphs, see Brouwer, Cohen, and
Neumaier [2]).

Let I' = (X, R) be a Q-polynomial distance-regular graph of diameter at least
three. The following theorem gives a restriction that every Q-sequence of I' satisfies
if " is the quotient of an antipodal distance-regular graph.

Theorem 6.3. (Terwilliger [7]) Let T’ = (X, R) be a Q-polynomial distance-regular

graph of diameter d > 3. Suppose that I is the quotient of an antipodal distance-

reqular graph of diameter D > 7. If 65,05, ...,60; is a Q-sequence of T', then
e — 0, =M0is—0;]) (3<i<D),

where ) is as in Lemma 6.1, and where 0},,,65,,,...,0p are defined by

6; = 0p_; (d+1<i< D).

1

The following lemma shows some conditions that are equivalent to the condition
that appears in Theorem 6.3.
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Lemma 6.4. Let I' = (X, R) be a Q-polynomial distance-regular graph with diameter
d > 3. Let 6;,0;,...,0; be a Q-sequence of I' and let A be as in Lemma 6.1. Then
for all integers D € {2d, 2d + 1}, the following three conditions are equivalent:

()
0 2—6_, = M0_3—06]) (3<i<D),
where 03,,,03,,,...,0p are defined by
6; :=0p_; (d+1<i<D).

(i)
01— 03 = A0z —Op_g_1)-
(11i) Referring to lines (2)-(5) in Corollary 6.2,
Case (i) occurs with s* = ¢~P~,
Case (ii) occurs with s* = —D — 1,
or Case (i) occurs with s* = D + 1, and D is odd.

Lemma 6.5. Let T = (X, R) be a Q-polynomial distance-reqular graph with diameter
d > 3 and let 6;,07,...,0; be a Q-sequence of I'. Suppose that conditions (i)-(%ii)
hold in Lemma 6.4 for some D € {2d, 2d + 1}. Then D is unique. In this case, we
say that 63,605, ...,0; is D-symmetric.

Definition 6.6. Let ' = (X, R) be a Q-polynomial distance-regular graph of diam-
eter d > 3. We say that I is a pseudoquotient if there exists D € {2d, 2d + 1},
with D > 7, such that every (-sequence in D-symmetric. In this case we call D the
covering diameter of I'.

7. The Fundamental Group of a Q-polynomial Distance-Regular
Graph. '

We now present our main result.

Theorem 7.1. Let T’ = (X, R) be a Q-polynomial distance-regular graph of diameter
d > 3 and valency k > 3. Fiz any z € X. Then the following hold.

(i) m(z,6) # {e}.
(13) Suppose 7(z,6) # 7(z). Then I is a pseudoquotient. Furthermore,
m(z,6) = n(z,D - 1) 7(z,D) = n(z)

where D 1is the covering diameter of I.
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