HOMOTOPY IN Q-POLYNOMIAL DISTANCE-REGULAR GRAPHS

Heather A. Lewis ${ }^{1}$

1. Introduction.

Let Γ denote a Q-polynomial distance-regular graph with diameter $d \geq 3$. In [7], Terwilliger showed that if Γ is the antipodal quotient of a distance-regular graph with diameter $D \geq 7$, then the dual eigenvalues of Γ satisfy a certain equation. We say that Γ is a pseudoquotient whenever this equation is satisfied. In our main result, speaking a bit vaguely for the moment, we show that if Γ is not a pseudoquotient, then each cycle in Γ can be "decomposed" into cycles of length at most six. We state this result precisely using homotopy.

The outline of this abstract is as follows. In Sections 2-4, we present material on homotopy. In Sections 5-6, we examine Q-polynomial distance-regular graphs. Specifically, in Section 5 we show that if Γ is a Q-polynomial distance-regular graph with diameter and valency at least three, then the intersection number p_{12}^{3} is at least two; consequently, the girth is at most six. In Section 6 we say what it means for Γ to be a pseudoquotient. Finally, in Section 7 we present our main theorem. ${ }^{2}$

By a graph we mean a pair $\Gamma=(X, R)$, where X is a finite non-empty set (the vertices) and R is a set of distinct two-element subsets of X (the edges). Observe that Γ is undirected without loops or multiples edges. Fix a graph $\Gamma=(X, R)$. Let x and y be vertices in X and let l be a nonnegative integer. By a path in Γ of length l from x to y we mean a sequence

$$
p:=\left(x=x_{0}, x_{1}, \ldots, x_{l}=y\right) \quad\left(x_{i} \in X, 0 \leq i \leq l\right)
$$

such that

$$
\left\{x_{i-1}, x_{i}\right\} \in R \quad(1 \leq i \leq l)
$$

We call x the initial vertex of p and y the terminal vertex of p. Given p as above, we define p^{-1} to be the sequence

$$
p^{-1}:=\left(y=x_{l}, x_{l-1}, \ldots, x_{0}=x\right)
$$

Observe that p^{-1} is a path in Γ.

[^0]Let p be a path in Γ. We say that p is closed if the initial vertex and terminal vertex of p are the same. If p is closed, then we call the initial vertex the base vertex of p. For each $x \in X$, let $\psi(x)$ denote the set of all closed paths with base vertex x.

2. The Homotopy Relation.

Let $\Gamma=(X, R)$ be a graph, and pick any $x \in X$. In this section, we consider a binary relation \sim on $\psi(x)$ called the homotopy relation (Definition 2.2). We also define what it means for a path in $\psi(x)$ to be reduced (Definition 2.5). We then show that each element of $\pi(x)$ has exactly one reduced representative (Theorem 2.6).

Definition 2.1. Let $\Gamma=(X, R)$ be a graph, and fix $x \in X$. Pick any $p \in \psi(x)$, and write

$$
p=\left(x=x_{0}, x_{1}, \ldots, x_{l}=x\right)
$$

An element $q \in \psi(x)$ is said to extend p if there exists an integer $i(0 \leq i \leq l)$ and a vertex $y \in X$ such that

$$
q=\left(x=x_{0}, x_{1}, \ldots, x_{i-1}, x_{i}, y, x_{i}, x_{i+1}, \ldots, x_{l}=x\right)
$$

Observe that if q extends p, then the length of q is two greater than the length of p.
Definition 2.2. Let $\Gamma=(X, R)$ be a graph, and fix $x \in X$. We define the binary relation \sim on $\psi(x)$ as follows: for all $p, q \in \psi(x)$, write $p \sim q$ whenever there exists a nonnegative integer n and paths $p=p_{0}, p_{1}, \ldots, p_{n}=q \in \psi(x)$ such that p_{i} extends p_{i-1} for all $i(1 \leq i \leq n)$. We call this relation homotopy, and we say that p and q are homotopic if $p \sim q$. Observe that \sim is an equivalence relation.
Definition 2.3. Let $\Gamma=(X, R)$ be a graph, and pick $x \in X$. Let $\pi(x)$ denote the set of equivalence classes of $\psi(x)$ under homotopy. For every $p \in \psi(x)$, let $[p]$ denote the element of $\pi(x)$ that contains p.
Definition 2.4. Let $\Gamma=(X, R)$ be a graph. Fix $x \in X$, and pick $u \in \pi(x)$. We say that $p \in \psi(x)$ is a representative of u if $u=[p]$.
Definition 2.5. Let $\Gamma=(X, R)$ be a graph. Fix $x \in X$, and pick $p \in \psi(x)$. We say that p is reduced if p does not extend q for all $q \in \psi(x)$.
Theorem 2.6."Let $\Gamma=(X, R)$ be a graph. Fix $x \in X$, and pick any $u \in \pi(x)$. Then u has exactly one reduced representative. Furthermore, this is the unique representative of u of minimal length. We denote this representative by \tilde{u}.

3. The Fundamental Group of a Graph.

Let $\Gamma=(X, R)$ be a graph, and pick $x \in X$. In this section, we show that concatenation in $\psi(x)$ induces a group structure on $\pi(x)$ (Theorem 3.3).
Definition 3.1. Let $\Gamma=(X, R)$ be a graph. Let p and q be any paths in Γ such that the terminal vertex of p is the same as the initial vertex of q, and write

$$
\begin{aligned}
p & =\left(x_{0}, x_{1}, \ldots, x_{l-1}, x_{l}\right) \\
q & =\left(x_{l}=y_{0}, y_{1}, \ldots, y_{m}\right)
\end{aligned}
$$

By the concatenation of p and q we mean the sequence

$$
p q:=\left(x_{0}, x_{1}, \ldots, x_{l-1}, x_{l}=y_{0}, y_{1}, \ldots, y_{m}\right) .
$$

Observe that $p q$ is a path in Γ.
Note: Whenever we write $p q$ for paths p and q in Γ, it will be assumed that the terminal vertex of p is the same as the initial vertex of q.
Definition 3.2. Let $\Gamma=(X, R)$ be a graph. Fix $x \in X$, and pick any $u, v \in \pi(x)$.
(i) We define $u v$ to be element $[p q] \in \pi(x)$, where p is any representative of u and q is any representative of v.
(ii) We define u^{-1} to be the element $\left[p^{-1}\right] \in \pi(x)$, where p is any representative of u.
(iii) We define e to be the element $[(x)] \in \pi(x)$.

Theorem 3.3. Let $\Gamma=(X, R)$ be a graph, and fix $x \in X$. With reference to Definition 3.2, the following hold for all $u, v, w \in \pi(x)$:
(i) $(u v) w=u(v w)$,
(ii) $u e=u=e u$,
(iii) $u u^{-1}=e=u^{-1} u$.

In particular, concatenation on $\psi(x)$ induces a group structure on $\pi(x)$. We call this group the fundamental group with respect to x.
Note: The fundamental group is sometimes referred to as the first homotopy group. It is usually written as $\pi(\Gamma, x)$ or $\pi_{1}(\Gamma, x)$, but we have chosen to drop Γ from the notation in this abstract since there is no ambiguity about the identity of Γ.

4. The Subgroups $\pi(x, i)$.

Let $\Gamma=(X, R)$ be a graph and pick any $x \in X$. In this section we define the essential length of an element of $\pi(x)$ (Definition 4.3), and we use this concept to define a collection of subgroups $\pi(x, i)$ of $\pi(x)$ (Definition 4.4).
Definition 4.1. Let $\Gamma=(X, R)$ be a graph, and fix $x \in X$. Pick any path $p \in \psi(x)$, and write

$$
p=\left(x=x_{0}, x_{1}, \ldots, x_{l}=x\right)
$$

We say that p is cyclically reduced if $l=0$ or if p is reduced with $x_{1} \neq x_{l-1}$.
Lemma 4.2. Let $\Gamma=(X, R)$ be a graph, and fix $x \in X$. Let p be any reduced element of $\psi(x)$. Then there exists a unique cyclically reduced closed path q and a unique path r such that

$$
p=r q r^{-1}
$$

Definition 4.3. Let $\Gamma=(X, R)$ be a graph, and fix $x \in X$. Pick any $u \in \pi(x)$ and write $\tilde{u}=p q p^{-1}$, where q is cyclically reduced. By the essential length of u, we mean the length of q.
Definition 4.4. Let $\Gamma=(X, R)$ be a graph, and fix $x \in X$. For every nonnegative integer i, let $\pi(x, i)$ denote the subgroup of $\pi(x)$ generated by the elements of essential length at most i.

We summarize some elementary results about these subgroups in the following lemma.

Lemma 4.5. Let $\Gamma=(X, R)$ be a graph, and fix $x \in X$. Then
(i) $\pi(x, i) \subseteq \pi(x, i+1)$ for every nonnegative integer i,
(ii) $\pi(x, 0)=\pi(x, 1)=\pi(x, 2)=\{e\}$.

Recall that a graph $\Gamma=(X, R)$ is connected if for every $x, y \in X$ there exists a path from x to y. Let $\Gamma=(X, R)$ be a connected graph, and pick $x, y \in X$. By the distance $\partial(x, y)$, we mean the length of the shortest path in Γ from x to y. By the diameter of Γ we mean the maximal distance between any two vertices in X.
Theorem 4.6. Let $\Gamma=(X, R)$ be a connected graph with diameter d. Fix any $x \in X$. Then $\pi(x, 2 d+1)=\pi(x)$.

5. The intersection number $p_{12}^{3} \geq 2$ in any Q-Polynomial Distance-Regular Graph.

For the rest of the abstract, we restrict our attention to distance-regular graphs. In this section, we show that if a distance-regular graph Γ is Q-polynomial with diameter and valency at least three, then the intersection number p_{12}^{3} is at least two (Theorem 5.1); consequently, the girth is at most six (Corollary 5.3).

We shall begin this section by briefly reviewing the key definitions and basic results related to Q-polynomial distance-regular graphs. For general information about distance -regular graphs and the Q-polynomial property, see Bannai and Ito [1] or Brouwer, Cohen, and Neumaier [2].

Let $\Gamma=(X, R)$ denote a connected graph of diameter $d \geq 1$. We say that Γ is distance-regular if for all integers $h, i, j(0 \leq h, i, j \leq d)$ and for all $x, y \in X$ with $\partial(x, y)=h$, the numbers

$$
p_{i j}^{h}=|\{z \in X \mid \partial(x, z)=i, \partial(y, z)=j\}|
$$

depend only on h, i, j, and not on x or y. We call the $p_{i j}^{h}$ the intersection numbers of Γ. Note that if Γ is distance-regular, then Γ is regular with valency $k:=p_{11}^{0}$.

Let Γ be a distance-regular graph of diameter d. Let $A_{0}, A_{1}, \ldots, A_{d}$ denote the distance matrices for Γ. Then $A_{0}, A_{1}, \ldots, A_{d}$ form a basis for a commutative semisimple -algebra M known as the Bose-Mesner algebra. The algebra M has a second basis $E_{0}, E_{1}, \ldots, E_{d}$ such that

$$
\begin{array}{cl}
E_{0}+E_{1}+\ldots+E_{d}=I, & \\
E_{i} E_{j}=\delta_{i j} E_{i} & (0 \leq i, j \leq d), \\
E_{0}=\frac{1}{|X|} J, & \\
E_{i}=E_{i}^{t} & (0 \leq i \leq d),
\end{array}
$$

where I is the identity matrix and J is the all-1s matrix [2, Theorem 2.6.1]. We refer to $E_{0}, E_{1}, \ldots, E_{d}$ as the primitive idempotents of Γ.

By the Krein parameters of Γ (with respect to the above ordering $E_{0}, E_{1}, \ldots, E_{d}$ of the primitive idempotents), we mean the real scalars $q_{i j}^{h}(0 \leq h, i, j \leq d)$ such that

$$
E_{i} \circ E_{j}=\frac{1}{|X|} \sum_{h=0}^{d} q_{i j}^{h} E_{h} \quad(0 \leq i, j \leq d)
$$

where \circ denotes entry-wise matrix multiplication [2].
Suppose that E is a primitive idempotent of Γ. We say that E is a Q-idempotent if there exists an ordering $E_{0}, E=E_{1}, \ldots, E_{d}$ of the primitive idempotents of Γ such
that the corresponding Krein parameters satisfy

$$
\begin{array}{cl}
q_{1 j}^{i}=0 & \text { if }|i-j|>1 \\
q_{1 j}^{i} \neq 0 & \text { if }|i-j|=1, j \leq d) \\
(0 \leq i, j \leq d)
\end{array}
$$

We say that Γ is Q-polynomial if Γ has at least one Q-idempotent.
Let $\Gamma=(X, R)$ denote any distance-regular graph of diameter d, and let E denote any primitive idempotent of Γ. There exist real scalars $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{d}^{*}$ such that

$$
\begin{equation*}
E=\frac{1}{|X|} \sum_{h=0}^{d} \theta_{h}^{*} A_{h} \tag{1}
\end{equation*}
$$

If E is a Q-idempotent of Γ, then we say that the sequence $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{d}^{*}$ is a Q sequence.

Let $\Gamma=(X, R)$ be a distance-regular graph of diameter $d \geq 1$. By the standard module for Γ we mean the vector space $V={ }^{X}$ of column vectors, whose coordinates are indexed by X. We equip V with the inner product

$$
\langle u, v\rangle=u^{t} v \quad(u, v \in V)
$$

For each vertex $x \in X$, let \hat{x} denote the vector in V with a one in the x coordinate and zeros elsewhere. Observe that $\{\hat{x} \mid x \in X\}$ is an orthonormal basis for V.
Theorem 5.1. Let $\Gamma=(X, R)$ be a Q-polynomial distance-regvlar graph with diameter. $d \geq 3$ and valency $k \geq 3$. Then the intersection number $p_{12}^{3} \geq 2$.
Definition 5.2. Let $\Gamma=(X, R)$ be a distance-regular graph of valency at least two. By the girth of Γ, we mean the minimal integer $i>0$ such that there exists a cyclically reduced path $p \in \psi(x)$ of length i, where x is any vertex in X.
Corollary 5.3. Let $\Gamma=(X, R)$ be a Q-polynomial distance-regular graph such that the valency is at least three. Then the girth of Γ is at most six.

6. Pseudoquotients.

Let $\Gamma=(X, R)$ denote a Q-polynomial distance-regular graph of diameter $d \geq 3$. In this section, we examine a property that Γ must satisfy if it is the quotient of a distance-regular antipodal graph of diameter $D \geq 7$. We use this property to define what it means for Γ to be a pseudoquotient (Definition 6.6).
Lemma 6.1. (Leonard [3]) Let $\Gamma=(X, R)$ be a Q-polynomial distance-regular graph of diameter $d \geq 3$. Suppose that $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{d}^{*}$ is a Q-sequence. Then there exists a unique real number λ such that

$$
\theta_{i-2}^{*}-\theta_{i-1}^{*}=\lambda\left(\theta_{i-3}^{*}-\theta_{i}^{*}\right) \quad(3 \leq i \leq d) .
$$

Moreover, $\lambda \neq 0$.
Corollary 6.2. (Leonard [3], Bannai and Ito [1, Theorem 5.1, p. 263]) Let $\Gamma=$ (X, R) be a Q-polynomial distance-regular graph of diameter $d \geq 3$. Let $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{d}^{*}$ be a Q-sequence for Γ. Then exactly one of the following occurs:

$$
\begin{array}{lll}
\text { Case (i) } & \theta_{i}^{*}=\theta_{0}^{*}+h^{*}\left(1-q^{i}\right)\left(1-s^{*} q^{i+1}\right) q^{-i} & (0 \leq i \leq d), \\
\text { Case (ii) } & \theta_{i}^{*}=\theta_{0}^{*}+h^{*} i\left(1+i+s^{*}\right) & (0 \leq i \leq d), \\
\text { Case (iii) } & \theta_{i}^{*}=\theta_{0}^{*}+s^{*} i & (0 \leq i \leq d), \\
\text { Case (iv) } & \theta_{i}^{*}=\theta_{0}^{*}+h^{*}\left(s^{*}-1+\left(1-s^{*}+2 i\right)(-1)^{i}\right) & (0 \leq i \leq d), \tag{5}
\end{array}
$$

where q, h^{*}, s^{*} are appropriate complex numbers.
Let $\Gamma^{\prime}=\left(X^{\prime}, R^{\prime}\right)$ be a distance-regular graph of diameter D. Define a relation \approx on X^{\prime} as follows: for all $x, y \in X^{\prime}$, write $x \approx y$ whenever $x=y$ or $\partial(x, y)=D$. The graph Γ^{\prime} is said to be antipodal whenever \approx is an equivalence relation.

Suppose that Γ^{\prime} is an antipodal distance-regular graph of diameter D, and let \approx be as above. By the quotient of Γ^{\prime}, we mean the graph $\Gamma=(X, R)$ where

$$
\begin{aligned}
X & =\text { the set of equivalence classes of } \approx \\
R & =\left\{\{u, v\} \mid u, v \in X, \exists x \in u, \exists y \in v \text { such that }\{x, y\} \in R^{\prime}\right\} .
\end{aligned}
$$

(For more information on antipodal distance-regular graphs, see Brouwer, Cohen, and Neumaier [2]).

Let $\Gamma=(X, R)$ be a Q-polynomial distance-regular graph of diameter at least three. The following theorem gives a restriction that every Q-sequence of Γ satisfies if Γ is the quotient of an antipodal distance-regular graph.
Theorem 6.3. (Terwilliger [7]) Let $\Gamma=(X, R)$ be a Q-polynomial distance-regular graph of diameter $d \geq 3$. Suppose that Γ is the quotient of an antipodal distanceregular graph of diameter $D \geq 7$. If $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{d}^{*}$ is a Q-sequence of Γ, then

$$
\theta_{i-2}^{*}-\theta_{i-1}^{*}=\lambda\left(\theta_{i-3}^{*}-\theta_{i}^{*}\right) \quad(3 \leq i \leq D),
$$

where λ is as in Lemma 6.1, and where $\theta_{d+1}^{*}, \theta_{d+2}^{*}, \ldots, \theta_{D}^{*}$ are defined by

$$
\theta_{i}^{*}:=\theta_{D-i}^{*} \quad(d+1 \leq i \leq D)
$$

The following lemma shows some conditions that are equivalent to the condition that appears in Theorem 6.3.

Lemma 6.4. Let $\Gamma=(X, R)$ be a Q-polynomial distance-regular graph with diameter $d \geq 3$. Let $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{d}^{*}$ be a Q-sequence of Γ and let λ be as in Lemma 6.1. Then for all integers $D \in\{2 d, 2 d+1\}$, the following three conditions are equivalent:
(i)

$$
\theta_{i-2}^{*}-\theta_{i-1}^{*}=\lambda\left(\theta_{i-3}^{*}-\theta_{i}^{*}\right) \quad(3 \leq i \leq D)
$$

where $\theta_{d+1}^{*}, \theta_{d+2}^{*}, \ldots, \theta_{D}^{*}$ are defined by

$$
\theta_{i}^{*}:=\theta_{D-i}^{*} \quad(d+1 \leq i \leq D)
$$

(ii)

$$
\theta_{d-1}^{*}-\theta_{d}^{*}=\lambda\left(\theta_{d-2}^{*}-\theta_{D-d-1}^{*}\right)
$$

(iii) Referring to lines (2)-(5) in Corollary 6.2,

$$
\begin{aligned}
& \text { Case (i) occurs with } s^{*}=q^{-D-1} \\
& \text { Case (ii) occurs with } s^{*}=-D-1 \text {, } \\
& \text { or } \quad \text { Case (iv) occurs with } s^{*}=D+1 \text {, and } D \text { is odd. }
\end{aligned}
$$

Lemma 6.5. Let $\Gamma=(X, R)$ be a Q-polynomial distance-regular graph with diameter $d \geq 3$ and let $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{d}^{*}$ be a Q-sequence of Γ. Suppose that conditions (i)-(iii) hold in Lemma 6.4 for some $D \in\{2 d, 2 d+1\}$. Then D is unique. In this case, we say that $\theta_{0}^{*}, \theta_{1}^{*}, \ldots, \theta_{d}^{*}$ is D-symmetric.
Definition 6.6. Let $\Gamma=(X, R)$ be a Q-polynomial distance-regular graph of diameter $d \geq 3$. We say that Γ is a pseudoquotient if there exists $D \in\{2 d, 2 d+1\}$, with $D \geq 7$, such that every Q-sequence in D-symmetric. In this case we call D the covering diameter of Γ.

7. The Fundamental Group of a Q-polynomial Distance-Regular Graph.

We now present our main result.
Theorem 7.1. Let $\Gamma=(X, R)$ be a Q-polynomial distance-regular graph of diameter $d \geq 3$ and valency $k \geq 3$. Fix any $x \in X$. Then the following hold.
(i) $\pi(x, 6) \neq\{e\}$.
(ii) Suppose $\pi(x, 6) \neq \pi(x)$. Then Γ is a pseudoquotient. Furthermore,

$$
\pi(x, 6)=\pi(x, D-1) \pi(x, D)=\pi(x)
$$

where D is the covering diameter of Γ.

References

[1] E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings, London, 1984.
[2] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs. Springer-Verlag, Berlin, 1989.
[3] D. Leonard. Orthogonal polynomials, duality, and association schemes. SIAM J. Math. Anal., 13:656-663, 1982.
[4] R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer-Verlag, Berlin, 1970.
[5] W. Magnus, W. Karrass, and D. Solitar. Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Dover Publications, Inc., New York, 1966.
[6] J. R. Stallings. Topology of finite graphs. Invent. math., 71:551-565, 1983.
[7] P. Terwilliger. P- and Q-polynomial association schemes and their antipodal Ppolynomial covers. European J. Combin., 14:355-358, 1993.
[8] P. Terwilliger. A new inequality for distance-regular graphs. Discrete Math., 137:319-322, 1995.

[^0]: ${ }^{1}$ Dept. of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison WI 53706 Email address: hlewis@math.wisc.edu
 ${ }^{2}$ In the interests of space, we have omitted all of the proofs. A complete version of this paper, with proofs intact, is available from the author.

