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We state several new combinatorial formulas for the Schubert polynomials. They
are generalizations of well-known expressions for the Schur polynomials: (1)
the Demazure character formula; (2) the realization as the generating function
of semi-standard tableaux of a given shape; and (3), (4) the Weyl character
formula. Our formulas appear surprising from a combinatorial point of view
because their derivation and proof involve a new geometric model, the configu-
ration varieties.

The results we state here are a special case of formulas for a broad class of
Schur-type polynomiak, the (flagged) Schui polynomials of strictly separated
diagrams [8], [1]. These include skew Schur and key polynomials [7], and the
Schur polynomials of northwest diagrams [II], [12], [13], [14].

1 Schubert polynomials

The Schubert polynomials S(w) of permutations w   Sn are polynomials in
variables a;i,..., a-n. They were originally considered as representatives ofSchu-
bert classes in the Borel picture of the cohomology of the flag variety GL(n)/B,
though we will give a completely different geometric interpretation in the later
sections of this note.

They are constructed in terms of the following divided difference operators
[3], [5], [10]. First, the operator 9, is defined by

9if(xi,..., Xn) =
f(xi,..., Xi, Xi+i,..., Xn) - f(x-i,..., Xi+i, Xi,..., Xn)

Zi - -C»+l

Then for a reduced decomposition of a permutation u = s»iS», . . ., the operator
Qu = 9, 13,, . . . is iadependent of the reduced decomposition chosen. Also, take
5< = id.

Now we may define the Schubert polynomials as follows. Let WQ = n, n -
1,. .., 2, 1 be the longest permutation, and take u = w-lwo, so that wu = WQ.
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Then
s(w)=8^xrl xr2 -.. x^xn^).

We have deg S(w) = £(w).

Exainple. For the permutation w = 24153 G Es, by inverting first ascents we
get WSlS3S^SiS4S3 = WQ, SO

S(w) = 9}. 939^9493(X^X^X^X4) = X^X-t (x-iX-i + X-iX3 + .C2.C3 + X-iX^ + a-Z^).

2 Orthodontia on a Rothe diagram
Consider the Rothe diagram of a permutation w   En i

D = D(w) = {(i, j) eNxN\i< w-l(j), j < w(i)}.

Its elements are called squares. We shall often think of D as a sequence
(Cl, C-i, . . -, Cr) Of columns Cj C N, by projecting squares (i, j) to their first
coordinate. We omit any empty columns from the sequence.

In the sequel, our main interest is in Rothe diagrams, but our analysis will
involve more general diagrams DCN x N of squares in the plane. In fact, to
any such diagram one cein associate a "Schur polyD omial", which is the character

of its flagged Schur module (see Section 7). Schubert polynomials are a special
case of these generalized Schur polynomials. The formulas we will state apply
not only to the Schubert polynomials, but to the Schur polynomials of any
"strongly separated" diagram. (See Section 9.)

Now, let D be a Rothe diagram. For our formulas, we will require a se-
quence of permutations wi. wz,..., Wr which is compatible with D in the sense
that Wj {1, 2,.. ., \Cj\} = Cj for all j. We also demand that the sequence
be monotone in the weak order: that is, for some ui, U2,... , Ur, we must have
Wi =Ul, W2 = UlU2, ... , Wr=Uf--Ur, Vf'lth £(wj) = ^(ui)+^(uz)+-. -+^(Uj ).
(It is enough to require Wr = ^(ui) + . . . + ̂ (ur).)

This can be done by means of the following algorithm. Given a column
C"C {l,..., n}, a mt'sstny (oo(A of C is EUI integer i such that i ^ C, but t'   C
for some i' > i. The only C without any missing teeth are {1, 2, 3,. .., j"}.
Given a diagram D = (Ci,... , Cr), let (io, jo) denote a special missing tooth
in D which is in the leftmost column possible, and as high as possible in this
column subject to the condition that (t'o + l, jo) S D.

Now.perform orthodontia on D to get a new diagram £>' with fewer missing
teeth, by switching rows »o and io + 1 in the columns weakly right of (io, jo)-
That is, change D to

D1 = {(«, j) | (!,.;. )  D and j<jo}
U{(s^i, j)\(i, j)eDandj>:jo].
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Next, locate the special missing tooth (t'i, Ji) of D , and perform this procedure
again on D' to get D" and (12, ^2), and so on until we reach a diagram with no
missing teeth. Notice that jo <ji ̂  .. ..

Finally, define the orthodoniic sequence of D = D(w) tobe u;i, w;,..., where
Wj = fljfc ; ^<j. s,^, the product being taken over all fc such that (ik, jk) is weakly
left of column j. It is easily seen that this sequence has the desired properties.

Exanaple. For the same w = 24153, we have

0=D(.)= ^ ° °
4 a

a o
D a

D'=

l a a
2 a
3 o
4 D

1

zy'= 2
3

D a
a o

D

D"'= l a a
2 a a

so that the special missing teeth (as indicated by o) are (t'o, Jo) = (1, 2), (ri. ji) =
(3, 2), (t'2, j2) = (2, 2), and u»i = e, ^2 = s, nS;, s,, = sisssy.

Note that Wr = wz = sisssz is a reduced subword of the first-ascent sequence
si$3S2SiS4S3 which raises w to the maximal permutation wo, as in the previous
section. This is always the case, ami we can give an algorithm for extracting
this subword.

3 Demazure character formula

The definition o!S(w) involves descending induction (lowering the degree), but
we give the following ascending algorithm.

Let D(w) = (Ci,..., Cr) (omitting empty columns), and let cj = \Cj\. Take
a monotone compatible sequence wi,..., Wr for D(w), such as the orthodontic
sequence defined above, and let u, = wJ^Wj, so that wi = ui, wz = uiuz, .. ..
Furthermore, let \i=xix's---x,.

Define the Demazure operators (isobaric divided differences) w, = 5, a;, and
Tu == T,, W,3 .. -, for U = S;^ S,; . . . a reduced decomposition. (See [3]. ) These are
analogous to the 9 operators, but do not change the degree of a homogeneous
polynomial.

Finally, let So(w) = 1 and

Theorem 1

Sk(w) = TT^(\^Sk-l(w)).

Sr(w) = S(W).
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Exainple. For our permutation w = 24153, we have ci = 03 = 2, ui = e,
us = siS3S2, and we may verify that

S(w) = a:i.C2 ViWsTT^XlX-i)-

Note that this makes the factorization evident.

4 Young tableaux
The work of Lascoux-Schutzenberger [7] and Littlemann [9] allows us to "quan-
tize" our Demazure formula, realizing the terms of the polynomial by certain
tableaux endowed with a crystal graph structure. Reiner and Shimozono have
shown that our construction gives the same non-commutative Schubert poly-
nomials as those in [6]. In fact, A. Lascoux has informed me that some of the
contents of this section were known to him, and motivated [6], though not ex-
plicitly stated there. Our tableaux are different, however, from the "balanced
tableaux" of Fomin, Greene, Reiner, and Shimozono.

Recall that a column-strict filling of a diagram D (with entries in {!,..., n})
is a map ( filling the squares of D with numbers from 1 to n, strictly increasing
down each column. The content of a filling is a monomial xf = Y[(i J)^D xt(i, j)^
so that the exponent of a;, is the number of times i appears in the filling. We
will define a set of fillings T of the Rothe diagram Z?(w) which satisfy

S(w)=^x{.
( 7

The set T will be defined recursively, To, TI,. . ., '7'r = T, so that

Sk(w)=^xt.
(eTt

We will need the root operators first defined in [7] . These are operators /,
which take a filling < of a diagram D either to another filling of I? or to the empty
set 0. To define them we first encode a filling t in terms of its reading word: that
is, the sequence of its entries starting at the upper left comer, and reading down
the columns one after another: t(l, 1), <(2, 1), <(3, 1),. .., f(l, 2), t(2, 2),....

The lowering operator /, either takes a word t to the empty word 0, or it
changes one of the t" entries to 2 + 1, according to the following rule. First, we
ignore all the entries in ( except those containing i or z'+l; ifan i is followed by
an f + 1 (ignoring non t" or i + 1 entries in between), then henceforth we ignore
that pair of entries; we look again for an i followed (up to ignored entries) by
an t" + 1, and henceforth ignore this pair; and iterate until we obtain a subword
of the form i"+ }., i+l,..., i+l, i, i,..., i. If there are no i entries in this word,
then /, (() = 0, the empty word. If there are some i entries, then the leftmost is
changed to i+ 1.
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For example, we apply ,2 to the word

( =122132142233
22. 32.. 2233
2... 2.. 2..3
2 . . .2

ft(t) =132132142233
/22(() =132133142233
fj(t) = 0

Decoding the image word back into a filling of the same diagram D, we have
defined our operators.

Moreover, consider the column <^n> = {1, 2,.. ., m} and its minimal columa-
strict filling tm (ith level filled with i). For a filling ( of any diagram D =
(d,..., Cr), define in the obvious way the composite filling tm LJ t of the jux-
taposed diagram <f>i U D = (<^,, C'i,.. -, C'r). In terms of words, this means
concateaating the words (1, 2,.. ., m) and t.

Now we can define our sets of tableau. Let our notation be as in the De-
mazure character formula, D(w) = (Ci,..., Cr), etc, and take a reduced de-
composition Ut = s. i .. . s,,. Define To = {0}, and

Tt=(/. J... (/., }(^UTi-i),

where (/, ) means the set of powers {id, /" /,2, ... }.

Theorem 2 The Schubert polynomial S(w) is the generating function for the
tableaux T =Tr:

5(w)=Sx(.
t T

Furthermore, the crystal graph structure of T reflects the splitting ofS(w) into
key polynomials:

5(w) = £ '<;w, (r<),
(6 yam(T)

where Yam(T) is the set of Yamanouchi words in T, and the Wf are some
permutaiwns.

Example. As above, when ci = c; = 2, ui == e, uz = sisss^, the set of tableaux
(words) grows as follows:

To = {0} ̂  {12} (^} {12, 13} (^ {12, 13, 14} w Ti = {12, 13, 14, 23, 24}
t2^ T = Tz = {1212, 1213, 1214, 1223, 1224}.
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This clearly gives us the Schubert polynomial as generating function, and fur-
thermore we see the crystal graph (with vertices the tableaux in T and edges
all pairs of the form ((, fit) ):

1223
3i

1213
i3 1212

1224 <- 1214

The highest-weight elements in each component are the Yamanouchi words
Yam(T) = {1213, 1212}, and by looking at the corresponding lowest elements,
we may deduce S(w) = Ks^i^^ + ^2^2 = K^QI+K^OO- Lascoux and Schutzen-
berger [7] have obtained another characterization of such lowest-weight tableaux.

5 Weyl character forinula I
Our next character formula mbces the rational terms of the Weyl character for-
mula with the chains of Weyl group elements in the Standard Moaomial Theory
of Lakshmibai-Seshadri-Musili. For computations, this formula is very ineffi-
cient: a related expression with much fewer terms, more directly generalizing
the Weyl formula, is given in the following section. The main advantage of
the current expression is that one can use it to obtain character formulas for
certain analogous polynomials associated with other root systems (though un-
fortunately these analogous polynomials do not seem to include the Schubert
polynomials of other root systems).

Suppose we have any permutation with choice of reduced decomposition,
u = s, . -. St,, and a sequence of zeroes and ones e = (ci, C2, - .. ), fj   {0, 1}.
Denote

"(=^---^,
a subword of u, not necessarily reduced.

Consider as before a monotone sequence of permutations wi, w^,..., Wr com-
patible with the Rothe diagram D = D(w), and choose a reduced decomposi-
tion for Uj = wj^wj. This gives a choice of reduced decomposition for each
Wj = ui-'-Uj, and in particular for Wr = «" ... s,,. Let Vk = Si'i . -. s;k for
k ^ 1. Recall that Ac, = Xix-i . . -Xc,, the fundumental weight associated to the
length Cj of the j'th column of D (not counting empty columns).

Theorem 3

s(w) = y" n;=i ̂ c,)
'^nLi (i-^(^l^+i)).

where the summaiion is over all 2 sequences of zeroes and ones e = (ei,. .., £;).

This follows straight-forwardly from our Demazure formula, though it also has
a geometric interpretation in terms of Bott-Samelson varieties (see below).
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Example. For the same w = 24153, we have the reduced decomposition
u;r = W2 = SiSss-2, I = 3, so the Schubert polynomial is the following sum
of 8 terms corresponding to e = (000), (001), (010), (Oil),...:

5(w) = X2Z^ _ j_ _r2^2«3
(l-rrl Ti)(l-. c;l.E4)(l-. i;;l.C3) 

' (l-ri-^)(l-T3-lr<)(l-T3-lr,)
r?.I;J _ j_ _»2.C2S4

-(l-r-Tl^)(l-r;la-3)(l-r3-lr<) ' (l-r. -'^Xl-^'^Xl-^1^)
s?aj _ _L _xixlxs

(l-a-;l. ci)(l-a;3-l«<)(l-a, -'»3) . (l-T;ln)(l-a3-l^)(l-r, -l»i)
r?.cj _ _L _»i^^<

-(i-«;lii)(i-r7^3)(i-'-i"^<) ' (i-^ln)(i-^-l^)(i-'-4-l»i)'

+;

+:

+

6 Weyl Character Formula II
Finally, we state a result directly generalizing the Weyl character formula (Ja-
cobi bialternant), reducing to it in case S(w) is a Schur polynomial.

The formula involves certain extensions of the Rothe diagram D = D(w).
Define the Young diagram $ = {(i, j) I 1 ^ i^J ^"-1}. Let the flagged
diagram $ U D be the concatenation of the two diagrams placed horizontzdly
next to each other: that is, the columns of$ U 23 are those of $ followed by
those of D.

Now, given $ U D = (C'i,.. ., C'r), define the blowup of the flagged diagram
^UD = (Ci,..., Cr, C'^, C"2,... ), where the extra columns are the intersections
C'== C,, nC,, n-- . C N, for all lists d,, C',,,... of columns of $ U D; but if an
intersection C1,, nC,, n-- . = Ck is already a column of $ U £>, then we do not

append it. _ ___ "
Now let D = ^LJ.D. Define a standard tabloid ( of£>to be a column-

strict filling such that if C, C' are columns of D with C horizontally contained
in C", then the numbers filling C all appear in the filling of C". In symbols,
< : D^ {l,..., n} , t(i, j) < t(i + l, j) for all i, j, and C C C'^ t(C) C <(C/).

For 1 ^ t'^J" ̂ " and a tabloid t of D, we define certain integers: dij(t) is
the number of connected components of the following graph. The vertices are
columns C of D such that i   t(C), j ^ f(C); the edges are (C, C/) such that
CCC'OTC'CC. ^ ^_

Finally, since there are inclusions of diagrams D, $c£>=^Ll£», we have
the restrictions of a tabloid t for D to D and $, which we denote t\D and <|$.

Theoreni 4

WD)

s(w) = ? n«, (i - ^l^d:3w-1 d - ^-^. )^(t) '
where t runs over the standard tabloids for $ U D sucA that (t\^)(i, j) = i for
all {i, j)   $.
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Exainple. For the same w = 24153,

D=D^= J a D
4 D

$U£»=

aa D a D
aa D a a

D D
a a

$U£>=

lan a a a
2 aa a aa D
3 a a
4 a a

There are sue standard tabloids of the tyge occurring m the theorem. Their
restrictions to the last three columns of $ U D are:

1 1 1

211 211 211 212
1 » )

2342

The integers d,j(t) are 0, 1, or 2, and we obtain

1

222

3

1

222

4

S(w) = +(l-r,-lT, )(l-i;l»3)(l-r;l»4) ' (l-^l», )(l-r3-lr<)(l-r;lr,)
+ £N:(l-x^ls,)(l-x^lx,)(l-x^s,) ' (l-x-,-lxs)(l-x^x^(l-x^x,)

(l-»;lTi)(l-T3-lr<)(l-«3->n) ' (l-a;'i, )(l-r;lci)(l-ri-lT3)-

Note that some, but not all, of the above six terms are among the eight terms
of the previous example. As in the case of the original Weyl character formula,
it is not clear a priori why either of these rational functions should simplify to
a polynomial (with positive integer coefBcients).

This formula has been implemented by the author in Mathematica, available
on request.

7 Schur niodules

The above formulas arise naturally from a Borel-Weil theory which relates Schu-
bert polynomieds with certain algebraic varieties similar to the Schubert vari-
eties of GL(n). (See [12]. ) The starting point of our theory is the result of
Kraskiewicz and Pragacz which realizes Schubert polynomials as characters of
"flagged Schur modules".

We shall write G = GL(n, C), B = the subgroup of upper triangular matri-
ces, V = Cn the defining representation, and V{ the subspace of V spanned by
the first i coordinate vectors.
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Let the diagram D CN x Nbe any set of squares (i, j) in the plane. Let
T, D be the symmetric group permuting the squares of D, Col{D) C E£) the
subgroup permuting the squares within each column, and Row(D) similarly for
rows. Define (almost) idempotents QD, (SD in the group algebra C'[E£>] by

aD= ^ <^, /?Z? = ^ sgn{a)ff,
vGRow D o^ColD

where sgn(cr) is the sign of the permutation.
E£» acts on the right of the tenser product VelD by permuting factors, and

G and B act on the left by the diagonal action. These two actions commute.
Define the flagged Schur module to be the B-stable subspace

5!=( Vi ) OD/3D C V9D.
(»J)6D

Theorem 5 (Kraskiewicz-Pragacz) The Schubert polynomial for a permuta-
tion is the character of the flagged Schur module of its Rothe diagram:

S(w) = tr( diag(x^, ..., Xn)\ S^)).
Here the constant n is taken so that D(w) has at most n rows.

Reiner, Shimozono, and the author have given a proof of this theorem using
configuration varieties.
Exainple. For w = 24153, if we number the squares of D(w) as

D = D(w) =

a

D D

1

2 3

then we have (in cycle notation for E£) S £4),
C. D0D = (1+(23))(1-(12))(1-(34))

1 + (23) - (12) - (34) - (132) - (234) + (12)(34) + (1324).
Take n = 5, so that V9D £ (C15)04, a 20-dimensional space with coordinate

vectors e, -i.,. 3, < = e,, ® e.-, ® e,, ® e. <, ii,..., ^   {1,..., 5}. ED acts by
e.,.,. 3.-< . ̂  = c.. (»., o).. (3).. «), and GL(5) acts diagonally on the tensor factors.
By definition, S^ is spanned by vectors of the form

Vt = et(l), ((2), ((3), t(4)Q'£>^£>,
for all fillings f : I? -. {1,. .., 5} with t(l) ^ 1, <(2), f(3) ^ 2, f(4) ^ 4, and
it should follow from our theory that we obtain a basis if we take only the 6
fillings < 6 T, the set of tableaux defined in our second character formula. For
instance, if (=(1213),

Vt = ei213+eil23-C2113-61231 - C1123-61132+62131+C1132
C1213 - C2113 - ^1231 + 62131.
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8 Configuration varieties
Now we translate our algebra into geometry, realizing a flagged Schur module
S^ as the space of sections of a line bundle over a (possibly singular) algebraic
variety 7'^. Because the singularities are sufficiently tame, we can obtain non-
trivial transformations of our problem by considering desingularizations of J"^
and applying known character formulas for spaces of sections over smooth vari-
eties. The first three formulas come from a Bott-Samelson resolution of J"^ [2],
the last from an analog of Zelevinsky's resolution [15].

Let D C N xNbea. diagram with all its squares in rows i = 1,.. -, n.
Let C'i,..., C'r C {l,..., n} be the columns of D, and for each C = Cj, let
Vc = Span {e, | t  C} C C", a coordinate subspace of dimension cj = \Cj\.
Consider the r-tuple (Vci, . . . > Vc^) as a point in the product of Grassmaanians

Gr(D) = Gr(ci, C'") x -.. x Gr(cr, Cn), and define the flagged configuration
variety

^ = B-(Vc,,..., Vc^) C Gr(D),
the closure of the 5-orbit of the above point. This is an irreducible projective
variety, and the Schubert varieties ofGL(n)/B and GL(n)/P are clearly special
cases. ^ has a natural line bundle C. D defined by restricting the Plucker bundle
0(1,..., 1) over the product of Grassmannians Gr(£>). These varieties are very
tractable in the case of a Rothe diagram, and we may state the following Borel-
Weil-Bott theorem.

Theorein 6 (Magyar-van der Kallen) Let D =. D(w) a Rothe diagram. Then
7'^ has rational singularities and is projectively normal with respect to LD-
Furthermore, the space of global sections

H°(^, cD)s(ssr

as B-modules, and Hi{J'g, CD) = 0 for all i > 0.

Now let u>i,.. ., Wr be the orthodontic sequence of D = D(w) and Wr =
s, i . . . s,, the associated reduced decomposition. Thus the initial subwords are
reduced decompositions wj = Si--s,, where l(j) = l{wj). Consider the
associated Bott-Samelson variety [2]

Z = P., x x P., /B,
where~J^ denotes the maximal parabolic of G = GL(n) such that G/P, S
Gr(i, Cn). Define the multiplication map

<i>: z
(pl,..., pi)

Gr(D) £ G/Pc, x G/Pc, x ... x G/Pc,
(PlP2---Pf(l), PlP2---P;(2), . -. , Pl, ---P;(r))-
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Theorein 7 The map 4> maps Z birationally onto T^, and so is a resolution
of singularities. Furthermore, for all i,

Hi(Z, <l, 'CD)SHi(7g, CD).
From this, the computations of Demsuure [2] on the Bott-Samelson variety
directly imply our formula (1), and (2) follows by the theory of root operators.
Formula (3) results from applying the Atiyah-Bott-Lefschetz fixed-point formula
to Z.

Theorem 8 Let D = D(w) and Z? = $U D the blowup diagram of section 6.
Then the configuration variety 7'S is a smooth variety, and is a resolution of
singulariiies of 7^ via the natural projection map map ^ : Gr(D) -» Gr(D).
Furthermore, for all i,

Hi(J-j, ^CD)SHi(7B^D).
Formula (4) now results from Atiyah-Bott-Lefschetz applied to ̂ .
Example. In our case w = 24153, we may take n = 4, so that we have
Gr(D) = Gr(2, C4) x Gr(2, C4), which we may think of as the variety of pairs
of lines in P3. The B-orbit of the special point (^12, ^24) is precisely the pairs
of the form (V^, W), where W = (v^v-s), vi   ^2, and vi, t/2 are linearly
independent. Thus

^S{WC Gr(2, C4) | dim(Vi2 C\W)>. 1},

the variety of lines in P3 which intersect the coordinate axis. (We can give such
a description of J^ as configurations with intersection conditions for any Rothe
diagram. ) This is the singular Schubert variety in Gr(2, C4), the resolutions
mentioned are the original Bott-Samelson and Zelevinsky resolutions, and there
exist regular maps Z - ^ ->-^.

9 Generalizations

The above results can be used to compute the characters of Schur modules more
general than those associated to Rothe diagrams. In fact, let us replace D(w)
by any diagram which satisfies the following strictly separated condition. For
two sets S, S' C N, we say S <S' \fs <s' for all s  5, s/   S'. Now, a
diagram £> = (Ci,.. ., Cr) with columns Cj- C {1,..., "}, is strictly separtated
if, for any two columns C, C' of D, we have

(C\C')<(C'\C) or (C'\C")>(C'\C),
where C\C' denotes the complement of C" in C. See [8], [1]. Replace the
Schubert polynomial by the character of the flagged Schur module S^. Then
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our Theorems 1, 2, 3, 6, and 7 remain valid: the orthodontic algorithm gives
a sequence of Weyl group elements compatible with D, the first three formu-
las compute the character of S^, and the associated configuration variety ^
satisfies the Borel-Weil Theorem and possesses a Bott-Samelson resolution.

Suppose that D satisfies eui even stronger property, the northwest condition:

(», j), ̂ J')  D=>( mm(t, 2"), mm(j, j'))   £» .

Then Theorems 4 and 8 axe valid as well: the fourth character formula is true for
S^, and the variety has a Zelevinsky resolution smaller than the Bott-Samelson
one.
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