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1. Introduction.
Let F denote a Q-polynomial distance-regular graph with diameter d ^ 3. In [7],

Terwilliger showed that if T is the antipodal quotient of a distance-regular graph with
diameter D >. 7, then the dual eigenvalues of F satisfy a certain equation. We say
that F is a pseudoquotient whenever this equation is satisfied. In our main result,
speaking a bit vaguely for the moment, we show that if F is not a pseudoquotient,
then each cycle in T can be "decomposed" into cycles of length at most sbc. We state
this result precisely using homotopy.

The outline of this abstract is as follows. In Sections 2-4, we present material
on homotopy. In Sections 5-6, we examine Q-polynomial distance-regular graphs.
Specifically, in Section 5 we show that if F is a Q-polynomial distance-regular graph
with diameter and valency at least three, then the intersection number p^ is at least
two; consequently, the girth is at most sue. In Section 6 we say what it means for F
to be a pseudoquotient. Finally, in Section 7 we present our main theorem.2

By a graph we mean a pair T = (X, R), where X is a finite non-empty set (the
vertices) and R is a, set of distinct two-element subsets of X (the edges). Observe
that F is undirected without loops or multiples edges. Fbc a graph F = (X, R). Let 3;
and y be vertices in X and let I be a nonnegative integer. By a path in F of length
/ from x to y we mean a sequence

such that
p := {x=xo, x^,..., xi =y)

{xi-i, Xi} 6 R

(xi X, O^i^l)

(1 ^ z < Z).

We call x the initial vertex of p and y the terminal vertex of p. Given p as above,
we define p-l to be the sequence

p-1 := {y=xi, Xi-i,..., Xo=x).

Observe that p-l is a path in F.
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2In the interests of space, we have omitted all of the proofs. A complete version of this paper,
with proofs intact, is available from the author.
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Let p be a path in F. We say that p is closed if the initial vertex and terminal
vertex of p are the same. If p is closed, then we call the initial vertex the base vertex
of p. For each 2;   X, let ^(2;) denote the set of all closed paths with base vertex x.

2. The Homotopy Relation.
Let F = (X, R) be a graph, and pick any x e X. In this section, we consider

a binary relation ~ on .0(2;) called the homotopy relation (Definition 2.2). We also
define what it means for a path in t^(x) to be reduced (Definition 2. 5). We then show
that each element of 7T(x) has exactly one reduced representative (Theorem 2. 6).

Definition 2. 1. Let F = (X, R) be a graph, and 6x x e X. Pick any p   ̂ (2;), and
write

p = (x=xo, x^,..., xi^x).

An element g   ^ (re) is said to extend p if there exists an integer i (Q <, i <^l) and
a vertex y   X such that

q = (x = Xo, x-i,..., Xi--i, Xi, y, Xi, Xi+i,..., Xi= x}.-

Observe that if q extends p, then the length of q is two greater than the length of p.

Definition 2.2. Let F = (X, JZ) be a graph, and fix a; 6 X. We define the binary
relation ~ on .0(a:) as follows: for all p, $   ^(a;), write p ~ g whenever there exists a
nonnegative integer n and paths p = pQ -, p\i---ipn = Q.   ^(x) such that pi extends

pi-i for a\\i (1 <, i <, n). We call this relation homotopy, and we say that p and q
are homotopic if p ~ 9. Observe that ~ is an equivalence relation.

Definition 2.3. Let T = (X, R) be a graph, and pick x e. X. Let ̂ (x) denote the
set of equivalence classes o{t^(x} under homotopy. For every p e ip{x), let [p] denote
the element of 7r(a;) that contains p.

Definition 2.4. Let F = {X, R) be a graph. Fbc a;   X, and pick u   ^(x). We say
that p e. fp{x) is a representative ofu ifu = [p].
Definition 2. 5. Let F = (X, JZ) be a graph. F\xxeX, and pick p   ^(x). We say
that p is reduced if p does not extend q for all g   '0(2;).

Theorem 2.6. Let F = (X, R) be a graph. Fix x   X, and pick any u   -^(x). Then u
has exactly one reduced representative. Furthermore, this is the unique representative
of u of minimal length. We denote this representative by u.
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3. The Fundamental Group of a Graph.
Let F = (^, A) be a graph, and pick r   X. In this section, we show that

concatenation in i^(x) induces a group structure on -K(x} (Theorem 3. 3).

Definition 3. 1. Let T = (X, R) be a graph. Let p and q be any paths in F such that
the terminal vertex of p is the same as the initial vertex of q, and write

p = (2;o, a:i,..., 2;;-i,.r;),
q = (xi=yo, y^,..., ym).

By the concatenation of p and q we mean the sequence

pq := {xo, x-i,..., Xi--i, Xi=yQ, y^..., yrn).

Observe that pq is a path in F.

Note: Whenever we write pq for paths p and q in F, it will be assumed that the
terminal vertex of p is the same as the initial vertex of q.

Definition 3. 2. Let F = (X, R) be a graph. Fix x e X, and pick any u, u 6 7r(x).

(i) We define uv to be element \pq]   Tr{x), where p is any representative of u and
q is any representative of v.

(ii) We define u-l to be the element [p-l]   ̂ (2;), where p is any representative of
u.

(iii) We define e to be the element [(x)} e 7T(x).

Theorem 3.3. Let F = (X, R) be a graph, and fix x   X. With reference to Definition
3. 2, the following hold for all u, u, w   ^{x):

(i) (uv)w = u(vw),

(ii) ue = u = eu,

(iii) uu~1 = e = u-lu.

In particular, concatenation on ̂ (x) induces a group structure on .K(x). We call this
group the fundanaental group with respect to x.

Note: The fundamental group is sometimes referred to as the first homotopy group.
It is usually written as ^(F, ^) or 7Ti(r, a:), but we have chosen to drop F from the
notation in this abstract since there is no ambiguity about the identity of F.
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4. The Subgroups Tr(x, i).
Let F = {X, R) be a graph and pick any x e X. In this section we define the

essential length of an element of 7T{x) (Definition 4. 3), and we use this concept to
define a collection ofsubgroups 7r{x, i) ofTr{x) (Definition 4. 4).

Definition 4. 1. Let F = (X, R) be a graph, and 6x x e X. Pick any path p   ^(x),
and write

p = {X=XQ, X^..., XI=X}.

We say that p is cyclically reduced if/ =0 or ifp is reduced with Xi 7^ 2;;-1.

Lenaina 4.2. Let F = (X, R) be a graph, and fix x 6 X. Let p be any reduced element
of ̂ {x). Then there exists a unique cyclically reduced closed path q and a unique path
r such that

p = rqr -1

Definition 4. 3. Let F = (X, R) be a graph, and 6x x e. X. Pick any u   7r(x) and
write u = pqp , where q is cyclically reduced. By the essential length of u, we
mean the length of q.

Definition 4.4. Let F = (X, R) be a graph, and fix 2;   X. For every nonnegative
integer i, let ̂ {x, i} denote the subgroup of ̂ (x) generated by the elements of essential
length at most i.

We summarize some elementary results about these subgroups in the following
lemma.

Lemma 4. 5. Let T = {X, R) be a graph, and fix x   X. Then

(i) n(x, i) C 7r(a;, i + 1) for every nonnegative integer i,

(ii) 7T(2;, 0) = 7T(X, 1) = 7T(2;, 2) = {e}.

Recall that a graph T = (X, R) is connected if for every x, y e X there exists a
path from x to y. Let F = (A", JZ) be a connected graph, and pick x, y e. X. By the
distance 9(x, y), we mean the length of the shortest path in F from x to y. By the
diameter of F we mean the maximal distance between any two vertices in X.

Theorena 4.6. Let T = (X, R) be a connected graph with diameter d. Fix any x e X.
Then7r{x, 2d+l) =Tr(x).
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5. The intersection number p^ > 2 in any Q-Polynonaial
Distance-Regular Graph.

For the rest of the abstract, we restrict our attention to distance-regular graphs.
In this section, we show that if a distance-regular graph F is Q-polynomial with
diameter and valency at least three, then the intersection number p^ ls at ̂ east two
(Theorem 5. 1); consequently, the girth is at most sbc (Corollary 5. 3).

We shall begin this section by briefly reviewing the key definitions and basic
results related to Q-polynomial distance-regular graphs. For general information
about distance -regular graphs and the Q-polynomial property, see Bannai and Ito
[1] or Brouwer, Cohen, and Neumaier [2].

Let F = (X, J?) denote a connected graph of diameter d ^ 1. We say that F is
distance-regular if for all integers /i, t, j (0 ̂  A, i, j ^ d) and for all x, y e X with
9(x, y) = h, the numbers

p^=\{zeX\9(x, z)=^9(y, z)=j}\
depend only on /i, i, j, and not on x or y. We call the p^ the intersection nuinbers
of F. Note that if T is distance-regular, then T is regular with valency k := p^.

Let F be a distance-regular graph of diameter d. Let Ao, Ai, .. ., Ad denote the
distance matrices for F. Then Ao, Ai,.. ., Ad form a basis for a commutative semi-
simple -algebra M known as the Bose-Mesner algebra. The algebra M has a second
basis EQ, E^,..., Ed such that

Eo+E^+... +Ed=I,

EiEj = SijEi (0 ̂ i, j<, d),
1

^0 - p<-|t/'
Ei=Et, (0^i<: d),

where I is the identity matrbc and J is the all-ls matrbc [2, Theorem 2.6. 1]. We refer
to £'0, £'i,... , £'d as the primitive iderapotents of T.

By the Krein paranaeters of T (with respect to the above ordering EQ, E^,. .., Ed
of the primitive idempotents), we mean the real scalars q^ (0 <^h, i, j <, d) such that

E, oE, = -^Eq^E, (O^iJ^d),
/i=0

where o denotes entry-wise matrbc multiplication [2].
Suppose that £' is a primitive idempotent of F. We say that E is a, Q-idempotent

if there exists an ordering EQ, E = E^,... , Ecioftbe primitive idempotents of F such
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that the corresponding Krein parameters satisfy

9l, =0 if\i-j\>l (0^z, j^d),
q[^0 if|2-j|=l (0^i, j^d).

We say that T is Q-polynomial if F has at least one Q-idempotent.
Let F = (X, J%) denote any distance-regular graph of diameter d, and let E denote

any primitive idempotent of F. There exist real scalars 0^, 0'[,... , 0^ such that

E = W\^Ah-
A=b

(1)

If £ is a Q-idempotent of T, then we say that the sequence ^, ^,..., ^ is a Q-
sequence.

Let F = {X, R) be a distance-regular graph of diameter d ^ 1. By the standard
module for T we mean the vector space V =x of column vectors, whose coordinates
are indexed by X. We equip V with the inner product

(u, v} = uv (u, v eV).
For each vertex x e X, \et x denote the vector in V with a one in the x coordinate
and zeros elsewhere. Observe that {x\x e X} is an orthonormal basis for V.
Theorein 5. 1. Let F = (X, R) be a Q-polynomial distance-regvlar graph with diam-
eter d ̂  3 and valency k>3. Then the intersection number p^ ^ 2.
Definition 5. 2. Let T = (X, R) be a distance-regular graph of valency at least
two. By the girth of T, we mean the minimal integer i > 0 such that there exists a
cyclically reduced path p e ip(x) of length i, where x is any vertex in X.
Corollary 5.3. Let T = (X, R} be a Q-polynomial distance-regular graph such that
the valency is at least three. Then the girth of T is at most six.

6. Pseudoquotients.
Let F = (X, I?) denote a Q-polynomial distance-regular graph of diameter d > 3.

In this section, we examine a property that F must satisfy if it is the quotient of a
distance-regular antipodal graph of diameter D >. 7. We use this property to define
what it means for F to be a pseudoquotient (Definition 6. 6).
Lemma 6. 1. (Leonard [8]} Let T = (X, R) be a Q-polynomial distance-regular graph
o/ diameter d >. 3. Suppose that 0^, 0[,..., 0^ is a Q-sequence. Then there exists a
unique real number X such that

0:-2-^-i = A(^-3 - ^') (3^^ri).
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Moreover, A 7^ 0.

Corollary 6.2. (Leonard [3], Bannai and Ito [1, Theorem 5. 1, p. 263]) Let T =
(X, R) be a Q-polynomial distance-regular graph of diameter d >^ 3. Let 9^, ̂ ,... ,^
be a Q-sequence for F. Then exactly one of the following occurs:

Case (i)
Case (ii)
Case (iii)
Case (iv)

0;=^+^(l-9t)(l-^t+l)9~t
^* = ^ + /l*t(l +i+ss)
0; = ^ + S*t

(0 ̂  ^ d),
(0 ^ z < d),
{O^i^ d),

^ =^+A* (s* - 1+ (1 -5*+ 2t)(-l)1) (0 ̂  i ^ d),

(2)
(3)
(4)
(5)

where q, h*, s* are appropriate complex numbers.

Let F' = {X', R') be a distance-regular graph of diameter D. Define a relation w
on X' as follows: for all 2-, y   X', write 2; « y whenever x = y ov 9(x, y) = D. The
graph F/ is said to be antipodal whenever » is an equivalence relation.

Suppose that T' is an antipodal distance-regular graph of diameter D, and let «
be as above. By the quotient of F', we mean the graph T = (X, R) where

X = the set of equivalence classes of «,
R = ^{u, v}\u, veX, 3xe. u, 3y vsucbt\iat{x, y}eR'Y

(For more information on antipodal distance-regular graphs, see Brouwer, Cohen, and
Neumaier [2]).

Let F = (X, 72) be a Q-polynomial distance-regular graph of diameter at least
three. The following theorem gives a restriction that every Q-sequence of F satisfies
if F is the quotient of an antipodal distance-regular graph.

Theorem 6.3. (Terwilliger [7]) Let T = (X, R) be a Q-polynomial distance-regular
graph of diameter d ^ 3. Suppose that F is the quotient of an antipodal distance-
regular graph of diameter D>. 7. If0^0^..., 0^isa Q-sequence of T, then

^-2-^-l=W-3-^) (3^^P),

where X is as in Lemma 6. 1, and where 03+r ̂ 3+2' ... iQ'b are defined by

^ := 8D-i (d+l^i^D).

The following lemma shows some conditions that are equivalent to the condition
that appears in Theorem 6. 3.
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Leinma 6.4. Let F = (X, R) be a Q-polynomial distance-regular graph with diameter
d ^ 3. Let 6^ 0^..., 0^ be a Q-sequence of T and let X be as in Lemma 6. 1. Then
for all integers D S {2d, 2d+ 1}, the following three conditions are equivalent:

(z)
^-2-^-1 = A(^-^) (3^^P),

where 6^, 6^, ... lO'D are defined by
0^:=e^ (d+l^i^D).

w

°d-l ~e*d = x{yd-1 
~ 6iD-d-\}-

(iii) Referring to lines (2)-(5) in Corollary 6. 2,
Case (i) occurs with s* == q~D-l,
Case (ii) occurs with s" = -D -1,

or Case (iv) occurs with s* == D+ 1, and D is odd.

Lenuna 6.5. Let F = (X, R) be a Q-polynomial distance-regular graph with diameter
d ^ 3 and let 0^, 0^,.. ., 0^ be a Q-seguence of F. Suppose that conditions (i)-(iii)
hold in Lemma 6. 4 for some D   {2ri, 2d+ 1}. Then D is unique. In this case, we
say that 0^, 0^,..., 0^ is Z?-syinmetric.
Definition 6. 6. Let F = (X, R) be a Q-polynomial distance-regular graph of diam-
eter d >, 3. We say that F is a pseudoquotient if there exists D   {2d, 2d + 1},
with D >^ 7, such that every Q-sequence in P-symmetric. In this case we call D the
covering diaineter of F.

7. The Fundamental Group of a Q-polynomial Distance-Regular
Graph.

We now present our main result.

Theorem 7. 1. Let F = (-Y, R) be a Q-polynomial distance-regular graph of diameter
d ̂  3 and valency k >3. Fix any x ^ X. Then the following hold.

(i)7T{x, 6)^{e}.
(ii) Suppose 7r(a;, 6) ̂ ^{x}. Then T is a pseudoquotient. Furthermore,

7T(T, 6) =7T(a;, P-1) TT(X, D)=TT(X)
where D is the covering diameter of T.
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