
Lyndon Factorization of Sturmian Words
GUY MBLAN<;ONI

LaBRI, URA 1304 CNRS - Universite Bordeaux I

1 Introduction

Infinite sturmian words appear through many chapters of the Utterature:
number theory, combinatorics ofdynamical systems, combinatorics on words,
as well as theoretical computer sdence. These (right) mfuute words have
both geometrical and combmatorial characterizations (cf [I], [2], [3] or [4]).
The present paper proposes to look at characteristic sturmian words, using
Lyndon factorization of infimte words.

Lyndon words are muiimal representatives of conjugacy dasses (w.r. t. the
lexicographical order); equivalently they are stricly smaller than their non
empty proper right factors. The Lyndon factorization theorem [5] asserts
that any word may be expressed as a non increasing product of Lyndon
words. A beautiful algorithm by Duval [6], exploitmg the combinatorics of
Lyndon words, computes this factorization m Unear time. Siromoney and
al. [7] introduced infinite Lyndon words and gave a generalization of Lyn-
don's theorem: any right mfimte word may be expressed as a non mcreasing
product of Lyndon words (fimte or mfuute) (cf (7, Th. 2.4].

We give the explidt computation of the factorization of any characteristic
sturmian word 5 as a non increasmg product of finite Lyndon words (Th.
3.31:

S = n[(aJ2n+i)c2»-la52n52n+l]c2n+l
n>0

in terms of exponents (cn)n>o intimately linked to the word s.

We then show how one can use this iitformation on s and give two applica-
tions. First, we prove that the factorization of s gives an ̂ -division for it.
Second we give a short and elegant proof of a recent result by Berstel and
de Luca [4]: we compute the set of its factors that are Lyndon words, and
show that it is equal to the set of priiaitive Christoffel words (cf Def. 4.3).

2 Infinite Lyndon words

The basic definitions and notations we use are those usual in theoretical
computer science (see [8]). We denote by A = {a, 6} the two letter alphabet
and suppose it is totally ordered by a < 6. This order is naturally extended
to the set of all words A* lexicographically.
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Let us go through basic facts about Lyndon words. AU the results con-
ceming Lyndon words (finite or infinite) we state here hold true over an
arbitrary alphabet. Recall that a word w 6 A* isa Lyndon word if it is
strictly smaller than any of its non empty proper right factors (w. r. t. the
lexicographical order <). An equivalent definition may be given in terms
of conjugation of words (cf [8]): any Lyndon word is primitive and minimal
in its conjugacy dass. Recall that w 6 A+ is primitive if it is not a proper
power of another word u, that is, w = u" implies n = 1 and w = u. For
example, with A = {a, &}, the word ababb is a Lyndon word, with conjugacy
class {abdbb, babba, abbab, bbaba^babab}. Remark that, in particular, letters
are Lyndon words and that Lycdon words are primitive.

A right infinite word 5 is a sequence (a, ), >o, written as 5 = ooaiaz . . .
Siromoney and al. [7] introduced infinite Lyndon words as mductive lim-
its of sequences of finite Lyndon words. Recall the Lyndon factorization
theorem [5]: any non empty word can be expressed as a uon increasing
product of Lyndon words (cf [8, Th. 5. 1. 5]). In [7], the authors showed how
this theorem may be extended to (right) infuute words. Let us state theu-
result:

Theorem 2.1 ([7, Th. 2.4])
Any right infinite word s may be uniquely expressed as a non increasing

product of Lyndon words, finite or infinite, in one of the two following forms:

either there exists an infinite non increasing sequence of finite Lyndon
words (tk)k>o such that:

S = toil (1)

or there exist finite Lyndon words £o, ..., ^m-i (Tr>- ̂  0) and a" infinite
Lyndon word im such that:

S=£o-- -tm-ll.^ With lo>. --->. tm-l > C-m. (2)

A result ofVarricchio [9, Th. 3.7] implidtely shows that certain infinite words
adinit a factorization of type (1) over Viennot factorizations (for a definition
of a Vieimot factorization, see [8, Th. 5.4.4]). Fortunately, it is possible to
show a complete analog of Th. 2. 1 for general Viennot factorizations [10],
[11].
In this paper, we compute the explicit Lyndon factorization of characteristic
sturmian words. They all have a factorization of type (1). Since infinite
Lyndon words do not appear in these factorizations, we do not take time
here to define them, and refer the interested reader to [7]. We look at
characteristic sturmian words and show how one can get information about
them out of their factorizatian (1). In particular, we give a proof of a, recent
result by Berstel and de Luca [4].
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3 Factorizsition of characteristic sturmian words

3.1 The Fibonaci infinite word

In this paragraph, we give the explicit computation of the factorization of the
Fibonacci word. The computation of the factorization in the more general
case of a characteristic sturmian word follows the same line.

Define finite words /o =&»/i = a and for n ^ li /n+i = fn fn-i- The

Fi&onacc! (infinite) word is the limit / = Urn/n. Hence, we have / =
abaababaabaababaabab...

Proposition 3. 1 ([10, Prop. 11])
The factorization of the Fibonacci word f is of type (1) and is given

by the sequence of words (ik)k>o wth £o = ab and tk+i = v(^k), where
y : {a, b}* -» {a, &}* is the homomorphism defined by y(a) = aa6 and
<fi(b) = ab. Moreover, we have \£k\ = ^2fc+2 (where Fk denotes the kth
Fibonacci number, with FQ = F^ = 1).

Thus the factorization of / is:

/ = (ab)(aabab}(aabaababaabab) . . .

Before giving the proof, we need to develop a little theory about Lyndon
words. Denote by L the set of Lyndon words. Any Lyndon word w   £ of
length >. 2 may be expressed as a product of two Lyndon words, w = uv,
with u, v   £ and u < v. Let v be the longest right factor of w that qualifies
as a Lyndon word. Then w = uv, and we have u G L and u < uv <v.
This factorization of w is called its right standard factorization. Given a
Lyndon word w   £\A, we wiU write w = w'w"- to denote the left and right
factors of its right standard factorization. Let us gather mto a proposition
the mformations we will need about Lyndon words:

Proposition 3. 2 Let u, v e L be such that u < v and suppose u has stan-
dard factorization u = u'u". Then the factorization uv is standard if and
only if u" >. v.

Let u, v   L. We have uv e L iffu<v. Consequently, for all p, q>. 1,
the word upvq ^ L is a Lyndon word. Moreover, suppose both u = u'u'
and uv are standard factorizations (i. e. u" ^ v). Then upvq has standard

. factorization:
UP-1V"
u

(u^")"
(up^y

if p^2

(upviy
(uPv"y

v

uv9-1 if 'p=l
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Furthermore, suppose that u and v have a unique factorization into an in-
creasing product -of two Lyndon words. Then the same holds true for upvq.

The first statement is originally from [5]. The second statement is from
Duval [6]. For a proof, the reader is refered to [8].

Proof of Prop. 3. 1. Every word /2n+i ends with the letter a; denote by w the
word obtained from w by deletmg the a at its end (if possible). One shows
by induction that the words in = a/2n/2n+i are Lyndon words. Prop. 3.2
then implies V^ = a/zn+i and it follows that the sequence (^n)n>o is strictly
decreasing. It is straightforward to compute / = '[[n>o^n, after observing
that

/ = ,1/0/1/2/3 (3)

The second part of the statement is a consequence of the fact that we have
to = ab and ik+i = ^^J (as shows the preceding induction). The result
then foUows from the fact that the homomorphism if respects standard
factorization, i.e. fWk} = ^{!'k)f{f-'k}- The equality \lk\ = i'2k+2 is easy.

3.2 Characteristic sturmian words

As Berstel and de Luca [4] point out, uifinite sturiman words may be de-
fined either geometrically or combmatorially. CombinatoriaUy, they may be
defined as infinite words having a minunal number p(n) of factors of length
n. Since, p(n) ^ n + 1, they satisfy p(n) = n + 1, from which we conclude
that they are two letter words. Geometrically they correspond to Unes in
the planes: read the intersection of this line with the discrete grid from the
origin (i. e. lines a; = aory= /3, with a, /?   Z). Writing a letter a for
an intersection with a horizontal segment, and a letter b for an mtersection
with a vertital segment, you get an infinite word with minimal complexity.

Let (cn)n>o be any sequence of iategers satisfying CQ >. 0 and Cn ^ 1
n >, 1. Define finite words so = b and 5i = a, and Sn+i = Snn-lSn_i

for
for

n > 1. Then the word s = Um^n is infmite sturmian. Infinite sturmian
words obtained this way are called characteristic sturmian words; they form
an important subclass among all sturmian words (they correspond to lines
intersecting the origin). For example, ifcn = 1 foraU n^ 0, we get s = f,
the Fibonacci word. For more details on infinite sturmian words, the reader
may consult [I], [2], [3], [4] and a recent survey by Berstel [12]. The sequence
(cn)n>o is called the directive sequence for the word s. Note that ssn+i ends
with an a. Our central result is:

Theorem 3.3 Let s be a characteristic sturmian word with directive se-
quence (cn)n>o- Set In = (as2n+i)':2"'~la52n52n+i, where it is understood
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that to =b if CQ =0.

Then the words { n)n>v form a strictly decreasing sequence of Lyndon words
and the unique factorization of s as a non increasing product of Lyndon
words is:

s = n ̂ "^. (4)
n>0

Lemma 3.4 The words as-tn+i, a^sn^n+i are Lyndon words. Furthermore,
one has (a^zn^n+i) = a52n+i.

Consequently, the words (a52n+i)c2n-la52n52n+i form a strictly decreasing
sequence of Lyndon words.

Proceed by induction. For n = 0, we have aJi = a and asoSi = ab. Now
compute:

052n+252n+3

= °(^nn+l52n)(^21J2n+l)

= a(J2n+l(aS2n+l)c2n-la52n)(52n+l(a52n+l)c2"~la52n)c2n+152n+l (5)

= a52n+l(aS2n+l)c2n-l aS-in^n+l [(aS2n+l )c:in-10^2n52n+l]c2n+l

= (aJ2n+l) [(a52n+l)c2n-la52n52n+l]c2n+l+l

and

OS2n+3

= a(^252n+l)

= a(J2n+l(o52n+l)c2n-la52n)c2n+152n+l (6)

= aS2n+l [(aS2n+l)c2n-la52n52n+l )c2n+l -l](aS2n+l )c2n-l 052n52n+l

= (a52n+l) [(a52n+l)c2n-la52n52n+llc 2n+l1*+1

We conclude at once, that a52n+2S2n+3 and a^n+s are Lyndon words, and
that aJzn+3 = (as2n+252n+3)/ by virtue of Prop. 3. 2. The sequence of Lyn-
don words (<n)n>o is strictly decreasing since (a52n+i)c2n-las2n52n+i is a
right factor of a&2n+252n+3-
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Proof of Th. 3. 3. First we write an identity, analog to (3):

s = 4k

Second, we compute:

4'[-2^-i4fc+il-l^^+21^+i

Sk+lSckk^~ SkS^Sk+l . . .

skk^s^ckk+2sk+r--

^?nn+1152n^2n++21-152n+l
= [(aS2n+l)c2n-la^n52n+l]c2»+l a

= ^n+l a

From which it foUows, when co > 0, that:

S = 5?>So5?~15i5?-152^3-153 ...

= (aS?-15o^l-l5i)(^-1^3-lS3) ...

= W^r1 ^3-1^)-.. = ^(^2-l^3-^3)-..

?C2n+I
ln>0

In case CQ = 0, we must be careful. Note that 5-2= S^SQ = SQ =b and
compute:

s = ^^l-lSi^2-152^3-l^|<-15445 ~1^

= SC^S^-1S^3-1S3S^-1S^~1^ ...

= ^l(a42 -l^?-153)(^-l^65-155) ...

= 6ci(^a)(5|<-l54^5-1^) ...

= frc'^3(a5t4 -154^s-l55) ...

in+1
ln>0 (-n

Observe that our notation for io is in accordance with the usual notation
a~lv corresponding to the deletion ofa   A at the beginning of v   A* (if
possible). Indeed, we then compute (aJi)c2n-laso5i = a-l(a&) = 6.
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4 Applications

We give two applications of Th. 3.3.

4. 1 0/-division of infinite words

Recall that a finite word is m-divided if it can be expressed asw=x-i---Xm,
such that for all permutation cr   Sm (o-^ id), we have w > Xy^) . . . z^(m).
This definition can be extended to infinite words by asking for a factorisation
s= x-ix'i--- into finite words a;.,-   A*, to give rise to m-divided finite words
Xi . . . a;t+m-i for all m ^ 2.

Corollary 4. 1 Let s be a characteristic sturmian word. Then the factor-
ization of s, s = '[[n>oxn mth xn = ^n+l is an ̂ -division for s.

De Luca [13] showed that sturinian words are ̂ -divided words using a dif-
ferent factorization. Car. 4. 1 is a consequence of Th. 3.3 together with a
result by Reutenauer [14] according to which the decreasing factorization. of
a finite word w = ^.... £^m mto distinct Lyndon words is an m-division
of that word. In [10, Prop. 15], we give a more general result than Cor.
4. 1 according to which any uduute word having a non ultimately periodic
factorization of type (1), is a/-divided. Compare [9, Th. 3. 7].

4. 2 Lyndon factors of infinite words

Using Th. 3. 3 we give a short and elegant proof of a result by Berstel and
de Luca [4]. We say that a finite word v  A* is a factor of an infinite word
s \f s = uvt (where u   A* is finite, and t is infinite). Denote by CSt the
set of factors of characteristic stunnian words; thus C St ={v  A* : 3a
characteristic sturmian word s such that v is a factor of s}. Let Zr n C St
denote the factors of characteristic sturmian words that qualify as Lyndon
words.

CoroUary 4. 2 The set L n C St of factors of characteristic sturmian words
that qualify as Lyndon words is equal to the set CP of primitive ChristofFel
words.

We recall the definition of priinitive CIiristofFel words. Associate with any
word w C {a, b}' a. path in the discrete plane Z x Z: to a letter a corresponds
a horizontal segment (t', j) -^ (z+l, j) and to a letter 6 corresponds a vertical
segment (i,.?)-^ (i, J + 1).
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Definition 4.3 A primitive ChristofFel word is a word such that its path
is below the line-'segment joining the end points of the path, and such that
the region thus formed does not contain points with integer coordinates. By
convention, letters are primitive Christoffel words.

The word abababb   CP with associated slope 4/3.

These words play a central role in algorithmic niimber theory (see [15]).
Primitive Christoffel words are easUy obtained: draw a line segment with
rational' slope m = p/g joming two points in Z x Z. The unique primitive
Christoffel words corresponding to the given line segment is obtamed by
forming the umque path crossing the pomts (i, [i * p/gj) (i = 1, ..., p+
q). One can show that primitive Christoffel words are LjTidon words and
that the standard factorization of a prumtive CIiristofFel word correspond
to its unique factorization into a product of two primitive Christoffd words.
Moreover, a primitive Christoffel word is intunately linked to the slope m of
the line segment jouung the end points of its path: it is maxima! amongst
all Lyndon words having an associated line segment with slope m (see [15],
[16]).

Proposition 4.4 Let s be an infinite word with unique non increasing fac-
torization (finite or infinite):

S = ^o^l^2.. .

A word u^. L is a factor of s if and only if it is a factor of one of the t{ 's.

This is a consequence of a general result on factorizations of the free monoid
according to which a factor of the form v£p+i . . . tg-iw (where v and w
are right and left factors of ip and £y, respectively) factorizes into a non
increasing product of at least two Lyndon words (see [17]). The following
proposition is easy.

Proposition 4.5 Let u ^ L have a unique factorization into a product of
(wo Lyndon words, u = u'u". Then any factor vofu qualifying as a Lyndon
word either is equal to u itself, or is a factor of u' or u .

We shall apply Prop. 4.5 to the words In in (4). Indeed, it follows from Prop.
3.2 that they have a unique factorization into an increasing product of two
Lyndon words. This, together with Prop. 4.4, implies that any Lyndon factor
of the characteristic sturmian word 5 either is ̂ n? as2n52n+i or aszn+i, for
some n > 0.
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Proof of COT. 4. 2. Let a, /3 >. 1 be two mtegers. It is easy to check that
(a6a)/?6 and wi = a(aa6)^ are primitive Christoffel words. Let u, v Q CP
be such that u 6 A or u" ^ v (i.e. uv   2/ is in standard form). In [16],
it is shown that the substitution a >-». u, b ^-^ v applied to ajiy primitive
ChristofFel word gives a priinitive ChristofFel word. Applying this to u>o
or wi (according to the value of co), an easy induction shows that aszn+i,
as2n52n+i, and ̂ n are primitive Christoflfel words. Hence any Lyndon factor
of a characteristic sturmian word is a primitive ChristofFel word.

Conversely, consider a primitive Christoffel word w and let m denote the
slope of its associated line segment. One can give a recursive process to
generate w in terms of the contmued fraction [ao; QI » . " QJfc] associated
with m (see [16]). More predsely, consider the words:

UQ= a, vo=b

UW=UiV?2i, V^=V^lVi.
(7)

Then each of the words u,, v, are primitive ChristofFel words and the word w
is either Ufc or Vk (according to the parity of k). Now, suppose 0:0 ̂  0. Let
(cn)n>o be any directive sequence satisfying co = 0, ci = ao, ..., Cfc+i = Qk-
One computes u, = a$2i+i, and Vj = ^j. The case ao = 0 is similar.
This shows that the primitive Christoffel word w is a Lyndon factor of a
characteristic stunnian word s.

Thus, the set L n C St of Lyndon factors of characteristic sturmian words is
exactly the set CP of prmutive words.
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