HOMOTOPY IN Q-POLYNOMIAL DISTANCE-REGULAR GRAPHS

Heather A. Lewis¹

1. Introduction.

Let Γ denote a Q-polynomial distance-regular graph with diameter $d \ge 3$. In [7], Terwilliger showed that if Γ is the antipodal quotient of a distance-regular graph with diameter $D \ge 7$, then the dual eigenvalues of Γ satisfy a certain equation. We say that Γ is a *pseudoquotient* whenever this equation is satisfied. In our main result, speaking a bit vaguely for the moment, we show that if Γ is not a pseudoquotient, then each cycle in Γ can be "decomposed" into cycles of length at most six. We state this result precisely using homotopy.

The outline of this abstract is as follows. In Sections 2-4, we present material on homotopy. In Sections 5-6, we examine Q-polynomial distance-regular graphs. Specifically, in Section 5 we show that if Γ is a Q-polynomial distance-regular graph with diameter and valency at least three, then the intersection number p_{12}^3 is at least two; consequently, the girth is at most six. In Section 6 we say what it means for Γ to be a pseudoquotient. Finally, in Section 7 we present our main theorem.²

By a graph we mean a pair $\Gamma = (X, R)$, where X is a finite non-empty set (the vertices) and R is a set of distinct two-element subsets of X (the edges). Observe that Γ is undirected without loops or multiples edges. Fix a graph $\Gamma = (X, R)$. Let x and y be vertices in X and let l be a nonnegative integer. By a path in Γ of length l from x to y we mean a sequence

$$p := (x = x_0, x_1, \dots, x_l = y) \qquad (x_i \in X, \ 0 \le i \le l)$$
$$\{x_{i-1}, x_i\} \in R \qquad (1 \le i \le l).$$

such that

We call x the initial vertex of p and y the terminal vertex of p. Given p as above, we define p^{-1} to be the sequence

$$p^{-1}$$
 := $(y = x_l, x_{l-1}, \dots, x_0 = x)$.

Observe that p^{-1} is a path in Γ .

¹Dept. of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison WI 53706 Email address: hlewis@math.wisc.edu

 $^{^{2}}$ In the interests of space, we have omitted all of the proofs. A complete version of this paper, with proofs intact, is available from the author.

Let p be a path in Γ . We say that p is closed if the initial vertex and terminal vertex of p are the same. If p is closed, then we call the initial vertex the **base vertex** of p. For each $x \in X$, let $\psi(x)$ denote the set of all closed paths with base vertex x.

2. The Homotopy Relation.

Let $\Gamma = (X, R)$ be a graph, and pick any $x \in X$. In this section, we consider a binary relation \sim on $\psi(x)$ called the homotopy relation (Definition 2.2). We also define what it means for a path in $\psi(x)$ to be reduced (Definition 2.5). We then show that each element of $\pi(x)$ has exactly one reduced representative (Theorem 2.6).

Definition 2.1. Let $\Gamma = (X, R)$ be a graph, and fix $x \in X$. Pick any $p \in \psi(x)$, and write

$$p = (x = x_0, x_1, \dots, x_l = x).$$

An element $q \in \psi(x)$ is said to extend p if there exists an integer $i \ (0 \le i \le l)$ and a vertex $y \in X$ such that

$$q = (x = x_0, x_1, \dots, x_{i-1}, x_i, y, x_i, x_{i+1}, \dots, x_l = x).$$

Observe that if q extends p, then the length of q is two greater than the length of p.

Definition 2.2. Let $\Gamma = (X, R)$ be a graph, and fix $x \in X$. We define the binary relation \sim on $\psi(x)$ as follows: for all $p, q \in \psi(x)$, write $p \sim q$ whenever there exists a nonnegative integer n and paths $p = p_0, p_1, \ldots, p_n = q \in \psi(x)$ such that p_i extends p_{i-1} for all $i \ (1 \le i \le n)$. We call this relation homotopy, and we say that p and q are homotopic if $p \sim q$. Observe that \sim is an equivalence relation.

Definition 2.3. Let $\Gamma = (X, R)$ be a graph, and pick $x \in X$. Let $\pi(x)$ denote the set of equivalence classes of $\psi(x)$ under homotopy. For every $p \in \psi(x)$, let [p] denote the element of $\pi(x)$ that contains p.

Definition 2.4. Let $\Gamma = (X, R)$ be a graph. Fix $x \in X$, and pick $u \in \pi(x)$. We say that $p \in \psi(x)$ is a **representative** of u if u = [p].

Definition 2.5. Let $\Gamma = (X, R)$ be a graph. Fix $x \in X$, and pick $p \in \psi(x)$. We say that p is **reduced** if p does not extend q for all $q \in \psi(x)$.

Theorem 2.6. Let $\Gamma = (X, R)$ be a graph. Fix $x \in X$, and pick any $u \in \pi(x)$. Then u has exactly one reduced representative. Furthermore, this is the unique representative of u of minimal length. We denote this representative by \tilde{u} .

3. The Fundamental Group of a Graph.

Let $\Gamma = (X, R)$ be a graph, and pick $x \in X$. In this section, we show that concatenation in $\psi(x)$ induces a group structure on $\pi(x)$ (Theorem 3.3).

Definition 3.1. Let $\Gamma = (X, R)$ be a graph. Let p and q be any paths in Γ such that the terminal vertex of p is the same as the initial vertex of q, and write

$$p = (x_0, x_1, \dots, x_{l-1}, x_l),$$

$$q = (x_l = y_0, y_1, \dots, y_m).$$

By the concatenation of p and q we mean the sequence

$$pq := (x_0, x_1, \ldots, x_{l-1}, x_l = y_0, y_1, \ldots, y_m).$$

Observe that pq is a path in Γ .

Note: Whenever we write pq for paths p and q in Γ , it will be assumed that the terminal vertex of p is the same as the initial vertex of q.

Definition 3.2. Let $\Gamma = (X, R)$ be a graph. Fix $x \in X$, and pick any $u, v \in \pi(x)$.

- (i) We define uv to be element $[pq] \in \pi(x)$, where p is any representative of u and q is any representative of v.
- (ii) We define u^{-1} to be the element $[p^{-1}] \in \pi(x)$, where p is any representative of u.
- (iii) We define e to be the element $[(x)] \in \pi(x)$.

Theorem 3.3. Let $\Gamma = (X, R)$ be a graph, and fix $x \in X$. With reference to Definition 3.2, the following hold for all $u, v, w \in \pi(x)$:

- (i) (uv)w = u(vw),
- (ii) ue = u = eu,
- (iii) $uu^{-1} = e = u^{-1}u$.

In particular, concatenation on $\psi(x)$ induces a group structure on $\pi(x)$. We call this group the fundamental group with respect to x.

Note: The fundamental group is sometimes referred to as the first homotopy group. It is usually written as $\pi(\Gamma, x)$ or $\pi_1(\Gamma, x)$, but we have chosen to drop Γ from the notation in this abstract since there is no ambiguity about the identity of Γ .

4. The Subgroups $\pi(x, i)$.

Let $\Gamma = (X, R)$ be a graph and pick any $x \in X$. In this section we define the essential length of an element of $\pi(x)$ (Definition 4.3), and we use this concept to define a collection of subgroups $\pi(x, i)$ of $\pi(x)$ (Definition 4.4).

Definition 4.1. Let $\Gamma = (X, R)$ be a graph, and fix $x \in X$. Pick any path $p \in \psi(x)$, and write

$$p = (x = x_0, x_1, \dots, x_l = x).$$

We say that p is cyclically reduced if l = 0 or if p is reduced with $x_1 \neq x_{l-1}$.

Lemma 4.2. Let $\Gamma = (X, R)$ be a graph, and fix $x \in X$. Let p be any reduced element of $\psi(x)$. Then there exists a unique cyclically reduced closed path q and a unique path r such that

$$p = rqr^{-1}.$$

Definition 4.3. Let $\Gamma = (X, R)$ be a graph, and fix $x \in X$. Pick any $u \in \pi(x)$ and write $\tilde{u} = pqp^{-1}$, where q is cyclically reduced. By the essential length of u, we mean the length of q.

Definition 4.4. Let $\Gamma = (X, R)$ be a graph, and fix $x \in X$. For every nonnegative integer *i*, let $\pi(x, i)$ denote the subgroup of $\pi(x)$ generated by the elements of essential length at most *i*.

We summarize some elementary results about these subgroups in the following lemma.

Lemma 4.5. Let $\Gamma = (X, R)$ be a graph, and fix $x \in X$. Then

(i) $\pi(x,i) \subseteq \pi(x,i+1)$ for every nonnegative integer i,

(*ii*)
$$\pi(x,0) = \pi(x,1) = \pi(x,2) = \{e\}.$$

Recall that a graph $\Gamma = (X, R)$ is connected if for every $x, y \in X$ there exists a path from x to y. Let $\Gamma = (X, R)$ be a connected graph, and pick $x, y \in X$. By the distance $\partial(x, y)$, we mean the length of the shortest path in Γ from x to y. By the diameter of Γ we mean the maximal distance between any two vertices in X.

Theorem 4.6. Let $\Gamma = (X, R)$ be a connected graph with diameter d. Fix any $x \in X$. Then $\pi(x, 2d + 1) = \pi(x)$.

5. The intersection number $p_{12}^3 \ge 2$ in any Q-Polynomial Distance-Regular Graph.

For the rest of the abstract, we restrict our attention to distance-regular graphs. In this section, we show that if a distance-regular graph Γ is *Q*-polynomial with diameter and valency at least three, then the intersection number p_{12}^3 is at least two (Theorem 5.1); consequently, the girth is at most six (Corollary 5.3).

We shall begin this section by briefly reviewing the key definitions and basic results related to Q-polynomial distance-regular graphs. For general information about distance -regular graphs and the Q-polynomial property, see Bannai and Ito [1] or Brouwer, Cohen, and Neumaier [2].

Let $\Gamma = (X, R)$ denote a connected graph of diameter $d \ge 1$. We say that Γ is **distance-regular** if for all integers h, i, j ($0 \le h$, i, $j \le d$) and for all $x, y \in X$ with $\partial(x, y) = h$, the numbers

$$p_{ij}^{h} = |\{z \in X \mid \partial(x, z) = i, \partial(y, z) = j\}|$$

depend only on h, i, j, and not on x or y. We call the p_{ij}^h the intersection numbers of Γ . Note that if Γ is distance-regular, then Γ is regular with valency $k := p_{11}^0$.

Let Γ be a distance-regular graph of diameter d. Let A_0, A_1, \ldots, A_d denote the distance matrices for Γ . Then A_0, A_1, \ldots, A_d form a basis for a commutative semisimple -algebra M known as the **Bose-Mesner** algebra. The algebra M has a second basis E_0, E_1, \ldots, E_d such that

$$E_0 + E_1 + \ldots + E_d = I,$$

$$E_i E_j = \delta_{ij} E_i \qquad (0 \le i, j \le d),$$

$$E_0 = \frac{1}{|X|} J,$$

$$E_i = E_i^t \qquad (0 \le i \le d),$$

where I is the identity matrix and J is the all-1s matrix [2, Theorem 2.6.1]. We refer to E_0, E_1, \ldots, E_d as the **primitive idempotents** of Γ .

By the Krein parameters of Γ (with respect to the above ordering E_0, E_1, \ldots, E_d of the primitive idempotents), we mean the real scalars q_{ij}^h $(0 \le h, i, j \le d)$ such that

$$E_i \circ E_j = \frac{1}{|X|} \sum_{h=0}^d q_{ij}^h E_h \qquad (0 \le i, j \le d),$$

where \circ denotes entry-wise matrix multiplication [2].

Suppose that E is a primitive idempotent of Γ . We say that E is a Q-idempotent if there exists an ordering E_0 , $E = E_1, \ldots, E_d$ of the primitive idempotents of Γ such

that the corresponding Krein parameters satisfy

$$\begin{aligned} q_{1j}^i &= 0 \quad \text{if } |i-j| > 1 \quad (0 \le i, \ j \le d), \\ q_{1j}^i &\neq 0 \quad \text{if } |i-j| = 1 \quad (0 \le i, \ j \le d). \end{aligned}$$

We say that Γ is *Q***-polynomial** if Γ has at least one *Q*-idempotent.

Let $\Gamma = (X, R)$ denote any distance-regular graph of diameter d, and let E denote any primitive idempotent of Γ . There exist real scalars $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ such that

$$E = \frac{1}{|X|} \sum_{h=0}^{d} \theta_h^* A_h.$$
 (1)

If E is a Q-idempotent of Γ , then we say that the sequence $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ is a Q-sequence.

Let $\Gamma = (X, R)$ be a distance-regular graph of diameter $d \ge 1$. By the standard module for Γ we mean the vector space V = X of column vectors, whose coordinates are indexed by X. We equip V with the inner product

$$\langle u,v\rangle = u^t v \qquad (u,v\in V).$$

For each vertex $x \in X$, let \hat{x} denote the vector in V with a one in the x coordinate and zeros elsewhere. Observe that $\{\hat{x} \mid x \in X\}$ is an orthonormal basis for V.

Theorem 5.1. Let $\Gamma = (X, R)$ be a Q-polynomial distance-regular graph with diameter $d \geq 3$ and valency $k \geq 3$. Then the intersection number $p_{12}^3 \geq 2$.

Definition 5.2. Let $\Gamma = (X, R)$ be a distance-regular graph of valency at least two. By the girth of Γ , we mean the minimal integer i > 0 such that there exists a cyclically reduced path $p \in \psi(x)$ of length i, where x is any vertex in X.

Corollary 5.3. Let $\Gamma = (X, R)$ be a Q-polynomial distance-regular graph such that the valency is at least three. Then the girth of Γ is at most six.

6. Pseudoquotients.

Let $\Gamma = (X, R)$ denote a Q-polynomial distance-regular graph of diameter $d \ge 3$. In this section, we examine a property that Γ must satisfy if it is the quotient of a distance-regular antipodal graph of diameter $D \ge 7$. We use this property to define what it means for Γ to be a pseudoquotient (Definition 6.6).

Lemma 6.1. (Leonard [3]) Let $\Gamma = (X, R)$ be a Q-polynomial distance-regular graph of diameter $d \geq 3$. Suppose that $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ is a Q-sequence. Then there exists a unique real number λ such that

$$\theta_{i-2}^* - \theta_{i-1}^* = \lambda(\theta_{i-3}^* - \theta_i^*) \qquad (3 \le i \le d).$$

Moreover, $\lambda \neq 0$.

Corollary 6.2. (Leonard [3], Bannai and Ito [1, Theorem 5.1, p. 263]) Let $\Gamma = (X, R)$ be a Q-polynomial distance-regular graph of diameter $d \geq 3$. Let $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ be a Q-sequence for Γ . Then exactly one of the following occurs:

Case (i)
$$\theta_i^* = \theta_0^* + h^* (1 - q^i)(1 - s^* q^{i+1}) q^{-i}$$
 $(0 \le i \le d), (2)$

Case (ii)
$$\theta_i^* = \theta_0^* + h^* i(1 + i + s^*)$$
 $(0 \le i \le d), (3)$

Case (iii)
$$\theta_i^* = \theta_0^* + s^* i$$
 $(0 \le i \le d), (4)$

Case (iv) $\theta_i^* = \theta_0^* + h^* \left(s^* - 1 + (1 - s^* + 2i)(-1)^i \right) \quad (0 \le i \le d), \quad (5)$

where q, h^*, s^* are appropriate complex numbers.

Let $\Gamma' = (X', R')$ be a distance-regular graph of diameter D. Define a relation \approx on X' as follows: for all $x, y \in X'$, write $x \approx y$ whenever x = y or $\partial(x, y) = D$. The graph Γ' is said to be **antipodal** whenever \approx is an equivalence relation.

Suppose that Γ' is an antipodal distance-regular graph of diameter D, and let \approx be as above. By the quotient of Γ' , we mean the graph $\Gamma = (X, R)$ where

 $\begin{array}{ll} X & = & \text{the set of equivalence classes of } \approx, \\ R & = & \Big\{ \{u, v\} \, | \, u, \, v \in X, \, \exists x \in u, \, \exists y \in v \text{ such that } \{x, y\} \in R' \Big\}. \end{array}$

(For more information on antipodal distance-regular graphs, see Brouwer, Cohen, and Neumaier [2]).

Let $\Gamma = (X, R)$ be a Q-polynomial distance-regular graph of diameter at least three. The following theorem gives a restriction that every Q-sequence of Γ satisfies if Γ is the quotient of an antipodal distance-regular graph.

Theorem 6.3. (Terwilliger [7]) Let $\Gamma = (X, R)$ be a Q-polynomial distance-regular graph of diameter $d \geq 3$. Suppose that Γ is the quotient of an antipodal distanceregular graph of diameter $D \geq 7$. If $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ is a Q-sequence of Γ , then

$$\theta_{i-2}^* - \theta_{i-1}^* = \lambda(\theta_{i-3}^* - \theta_i^*) \qquad (3 \le i \le D),$$

where λ is as in Lemma 6.1, and where $\theta_{d+1}^*, \theta_{d+2}^*, \ldots, \theta_D^*$ are defined by

$$\theta_i^* := \theta_{D-i}^* \qquad (d+1 \le i \le D).$$

The following lemma shows some conditions that are equivalent to the condition that appears in Theorem 6.3.

Lemma 6.4. Let $\Gamma = (X, R)$ be a Q-polynomial distance-regular graph with diameter $d \geq 3$. Let $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ be a Q-sequence of Γ and let λ be as in Lemma 6.1. Then for all integers $D \in \{2d, 2d + 1\}$, the following three conditions are equivalent:

(i)

$$\theta_{i-2}^* - \theta_{i-1}^* = \lambda(\theta_{i-3}^* - \theta_i^*) \qquad (3 \le i \le D),$$

where $\theta_{d+1}^*, \theta_{d+2}^*, \ldots, \theta_D^*$ are defined by

$$\theta_i^* := \theta_{D-i}^* \qquad (d+1 \le i \le D).$$

(ii)

$$\theta_{d-1}^* - \theta_d^* = \lambda(\theta_{d-2}^* - \theta_{D-d-1}^*).$$

(iii) Referring to lines
$$(2)-(5)$$
 in Corollary 6.2,

- Case (i) occurs with $s^* = q^{-D-1}$,
- Case (ii) occurs with $s^* = -D 1$,
- or Case (iv) occurs with $s^* = D + 1$, and D is odd.

Lemma 6.5. Let $\Gamma = (X, R)$ be a Q-polynomial distance-regular graph with diameter $d \geq 3$ and let $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ be a Q-sequence of Γ . Suppose that conditions (i)-(iii) hold in Lemma 6.4 for some $D \in \{2d, 2d + 1\}$. Then D is unique. In this case, we say that $\theta_0^*, \theta_1^*, \ldots, \theta_d^*$ is **D-symmetric**.

Definition 6.6. Let $\Gamma = (X, R)$ be a Q-polynomial distance-regular graph of diameter $d \geq 3$. We say that Γ is a **pseudoquotient** if there exists $D \in \{2d, 2d + 1\}$, with $D \geq 7$, such that every Q-sequence in D-symmetric. In this case we call D the **covering diameter** of Γ .

7. The Fundamental Group of a Q-polynomial Distance-Regular Graph.

We now present our main result.

Theorem 7.1. Let $\Gamma = (X, R)$ be a Q-polynomial distance-regular graph of diameter $d \geq 3$ and valency $k \geq 3$. Fix any $x \in X$. Then the following hold.

- (i) $\pi(x, 6) \neq \{e\}.$
- (ii) Suppose $\pi(x, 6) \neq \pi(x)$. Then Γ is a pseudoquotient. Furthermore,

$$\pi(x, 6) = \pi(x, D - 1) \ \pi(x, D) = \pi(x)$$

where D is the covering diameter of Γ .

References

- [1] E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings, London, 1984.
- [2] A. E. Brouwer, A. M. Cohen, and A. Neumaier. *Distance-Regular Graphs.* Springer-Verlag, Berlin, 1989.
- [3] D. Leonard. Orthogonal polynomials, duality, and association schemes. SIAM J. Math. Anal., 13:656 663, 1982.
- [4] R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer-Verlag, Berlin, 1970.
- [5] W. Magnus, W. Karrass, and D. Solitar. Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Dover Publications, Inc., New York, 1966.
- [6] J. R. Stallings. Topology of finite graphs. Invent. math., 71:551 565, 1983.
- [7] P. Terwilliger. P- and Q-polynomial association schemes and their antipodal P-polynomial covers. *European J. Combin.*, 14:355 358, 1993.
- [8] P. Terwilliger. A new inequality for distance-regular graphs. Discrete Math., 137:319 322, 1995.

