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1 Introduction

Infinite sturmian words appear through many chapters of the. litterature:
number theory, combinatorics of dynamical systems, combinatorics on words,
as well as theoretical computer science. These (right) infinite words have
both geometrical and combinatorial characterizations (cf [1], [2], [3] or [4]).
The present paper proposes to look at characteristic sturmian words, using
Lyndon factorization of infinite words.

Lyndon words are minimal representatives of conjugacy classes (w.r.t. the
lexicographical order); equivalently they are stricly smaller than their non
empty proper right factors. The Lyndon factorization theorem [5] asserts
that any word may be expressed as a non increasing product of Lyndon
words. A beautiful algorithm by Duval [6], exploiting the combinatorics of
Lyndon words, computes this factorization in linear time. Siromoney and
al. [7] introduced infinite Lyndon words and gave a generalization of Lyn-
don’s theorem: any right infinite word may be expressed as a non increasing
product of Lyndon words (finite or infinite) (cf {7, Th. 2.4].

We give the explicit computation of the factorization of any characteristic
sturmian word s as a non increasing product of finite Lyndon words (Th.
33)
s= H [(632041)" " as2n 8204121
n>0

in terms of exponents (cn)n>o intimately linked to the word s.

We then show how one can use this information on s and give two applica-
tions. First, we prove that the factorization of s gives an w-division for it.
Second we give a short and elegant proof of a recent result by Berstel and
de Luca [4]: we compute the set of its factors that are Lyndon words, and
show that it is equal to the set of primitive Christoffel words (cf Def. 4.3).

2 Infinite Lyndon words

The basic definitions and notations we use are those usual in theoretical
computer science (see [8]). We denote by A = {a, b} the two letter alphabet
and suppose it is totally ordered by a < b. This order is naturally extended
to the set of all words A* lexicographically. '
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Let us go through basic facts about Lyndon words. All the results con-
cerning Lyndon words (finite or infinite) we state here hold true over an
arbitrary alphabet. Recall that a word w € A* is a Lyndon word if it is
strictly smaller than any of its non empty proper right factors (w.r.t. the
lexicographical order <). An equivalent definition may be given in terms
of conjugation of words (cf [8]): any Lyndon word is primitive and minimal
in its conjugacy class. Recall that w € A% is primitive if it is not a proper
power of another word u, that is, w = u™ implies » = 1 and w = u. For
example, with A = {a,b}, the word ababb is a Lyndon word, with conjugacy
class {ababb, babba,abbad,bbaba,babab}. Remark that, in particular, letters
are Lyndon words and that Lyndon words are primitive.

A right infinite word s is a sequence (a;)i>0, Written as s = apajaz---
Siromoney and al. (7] introduced infinite Lyndon words as inductive lim-
its of sequences of finite Lyndon words. Recall the Lyndon factorization
theorem [5]: any non empty word can be expressed as a non increasing
product of Lyndon words (cf [8, Th. 5.1.5]). In [7], the authors showed how
this theorem may be extended to (right) infinite words. Let us state their
result:

Theorem 2.1 ([7, Th. 2.4])
Any right infinite word s may be uniquely ezpressed as a non increasing
product of Lyndon words, finite or infinite, in one of the two following forms:

either there ezists an infinite non increasing sequence of finite Lyndon
words (£x)k>0 such that:

s={loly---, (1)
or there ezist finite Lyndon words £y, ..., £m—1 (m > 0) and an infinite
Lyndon word {,, such that:

s=4g bm1lm, Withlg> -2 lmy1 > ln. (2)

A result of Varricchio [9, Th. 3.7] implicitely shows that certain infinite words
admit a factorization of type (1) over Viennot factorizations (for a definition
of a Viennot factorization, see [8, Th. 5.4.4]). Fortunately, it is possible to
show a complete analog of Th. 2.1 for general Viennot factorizations [10],
[11]. ‘

In this paper, we compute the explicit Lyndon factorization of characteristic
sturmian words. They all have a factorization of type (1). Since infinite
Lyndon words do not appear in these factorizations, we do not take time
here to define them, and refer the interested reader to [7]. We look at
characteristic sturmian words and show how one can get information about
them out of their factorization (1). In particular, we give a proof of a recent
result by Berstel and de Luca [4].
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3 Factorization of characteristic sturmian words

3.1 The Fibonaci infinite word

In this paragraph, we give the explicit computation of the factorization of the
Fibonacci word. The computation of the factorization in the more general
case of a characteristic sturmian word follows the same line.

Define finite words fo = b, fi = a and for n > 1, foy1 = fanfa-1. The
Fibonacci (infinite) word is the limit f = lim f,. Hence, we have f =
abaababaabaababaabab - -

Proposition 3.1 ([10, Prop. 11})
The factorization of the Fibonacci word f is of type (1) and is given
by the sequence of words (£)k>o0 with £o = ab and lry1 = ¢(€k), where
{a,b}* — {a,b}" is the homomorphism defined by (a) = aab and
@(b) = ab. Moreover, we have |{x| = Fyiy2 (where F}. denotes the kth
Fibonacci number, with Fo = F} = 1).

Thus the factorization of f is:

= (ab)(aabab)(aabaababaababd) - - -

Before giving the proof, we need to develop a little theory about Lyndon
words. Denote by L the set of Lyndon words. Any Lyndon word w € L of
length > 2 may be expressed as a product of two Lyndon words, w = uv,
with u,v € L and u < v. Let v be the longest right factor of w that qualifies
as a Lyndon word. Then w = uv, and we have « € L and v < uwv < v.
This factorization of w is called its right standard factorization. Given a
Lyndon word w € L\ A, we will write w = w'w”-to denote the left and right
factors of its right standard factorization. Let us gather into a proposition
the informations we will need about Lyndon words:

Proposition 3.2 Let u,v € L be such that u < v and suppose u has stan-
dard factorization v = u'u”. Then the factorization uv is standard if and

only if u” > v.

Let u,v € L. We have uv € L iff u < v. Consequently, for all p,q 2 1,
the word wPv? € L is a Lyndon word. Moreover, suppose both u = u'u"
and uv are standard factorizations (i.e. u” > v). Then uPv? has standard
. factorization:

wol)! = uPTl?

Eu”vqg' = u it p22
(wP?) = v g
(WPo?) = wui-! if p=1
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Furthermore, suppose that u and v have a unique factorization into an in-
creasing product of two Lyndon words. Then the same holds true for uPv?.

The first statement is originally from [5]. The second statement is from
Duval [6]. For a proof, the reader is refered to [8].

Proof of Prop. 3.1. Every word fan4+1 ends with the letter a; denote by w the
word obtained from w by deleting the a at its end (if possible). One shows
by induction that the words £, = @fon font1 are Lyndon words. Prop. 3.2
then implies £/, = afon41 and it follows that the sequence (£n)n>o0 is strictly
decreasing. It is straightforward to compute f = [In>0 £n, after observing
that

f=hlohfafs:- (3)

The second part of the statement is a consequence of the fact that we have
£y = ab and x4y = £,€% (as shows the preceding induction). The result
then follows from the fact that the homomorphism ¢ respects standard
factorization, i.e. p(£.€}) = @(€;)p(£}). The equality |€x| = For42 is easy.

3.2 Characteristic sturmian words

As Berstel and de Luca [4] point out, infinite sturmian words may be de-
fined either geometrically or combinatorially. Combinatorially, they may be
defined as infinite words having a minimal number p(n) of factors of length
. n. Since, p(n) > n + 1, they satisfy p(n) = n + 1, from which we conclude
that they are two letter words. Geometrically they correspond to lines in
the planes: read the intersection of this line with the discrete grid from the
origin (i.e. lines z = a or y = B, with o, € Z). Writing a letter a for
an intersection with a horizontal segment, and a letter b for an intersection
with a vertital segment, you get an infinite word with minimal complexity.

Let (cn)n>0 be any sequence of integers satisfying ¢o > 0 a.nd cn > 1 for
n > 1. Define finite words sp = b and s; = @, and Sp41 = sir-1s,_q for
n > 1. Then the word s = lim s, is infinite sturmian. Infinite sturmian
words obtained this way are called characteristic sturmian words; they form
an important subclass among all sturmian words (they correspond to lines
intersecting the origin). For example, if ¢, = 1 for all » > 0, we get s = f,
the Fibonacci word. For more details on infinite sturmian words, the reader
may consult [1], [2], [3], [4] and a recent survey by Berstel [12]. The sequence
(cn)n>o0 is called the directive sequence for the word s. Note that s2,4; ends
with an a. Our central result is:

Theorem 3.3 Let s be a characteristic sturmian word with directive se-
quence (cp)n>o0. Set fn = (a82n41)%"~lasonS2n41, where it is understood
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that o = b if o = 0.

Then the words {£na)n>0 form a strictly decreasing sequence of Lyndon words
and the unique factorization of s as a non increasing product of Lyndon

words is:
s= [ & (4)
n>0

Lemma 3.4 The words aS2,+1, S2n32n+1 are Lyndon words. Furthermore,
one has (aszn52n+1) = @52n41-

Consequently, the words (asz,,+1)°2"'1asgn§2n+1 form a strictly decreasing
sequence of Lyndon words.

Proceed by induction. For n = 0, we have a3; = a and aso5; = ab. Now
compute:

aS2n4+252n+3
= a(sPn152n) (S22 S2n41)
= @ (52n41(@52n+1)""10520)(52n41(a82n41) 2" " @520 )2 1 5201 (5)

= @ 52n41(a82n41)?" ! @S2n52n41 [(@52041 )22~ 1asanSan41] 2t

= (@82n41) [(852n41)7" " 1aS20 52041 ]2+ H

and

aS2n43
= 0(323321 52n+1)
= @ (52041(a52041)2" 10520 ) 2 1 Song1 _ (6)
= @52041((a52041)?" 10520 52041) 2" 1 (@52041) " T @520 52041

= (a82n41) [(@52n41)" " @820 520 41] 2"

We conclude at once, that assn4252n+3 and a3zn43 are Lyndon words, and
that aSan4+3 = (@San4252n43) by virtue of Prop. 3.2. The sequence of Lyn-
don words (£,)n>0 Is strictly decreasing since (asgn+1)°2" @S2nS2n41 1S @
right factor of aszn+252n+3-

359



Proof of Th. 3.3. First we write an identity, analog to (3):

- Ck—2 Ck—1—1 ck—1
S = S Sk-1Sp4 .sksk’j}_2 Sk1°

ck—1=1_  cp—1
= Sk415p41  SkSkyp Sk+1cC
Ck—ls ck—ls ..

= Sk41 SkSk42 Sk+1

Second, we compute:

con—1 C2n4+1-1
0'3211"+1 S2nSop4+2  S2n+1

= [(a82n+1)2""1aS2n52n41]?" @
= (™ g

From which it follows, when ¢o > 0, that:

s = 50505518152 5082 sg - - -
= (as?'lsosg’"131)(3?'13252"'133)
= (La)(sP spsPlsg) -0 = €3 (asP VspsPsg) -

- C2n+41
- HnZO e"

In case cg = 0, we must be careful. Note that s; = s°so = so = b and
compute:

-1 -1 c3=1_ cq4—1 cs—1

s = sPs0syt T 8185 S284 8355t 545 S5t

= s§‘slsg"lszsi"’lsss?”134325"135

c2—1 c3—1 1

= s (asP lepsP  sa)(s5t T sasg T ss) -
= b1(LGa)(sE T sasg T s5) o

= bR (asg T sasg T ss) o

— anoe(;fﬂi’l

Observe that our notation for ¢y is in accordance with the usual notation
a~1v corresponding to the deletion of a € A at the beginning of v € A™ (if
possible). Indeed, we then compute (a3;)®"~'aso3; = a~'(ab) = b.
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4 Applications
We give two applications of Th. 3.3.

4.1 w-division of infinite words

Recall that a finite word is m-divided if it can be expressed as w = z; -+ - T,
such that for all permutation o € Z,, (0 # id), we have w > zZ,(1) " * Zo(m)-
This definition can be extended to infinite words by asking for a factorisation
s = z1Z2- - - into finite words z; € A*, to give rise to m-divided finite words
T+ Tigm—-1 for all m > 2.

Corollary 4.1 Let s be a characteristic sturmian word. Then the factor-
ization of 8, s = [[,50 ZTn With T, = £5"*" is an w-division for s.

De Luca [13] showed that sturmian words are w-divided words using a dif-
ferent factorization. Cor. 4.1 is a consequence of Th. 3.3 together with a
result by Reutenauer [14] according to which the decreasing factorization of
a finite word w = £;!.---£%m into distinct Lyndon words is an m-division
of that word. In [10, Prop. 15], we give a more general result than Cor.
4.1 according to which any infinite word having a non ultimately periodic
factorization of type (1), is w-divided. Compare [9, Th. 3.7].

4.2 Lyndon factors of infinite words

Using Th. 3.3 we give a short and elegant proof of a result by Berstel and
de Luca [4]. We say that a finite word v € A" is a factor of an infinite word
s if s = uvt (where u € A* is finite, and ¢ is infinite). Denote by CSt the
set of factors of characteristic sturmian words; thus CSt = {v € A* : J a
characteristic sturmian word s such that v is a factor of s}. Let L N CSt
denote the factors of characteristic sturmian words that qualify as Lyndon
words.

Corollal;y 4.2 The set LN CSt of factors of characteristic sturmian words
that qualify as Lyndon words is equal to the set CP of primitive Christoffel
words.

We recall the definition of primitive Christoffel words. Associate with any
word w € {a,b}" a path in the discrete plane Z x Z: to a letter a corresponds
a horizontal segment (i,j) — (i+1, j) and to a letter b corresponds a vertical
segment (7,7) — (4,7 + 1).
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Definition 4.3 A primitive Christoffel word is @ word such that its path
is below the line segment joining the end points of the path, and such that
the region thus formed does not contain points with integer coordinates. By
convention, letters are primitive Christoffel words.

The word abababb € CP with associated slope 4/3.

These words play a central role in algorithmic number theory (see [15]).
Primitive Christoffel words are easily obtained: draw a line segment with
rational slope m = p/q joining two points in Z x Z. The unique primitive
Christoffel words corresponding to the given line segment is obtained by
forming the unique path crossing the points (3, [i*p/q]) ¢ =1,...,p+
g). One can show that primitive Christoffel words are Lyndon words and
that the standard factorization of a primitive Christoffel word correspond
to its unique factorization into a product of two primitive Christoffel words.
Moreover, a primitive Christoffel word is intimately linked to the slope m of
the line segment joining the end points of its path: it is maximal amongst
all Lyndon words having an associated line segment with slope m (see [15],

[16]).

Proposition 4.4 Let s be an infinite word with unique non increasing fac-
torization (finite or infinite):

S = Zoelfz L

A word u € L is a factor of s if and only if it is a factor of one of the ¢;’s.

This is a consequence of a general result on factorizations of the free monoid
according to which a factor of the form vfp4q---€;_1w (where v and w
are right and left factors of £, and £,, respectively) factorizes into a non
increasing product of at least two Lyndon words (see [17]). The following
proposition is easy.

Proposition 4.5 Let u € L have a unique factorization into a product of
two Lyndon words, u = u'u”. Then any factor v of u qualifying as a Lyndon

word either is equal to u itself, or is a factor of v’ or u”.

We shall apply Prop. 4.5 to the words £, in (4). Indeed, it follows from Prop.
3.2 that they have a unique factorization into an increasing product of two
Lyndon words. This, together with Prop. 4.4, implies that any Lyndon factor
of the characteristic sturmian word s either is £, @S2,52n41 OT @S2,41, for
some n > 0.
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Proof of Cor. 4.2. Let a,8 > 1 be two integers. It is easy to check that
(ab*)Pb and w; = a(a®b)P are primitive Christoffel words. Let u,v € CP
be such that u € A or u” > v (i.e. uv € L is in standard form). In [16],
it is shown thaf the substitution ¢ — u,b — v applied to any primitive
Christoffel word gives a primitive Christoffel word. Applying this to wo
or w; (according to the value of ¢g), an easy induction shows that asz,41,
a$2,52n41, and £, are primitive Christoffel words. Hence any Lyndon factor
of a characteristic sturmian word is a primitive Christoffel word.

Conversely, consider a primitive Christoffel word w and let m denote the
slope of its associated line segment. One can give a recursive process to
generate w in terms of the continued fraction [@o; 1, <<+ ak]'a.ssocia.ted
with m (see [16]). More precisély, consider the words:

u=a,v=>=0
| az; a2i41 (")

Uil = UiV 7, Vig1 = YUy Vs.
Then each of the words wu;, v; are primitive Christoffel words and the word w
is either ux or v (according to the parity of k). Now, suppose ap # 0. Let
(€n)n>0 be any directive sequence satisfying co = 0, ¢1 = ao, - - ., Ck+1 = Q.
One computes u; = @32i+1, and v; = £;. The case g = 0 is similar.
This shows that the primitive Christoffel word w is a Lyndon factor of a
characteristic sturmian word s.

Thus, the set L N CSt of Lyndon factors of characteristic sturmian words is
exactly the set C P of primitive words. '
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