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Abstract

We obtain a theorem that allows us to find the generating function for some com-
binatorial sums related to non proper Riordan arrays. This function can be used to
obtain a closed form for the sum (or an asymptotic evaluation). We give several ex-
amples to illustrate some practical applications of the theorem.

1 Introduction

A Riordan array D = [dn, k}n, ke. N is an infinite lower triangular array characterized by a pair
(d(t), h(t)) of formal power series. This concept was formally introduced under the name of
Riordan array by Shapiro et al. in 1991 (see e. g. [13]), but a similar concept can be found
in previous works, such as [1, 2, 7, 8, 9, 10, 11, 12]. In [14], Riordan arrays are used as a
valid tool for solving combinatorial sums, i.e., for finding a closed form or an asymptotic
evaluation by means of generating functions. More specifically, Riordan arrays allow us to
translate a sum E^=o dn,kfk into a transformation of the generating function f{t) for the
sequence {fk}keN and the pair of formal power series d(t) and h{t) defining the Riordan
array D.

By applying the Lagrange Inversion Formula (see [4]), it is possible to extend the class of
combinatorial sums that can be solved by means of Riordan arrays. In Section 2, we begin b^
introducing some notations and refer to a result illustrated in [14], where a sum E^o ̂ k/k
with dn. k as above and fw coefficients of the function /^(y) = f(t')\y^th(t) = E^o/l yfc-
is transformed into an expression involving f(t) and the function d(t} of the Riordan array.
This transformation allows us to prove the classical identities of Abel and Gould and many
other interesting combinatorial sums in a very simple way but it only holds if h(t) is a formal
power series such that h(Q} ̂  0.

This transformation is so important that, in Section 3, we extend it to functions h(t}
having h{0) = 0; in particular, we prove Theorem 3. 3 which generalizes the results of [14]
and constitutes this paper's most important result. Finally, in Section 4. we provide some
applications of this formula that are mostly related to some particular classes of numbers
such as Catalan, Motzkin, Schroder and Stirling numbers.
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The present technics can be considered as an alternative to existing methods such as the
"snake oil" by Wilf [16] and the Zeilberger's algorithm [17].

2 Riordan arrays and combinatorial suins

Let {fk}k^N be a sequence of (real) numbers. The generating function f{t) of the sequence
is defined as /(() = G{fk} = Zy=ofkth. The notation [tn}f(t) denotes the coefficient of tn
in the Taylor development of f(t) around < = 0. A Riordan array (see Sprugnoli [14]) is
an in-finite lower triangular array {dn, k}n, keN defined by a pair (d(t), h(t)) of formal power
series in the sense that dn, k = [tn}d(t)(th(t))k. We usually assume that d(0) ^ 0; when we
also have /i(0) 7^ 0, the Riordan array is called proper. Fr having r ^ 0 denotes the set of
formal power series whose first non-zero element is in position r. In this paper, we write
[f{y) I y = 9(t)} instead of the more traditional f(y)\y=g(t} (g(0) = 0); as usual, <?n, m denotes
the Kronecker delta.

When dealing with combinatorial sums, Riordan arrays are a very powerful tool, as can
be seen in the following theorem, (see, e. g., [14]):

Theorem 2. 1 Let D = [d{f), h{t)} be a Riordan array and let f(t) be the generating function
of the sequence {fn}n^N- Then:

^d^fk=[tn]d(t)f{th(t)).
fc=0

Conversely, if {d^k\n, k   N} is an infinite lower triangular array such that for every
sequence {fk}k&N we have:

1 .

I

G{E^kfk}=d(t)f(th(t}),
. k=0

where f(t) is the generating function of the sequence {fk}k&N, and d(t), h(t) are two formal
power series not depending on f(t), then the triangle defined by the Riordan array D =
(d(t), h(t)) coincides with {dn, k}-

If /(<) and h(t) are formal power series and h(t)   ^b» we can define the following
function:

/[/l:o](y) = \fW y=th{t) (2. 1)

Since h(t)   ^~oi the Lagrange Inversion Formula assures us that the functional equation
y = th(t) has only one solution in a neighbourhood of f = 0, and thus f^h''°\y) exists
and is uniquely determined. The Lagrange Inversion Formula also allows us to compute the

T^ 00
Z-. k--

we obtain /^ J = /o, and:
coefficients/I^01 of the series f[h'o](y)= E^=o /!/l;o]2/fc in terms of /(<) aud /i((). Consequently,

f[r} = [yk}f[h;o]{y) = [yk] [/(<) | y = th(t)\ = ^[tk-1]^ k ^ o.
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Example 2. 1 Let us consider /(() = (1 -1')~1 and h(t) = (1 - t) . By solving the equation
th{t) = y for f, we find:

w=l+2y-, '/TT4y.
Thus we have:

/-'(») = [^ t=

2y

1 +2y - v/1 +4y| 1 + ^1 +4y
2y J - 2 .

Moreover:

,M = If^-iiffl = If^-iin _ <^-2 = (-I)'-1 ̂ (^ - 1)^
Jic'=k[I'ihWC =k[l ^~'> =~1~{k-i)-

The function /^;o^(y) satisfies the following very important property (which we base our
results on):

Lemma 2. 2 If f[h''o]{y) = [/(<) | y = th(t)^ and h(t)   ^o, ̂ e"
f^°\th(t)) = f(t). (2. 2)

Proof: We have:

f^Wt)) = [[f(y)\z = ^(y)]| z = ^(f)] = [/(y)| th(t) = yh(y)}.
But the equation th(t) = yh(y), having h(t)   ^~o, only has one solution y(t) =< in a
neighbourhood of <= 0, and so we obtain our proof. .

It is easy to verify that the relation (2. 2) holds for the functions f(t) and h(t) in Example
2. 1. Let us now consider a proper Riordan array D = (d(t), h(t)) and the sum Y^o d^kfk .
We obtain the following result (see also [15]) from Theorem 2. 1 and Lemma 2. 2:
Theorem 2. 3 Let D = (d(t), h(t)) be a proper Riordan array and f(t) a formal power
series, then

^dn, ^o]=[tn}dWf(t). (2. 3)
fc=0

Example 2. 2 Let D be the proper Riordan array defined by the functions d[t) = (1 -1}
and h{t) = (1 -f)-2, and let f(t) = (1 -1)-1. We point out that h(t) and f(t) are the same
functions we discussed in Example 2. 1. We easily find:

^ 1 tk _fn+k^
an-k = ^ Jl-f(l-^ ~{ 2k ).

By applying Theorem 2. 3, we then get the following closed formula:
1

k-1 ] k -lu J(l-f)2i^fn;n(2t-, l)'>idT=n
k=l 2k

=n+l.
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3 The extended method

Theorem 2.3 is a very important tool in computing combinatorial sums, and some other
more significant examples of its applications are presented in Sprugnoli [14]. In this section,
we generalize formula (2. 3) to case h(t)   ^"s-i with 5^1, while in the next section, we

'illustrate some of the formula's applications to some well-known classes of numbers.
When 5 > 1, the equation y = th(t} has exactly s solutions t\, t^ ..., <, in a neighbour-

hood of t = 0 (see, e.g., Henrici [6]); these solutions have the following form:

where

eind

^. =E^mym /s j=l,..., 5,
m=l

^ = ^-{[.. m-l](l + Q(.r))-m/s}(^-i)-m/s
2si (z = V/rT).Q(x) = hj\(h, x + h^x2 +... ) u, = e'

Let f(t) = E^:o fktk be a formal power series; then for all j = 1,..., 5, we can denote the
composition f(tj{y)) as ̂ .^o \k^ikyk/s-, where \k only depends on r/k and fk. Each function
f(tj(y)) is not a formal power series but their sum ^E^=i f(tj(. y)) is, in fact:

1 E f(tAy)) = ^ E E W//s = ^ E ̂ Z ̂'fc^/s =
J=l s j={k=0

s m=0

s ifk= ms
0 otherwise

m=0

fc=0 j=l

= ^ E s\^ym = f: A^ym,

because EJ=i ̂ i =

We can therefore define the formal power series:

j[^](, /)=l^/(f, (y)),
sj=i

where tj(y)h(tj{y)) = y for ̂  = l,..., s. A similar approach is proposed in [3].

Example 3. 1 Let us consider h(t) = t/(l - t)-2   ̂ ~i (with s = 2) and f(t) = (1 - t)p,
with real p. By solving the equation th(t) = y for f, we obtain the following two values:

(3. 1)

<i(y) = _^_
1+v^' ^-T^-

Consequently, we have:

[I - t, (y))P + (1 - t, (y)Y _ 1_ \ 1 ^ 1 1 _ 9(Vy}+g{-Vy)
"2 ~ 2 [(1 + ^)P ' (1 - ^y)PJ ~ 2
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with g(y} = (1 + y)-p = E^=o ("T1 ) (-y)n- Finally, by applying the well-known bisection

formula, we obtain:
00 oo /9n 4- n-

."fai =£». !'. =s:(2n+,r1)
n=0 n=0 2n )v:

Let us now evaluate f^s-l^th[t}) = ^EJ=i f(tjWt))}: we begin by evaluating ̂ (^(t)).
For all integers ; = 1,.. ., s, tj(z) is a solution to the functional equation z = th{t) and so
yj[t) = tj(th(t'}} is a solution to the equation

yh(y) = th{t). (3. 2)

This, in turn, has exactly 5 solutions in a neighbourhood of t = 0 when h{t) belongs to
.F,_i' (see Henrici [6], Th. 2.4f and Cor. 2.4g). Then, by solving equation 3.2, we get the .s
solutions yj(t), j = 1,.. ., s, such that:

f^s-l\th(t))=l-t, f(y, {t)).
.SJ=i

(3. 3)

In Example 3. 1, we obtained exactly 6 solutions to the equation 3.2. Unfortunately, there
are some functions h(t) for which the solution to the equation 3.2, from a formal point of
view, produces a number n ^ 5 of functions. Therefore, the problem is to characterize the
5 solutions we are looking for. A very trivial check-over can be made by substituting the
n fimctions in the equation 3.2 and by then discarding the n - s ones that don't verify the
equation. In the foUowing theorem, we propose an alternative method for selecting the s
solutions yj{t) from the n functions :

Theorem 3. 1 Let h(t) = ts-lg(t) = ts-1 (A, -i + h, t + h^t2 +... ) be a formal power series
belonging to «F,-i, with s >. 1; the functional equation yh(y) = th(t) has s solutions yj {t),
j = f,.. '., s m a neighbourhood oft=0. The solutions have the following properties:

. yj{t) is a formal power series belonging to f\;

. y^t) = T{^h\/_\t + 0(f2) where rj[h^ = 1, i. e., r, ^hl, /_\ is a sth root of unity.
Proof: For all; = 1,..., 5, z/, (f) = f, (t/»(f)) = E^=i ̂ ^m(^(f))m^, and (t, {y))sg(t, {y}} =
y, since f, (0) = 0 and (^(y))s = ^y + 0(y2}, we have:

1
g(0) =^= h^,.

77i!'<lj(!'>) ° vfyTWY
Then, if tj(y) is a solution of y = th(t}, we have the following condition:

r, s, h^ = 1. (3. 4)
Let us now consider y, (t): by setting g(t} = /i, -i(l + G(f)), with G(0) ̂  0, we obtain:

y, (t) = S ̂ F(^«))m/s = E ̂ FC/^m((l + G(Q)l/-)m.
m=l m=l
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The previous expression and condition (3. 4) prove the second part of the theorem. By the
binomial theorem we also find:

.'(l+G'(f))l/s=f:fl /s
^1 kA;=0

G(t)k,

and, since G{t)   ̂ '1, it follows that (1 + G(t))l/s is a formal power series belonging to ̂ ~o.
This concludes our proof. .

Example 3. 2 Let us consider h(t) = (2/v/l + t3   ̂ "2; by solving the equation:
y

/FTP TTy3'
we obtain the following six functions:

t [-l+iV3)t _. (l+tV3)(
/I(" ° -w^'  } = -^wff-' fsm = ^^-

[-]. +iV3}t
/4(<) = <, /5(<) = v " '2"/ ' ^) =

(l + iV3) t
2

By developing the first three functions in a Mac Laurin series, we find:

fiW=-t+^t4+o(t7),

A«)= (1^)<_(1^1)^(, ), /,,). (i^). -(l±^)^(. ).
We have /i(0) = ,2(0) = ,3(0) = 0, but their first coefficient is not a cubic root of unity.
Conversely, the three polynomials /4(f), fs(t) and /e(<) are the formal power series desired.
.

We can extract the coefficients fk from f^h''s~^(y) by using a generalization of the
Lagrange Inversion Formula (see [3]). This formula cdn be proven in the same way as the
traditional one (see Goulden and Jackson [4]).
Theorem 3. 2 Let f{t) and h(t) = ts~lg(t)   ^~s-i be two formal power series; the coeffi-
dents f[ of the function f^h''3~^(y) defined in formula (3. 1) can be computed as follows:

^.. -y»
/o fc=0
J-^sk-l}f {t]
^lt"-XJ^)r fc>u-

We .are now ready to generalize Theorem 2. 3 to the case h(t)   ^~s-i:
Theorem 3.3 Let D = (rf(<), /i(Q) 6e a Riordan array with h(t)   J's-i and f(t) be a formal
power series; then:

f; dn, kflh'-s-l} 
= ^[tn}d(t) f^ f(y, {t)) (3. 5)^-^

fc=0 ^=1

where yj(t)h(y, (t)) =th(t) for all j = l...., s.
Proof: The proof directly follows from Theorem 2. 1 and formula (3. 3).
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4 Applications
The following are some examples of combinatorial sums treated by Theorem 3. 3:

Example 4. 1 Let us consider the Riordan array

^ = >, 0-7^'0~^^
and the function /(() = (1 - t)p. By definition, we find:

^=n__f__Y=fn, +'-1'
"n,*-1^ J^-7^ ̂ (T-^^ -^k+p-l)'

and from Theorem 3.2:

^;i1_ 1^-11/W, P ^+2^
jk ~2k^ ig(t)k~ p+2k \ 2k j '

By solving the equation th(t) = yh{y), i.e. f2/(l - t)2 = y2 /(l - y)2, we find:

yi(t) = (, y^t) = -^.
By making some evaluations, we get:

fi^W . fW^fW) , i^O! (" ̂ ) .
Finally, by applying Theorem 3. 3, we obtain the following identity:

^fn+P-
^oY2A:+p.£ (^~-\) p^i (p^2k) = t^}M = [(°ld("/'fcll((k(f)>=

^p+n-l\^_,S^(-(TJ^)=^4(7)(-2)"4<-(P+:-1)2
Example 4. 2 Let us now consider the Riordan array

t \ , fn+k-2^
D=^-^^^) - d'^['n-»

and .the function f(t) = 1/(1 - t). By applying Theorem 3. 2 to them, we get:

H^=-L(3k-2}. f^i=i.
Jk ~=~2k[k-l)' Jo -11
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and, by solving the equation (2/(1 - t)3 = y2 /(l - y)3 for y, we obtain:

3<- 1 +(l - t)Vl^^t ^ ^, _3t-l-{l- t)VT-4t
yi{t)=t, y^t~}='--^-^ -11, 2/3^)=2<2 2t2

.
Since the third expression is not a formal power series, we deduce that the correct solutions
are yi{t) and y^t). After some simplifying, we find:

f^\th(t)) = 3 - 2( + Vl^-'^t
4(1-^) .

The coefficient [tn}d(t)f^h''l\th(t}) is related to the Catalan numbers, defined as C'n = [<"](!-
T-4<)/(2f), as follows:

^i] ^(^+k-2\^_(3k-2\_, _, _^(n+k-2^^_(3k-2^^^°^:1J - E ̂ '^'_v2fc~J 2l 1,1- l) = <?Ti'° ~ ^1 ~ ^ I n- 2^-J 2fc 1, ^-1 ̂  =k=l n-2k

-^-^-^-y:^)-^-^-
Therefore, for n > 0, the following identity holds:

^fn+k-2\]_f3 k-2\_^Sl'n-'2*~Jil7-l'J=c'"-I-<-- (4. 1)

f '

Example 4. 3 In this example, we examine the following Riordan array:

t \ . /n+2A--2'
D=(l-t-JT=W] or d"t=[~n~-2k~)'

and the same function f(t) as before. We easily obtain

f[h;i] ^ 
_J_ f2 (2fc - 1) ̂  ^;i] ^ ^ f^lf^ff)) =/ri = -2^ l-2fc- 1 /J ' ^0""J = 11 ;l"'^^^ = 4(^TT

t-3-Vt2-6t+l

This time, f^th{t)) is related to Schroder's numbers Sn = [tn](l +1 - V^2- 6t + 1)/(4<):

^ ^fn+2k-2\^_(^k-2\_^_, _f-^+2fc-2^J_f4 fc-2^^0^:1J - g ̂  , :^ "J 2l (, 2'fc - ^ = 6nfl ~ 6nvl ~ ^ l- n -2k ~)Fk[2k-l)=
,
^ -3 +1 -Vl-6t+t^ _, __ ̂ ^l+t-Vl-Qt+t^ ^^__^= -[<"]-------- = bn,0 - [t"~t\ -77- = 6n,0 - ^n-1-

Therefore, the following identity holds:

^fn+2k-2\ 1 f2{2k-ir
^n^k")^["2k-l')=sn -l~6^-
00

z
k-.

(4. 2)
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Example 4.4 This example is related to the Motzkin numbers defined as Mn = [("](! -1 -
^/l _ 2( - 3f2)/(2f2). We consider the Riordan array:

P=(l;((l+t)) or *>.tas("^!t2tl)(-1)*
and the function f{t) = (1 + Q. Among the solutions to the equation th(t) = i/A(y),. we
have to take yi(t) = t and ^(f) =(-!-(- v/T^-^2f- 3f2)/2. Moreover, we note that
h(t) = tf{t} and this yields:

^»=s, ^^-M(^)-
Since /^;1] = - (^:^) , by some simplifying, we obtain:

^fn-^-l\(_^^(^-2}_^ ^_^-t-Vl-2t-3t^^ 1^<"o-z, i" ^r2k') ̂ r (, M-I'J = <".»-it"'2i--^-- ° <".»-tM. -'

and the following identity is proved:

-3k
n-2k jk\2k-li:f":3fc,:l)K^:f)=(-l'"M-

fc=l

(4. 3)

D

Example 4. 5 Let us examine the Riordan array D having h(t}   ̂~i and the function f(t)
defined by:

-(o^r. tolnTlT)2)- /<"4^.
We can note that:

1 \p+2fc (p+2Jfc)! fn+p
^= [t"i 01B TT7)'t2t (^ln T-i)" = It"+p] (.n T17)FT" = ^ lpn^J'

where f^l is a Stirling number of the first kind which satisfies:

1 ̂ m-^m!r"i."[lsr-t) =£^lm J("-

(see Graham, Knuth and Patashnik [5]). Moreover, by some simplifying, we have /?;1] = /o
and, for A; > 0:

^=^-^=^<<7^(f^-(T-^ (4. 4)

373



It is not very easy to extract the previous coefficient and we do it by examining one term at
a time. By differentiating, we obtain the following for m > 1:

-TO+1^^r-^^T-y
l^^-^l^^^r-m-1

and thus:
^ 1 /'li_ z \-m_ m-^-lr. fci^1,. 1ltt}-t[l]ST-t) =-^T-"tU71nT^J

-m+1

We use this result to transform the first term of (4. 4) into an expression involving the second
one. We then examine the generating function of the Stirling polynomials (see, e.g., [5], p.
258):

^\n-^=x^a, (x+j)t\
j=0

aud, by setting x = -2fc + 1 in it, we immediately deduce that:

/S/l:l] = ^ [^(i) - (i - 2k)^{l)} = <72. (1).
By solving the equation ln2(l - t) = ln2(l - y), we obtain solutions z/i(f) = t and y^t) =
tl{t - 1) and this yields:

/«."«,«)), ̂ ^, w^l.
Then, by applying Theorem 3. 3, we have:

£ (p+2k)}
^o ("+P)'

n+p
p+2k]^i)=[<ni(^. rl7)'(ii°rl7 f 11- L~^r~t

(p+1)'
(n+P+1)'

n+p+1
p+1

(P+l)!
2(n+p)!

n+p\
,

p+lJ
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