RISC Software for Symbolic Computation in Combinatorics

István Nemes
RISC - Linz, J. Kepler University
A-4040 Linz, Austria
email: Istvan.Nemes@risc.uni-linz.ac.at

1 Introduction

In this talk we report on five program packages for the computer algebra system Mathematica, which were developed at RISC-Linz by a working group in computational combinatorics headed by Peter Paule. We illustrate the packages RComp, zb_alg, qZeil, GeneratingFunctions and Karr by presenting typical applications.
RComp was developed by the author in a joint work with M. Petkovšek [10]. It provides tools for computing with sequences, which satisfy a linear recurrence relation with constant coefficients.
GeneratingFunctions was developed by Ch. Mallinger [9]. One can consider this package as an extension of RComp, providing functions for computing with sequences that satisfy a linear recurrence relation with polynomial coefficients, furthermore for manipulating generating functions of such sequences. In its functionality the package corresponds to the gfun package in MAPLE [14].
P. Paule and M. Schorn developed zb_alg, which contains an efficient implementation of Zeilberger's algorithm for finding recurrences for hypergeometric sums [11]. The package also includes a reliable implementation of Gosper's algorithm.
There is an algorithmic analogue to $\mathbf{z b}$ _alg for handling q-hypergeometric sums; to do that in an efficient way is a nontrivial task. In the computer algebra system MAPLE Zeilberger [13], Koornwinder [8] provided such an implementation. A. Riese's implementation in Mathematica qZeil [12] presents a more user friendly implementation, which also accepts input of more general type. Analogously to $\mathbf{z b}$ _alg this package contains a q-version of Gosper's algorithm.

Karr's algorithm [7] for summation in finite terms is being implemented by K . Eichhorn [2]. This implementation wil be the first that treats Karr's algorithm in full detail. To emphasize the relevance of this work we note that the algorithm contains indefinite hypergeometric (Gosper) and q-summation as a special case.

2 Example Sessions

2.1 RComp

Let us consider the following encoding of the Fibonacci numbers which originally is due to I. Schur:

$$
\sum_{k}(-1)^{k}\binom{n}{\lfloor(n-5 k) / 2\rfloor}
$$

In order to find a recurrence relation for the sum, we eliminate the floor function by splitting the summand according to odd and even n and k, respectively. For the resulting summands Zeilberger's algorithm applies and $\mathbf{z b}$ _alg finds the corresponding recurrence relations for the subsums with the same (constant) coefficients $\{7,-13,4\}$ and initial terms $\{1,2,6\},\{0,0,-1\},\{1,3,10\},\{0,0,-2\}$, respectively. The termwise addition and interlace functions of RComp return in one stroke the recurrence relation for the original sum:

```
In[5]:= Interlace[\operatorname{Rec}[{7,-13,4},{1,2,6}] + Rec[{7,-13,4},{0,0,-1}],
    Rec}[{7,-13,4},{1,3,10}]+\operatorname{Rec}[{7,-13,4},{0,0,-2}]
\(\operatorname{Out}[5]=\operatorname{Rec}[\{1,1\},\{1,1\}]\),
which is indeed a defining relation for the Fibonacci numbers.
```


2.2 GeneratingFunctions

We demonstrate the functionality of GeneratingFunctions by computing a closed form for

$$
s_{n}:=\sum_{k \geq 0}\binom{n}{k}\binom{2 k}{k}(-1)^{k} / 2^{k}
$$

We apply Euler's transformation like it was used in [3], noticing that the ordinary generating function of $\left\langle s_{n}\right\rangle_{n \geq 0}$ is the Euler transform of $f(x):=\sum_{n \geq 0} u_{n} x^{n}$, where $u_{n}=\binom{2 n}{n} / 2^{n}$. First, we derive from the recurrence equation for u_{n} a differential equation for f :

```
In[1]:= <<GeneratingFunctions.m
Out[1]= GeneratingFunctions version 0.4 (01. 12. 1995) loaded.
In[2]:= RE2DE[{(n+1)u[n+1]-(2n+1)u[n]== 0,u[0]==1},u[n],f[x]]
Out[2]={-f[x]+(1-2x) f'[x] == 0, f[0] == 1}.
```

To get Euler's transform of f we compute the substitution $x \mapsto x /(x-1)$ and then multiply the result by $1 /(1-x)$:

In [3]:=AlgebraicCompose[$-f[x]+(1-2 x) f(x], f=x /(x-1), f[x]]$
2
$\operatorname{Out}[3]=f[x]+(1-x) f^{\prime}[x]==0$
$\operatorname{In}[4]:=\operatorname{DECauchy}\left[f[x]+\left(1-x^{-} 2\right) f^{\prime}[x]==0, f[x]==1 /(1-x), f[x]\right]$
2
Out $[4]=x f[x]+(-1+x) f^{\prime}[x]==0$.

Finally, the differential equation of the transform is converted to a recurrence relation, from which a closed form can be easily read off:
$\operatorname{In}[5]:=\operatorname{DE} 2 \operatorname{RE}\left[x f[x]+\left(1-x^{-} 2\right) f^{\prime}[x]==0, f[x], s[n]\right]$

Out $[5]=(1-n) s[n]+(2+n) s[2+n]=0$.

2.3 zb_alg

To illustrate the implementation $\mathbf{z b}$ _alg of Zeilberger's fast algorithm [13], we refer to [11] for a variety of interesting examples. Now, we consider Problem 10424 of the American Mathematical Monthly [4]. The solution found jointly with P. Paule demonstrates, that zb _alg handles the case of non standard boundaries, which leads to a non-homogeneous recurrence relation. The problem is to evaluate:

$$
\operatorname{SUM}(n):=\sum_{0 \leq k \leq n / 3} 2^{k} \frac{n}{n-k}\binom{n-k}{2 k}
$$

Noticing that $\operatorname{SUM}(n)$ does not change when the summation is extended for $n / 3<k \leq n-1$, one sees that Zeilberger's algorithm applies:

```
In[4]:= Zb[ 2^k n/(n-k) Binomial[n-k, 2k],{k,0,n-1},n,3]
If ' }-1+n\mathrm{ ' is a natural number, then:
Out[4]={-2 SUM[n] + SUM[1 + n] - 2 SUM[2 + n] + SUM[3 + n] ==
> (2 n}(-3+n)(-2+n)(-1+n)(-5+2n)(-3+2n)(-1+2n
    2 3
>(18 + 63n + 53n + 10n) Binomial[10, 6 + 2 (-1 + n)])/113400}.
```

Observing that the right side vanishes for positive integer n we get an easily solvable recurrence relation for $\operatorname{SUM}(n)$.

2.4 qZeil

Andrews [1] gave a detailed account on conjectures recently raised by P. Borwein. All are related to partition theory, and the one stated most easily is:
Define polynomials $A_{n}(q), B_{n}(q)$, and $C_{n}(q)$ by

$$
\prod_{j=1}^{n}\left(1-q^{3 j-2}\right)\left(1-q^{3 j-1}\right)=A_{n}\left(q^{3}\right)-q B_{n}\left(q^{3}\right)-q^{2} C_{n}\left(q^{3}\right)
$$

then each of these polynomials has nonnegative coefficients.
Andrews presented the polynomials in question in terms of sums over Gaussian polynomials, for instance ([1], (3.4)):

$$
A_{n}(q)=\sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(9 k+1) / 2}\left[\begin{array}{c}
2 n \\
n+3 k
\end{array}\right]
$$

the other representations are of similar form. In addition, he derived three recurrences relating the polynomials in the following way, for instance ([1] (3.1)):

$$
A_{n}(q)=\left(1+q^{2 n-1}\right) A_{n-1}(q)+q^{n} B_{n}(q)+q^{n} C_{n-1}(q)
$$

the other representations are also of mixed type, but involving negative signs. Thus, one could raise the question whether a recurrence involving only polynomials of one type would add some further insight to the problem.

Using qZeil, the task of deriving a recurrence of the type specified above is pure routine:

```
In[1]:=<<qZeil.m
Out[1]= Axel Riese's q-Zeilberger implementation version 1.4
    loaded
```

```
In[2]:= Timing[
    qZeil[(-1)^k q- (9/2 k^2+1/2 k) qBinomial[2n,n+3k,q],
        {k, -Infinity, Infinity}, n, 3]]
Out[2]={123.65 Second, SUM[n] ==
```



```
> (1+q+q}\mp@subsup{q}{}{2})(1+\mp@subsup{q}{}{-3+2n})\operatorname{SUM[-1+n]}.
```

We want to remark that M. Hirschhorn [6] independently came up with this recurrence by hand computation - spending nontrivial human effort.

2.5 Karr

Besides indefinite hypergeometric (Gosper) and q-hypergeometric summation, Karr's algorithm is capable to handle also non hypergeometric extensions of the field of rational functions. The last example provides a q-hypergeometric summation.
The following two problems are taken from [5] (Problems 6.53 and 6.67), where H_{k} denotes the k-th harmonic number.

- Find a closed form for $\sum_{k=0}^{m}\binom{n}{k}^{-1}(-1)^{k} H_{k}$, when $0 \leq m \leq n$.
- Find A closed form for $\sum_{k=1}^{n} k^{2} H_{n+k}$.

Concerning the second problem, the authors of [5] explicitly state the desire to automate the derivation of formulas of such type. Eichhorn's implementation of Karr's algorithm does this job as follows:

```
In[1]:= <<k.m
    -- Karr Summation Package V 0.6.2 loaded. --
In[2]:= Karr[ 1/Binomial[n,k] (-1)`k H[k], {k,0,m}]
Out[2]=-(-------)
    (2+n)
```

```
        (-1) m
In[3]:= Karr [(k-n)^2 Sum[1/j,{j,1,k}],{k,n+1,2n}]
```



```
        3 2
\(1+n)
            3
> (1+n)
2n-24nn
> -
----------------------------------------------------------------
36
```

This output easily simplifies to the solution given in [5].
We conclude by the following simple q-hypergeometric summation:

```
In[4]:= Karr[ qBinomial[m+k,k] q`k,k,{{k,1,1},{q`k,q,0},
    {qBinomial[m+k,k],(1-t[2] q- (m+1))/(1-t[2] q),0}}].
```

The tupel $\{k, 1,1\}$ represents the difference field extension of type $\sigma t[0]=1$. $t[0]+1$, the tupel $\left\{q^{k}, q, 0\right\}$ the extension of type $\sigma t[1]=q \cdot t[1]+0$, the last tupel the extension of type $\sigma t[2]=\left(1-t[2] q^{(m+1)}\right) /(1-t[2] q) \cdot t[2]+0$.
The system returns

which is the expected answer.

References

[1] G.E. Andrews: On a Conjecture of Peter Borwein. Preprint 1994. To appear in J. Symbolic Computation.
[2] K. Eichhorn: A Mathematica Implementation of Karr's Algorithm for Summation in Finite Terms. Dipl. Thesis in preparation, RISC-Linz, J. Kepler University Linz.
[3] P. Flajolet, B. Salvy: Computer Algebra Libraries for Combinatorial Structures. To appear in J. Symbolic Comput.
[4] I. Gessel: Problem 10424. Am. Math. Monthly 102:70, 1995.
[5] R. L. Graham, D. E. Knuth and O. Patashnik: Concrete Mathematics - A foundation for computer science. 2nd ed. Addison-Wesley, Reading, Massachusetts, 1994.
[6] M. Hirschhorn: E-mail correspondence with P. Paule, February, 1995.
[7] M. Karr: Summation in Finite Terms. Journal of the ACM. 28:305-350, 1981.
[8] T. Koornwinder: On Zeilberger's Algorithm and it's q-analogue. J. of Comput. and Appl. Math. 48:91-111, 1993.
[9] Ch. Mallinger: A Mathematica Package for Manipulating Holonomic Functions. Dipl. Thesis in preparation, RISC-Linz, J. Kepler University Linz.
[10] I. Nemes, M. Petkovšek: RComp: A Mathematica Package for Computing with Recursive Sequences. To appear in J. Symbolic Computation.
[11] P. Paule, M. Schorn: A Mathematica version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities. To appear in J. Symbolic Computation.
[12] P. Paule, A. Riese: A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping. To appear in Fields Proceedings of the Workshop "Specila Functions, q-Series and Related Topics (June 1995: Toronto).
[13] M. Petkovšek, H.S. Wilf, and D. Zeilberger: " $A=B$ ". A. K. Peters, 1996.
[14] B. Salvy, P. Zimmermann: GFUN: a Maple Package for the Manipulation of Generating and Holonomic Functions in one Variable. ACM Transactions of Mathematical Software 20:163-177, 1994.

