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1 Introduction

In this talk we report on five program packages for the computer algebra sys-
tem Mathematica, which were developed at RJSC-Linz by a working group in
computational combinatorics headed by Peter Paule. We illustrate the packages
RComp, zb-alg, qZeil, GeneratingFunctions and Karr by presenting typical
applications.

RComp was developed by the author in a joint work with M. Petkovsek [10]. It
provides tools for computing with sequences, which satisfy a linear recurrence
relation with constsmt coefBcients.

GeneratingFunctions was developed by Ch. Mallinger [9]. One can consider
this package as an extension of RComp, providing functions for computing with
sequences that satisfy a linear recurrence relation with polynomial coefficients,
furthermore for manipulating generating functions of such sequences. In its
functionality the package corresponds to the gfun package in MAPLE [14].
P. Paule and M. Schora developed zbjalg, which contains an efficient implemen-
tation of Zeilberger's algorithm for finding recurrences for hypergeometric sums
[11]. The package also includes a reliable implementation ofGosper's algorithm.
There is an algorithmic analogue to zb-alg for handling g-hypergeometric sums;
to do that in an efBcient way is a nontrivial task. In the computer algebra
system MAPLE Zeilberger [13], Koornwinder [8] provided such an implemen-
tation. A. Riese's implementation in Mathematica qZeil [12] presents a more
user friendly implementation, which also accepts input of more general type.
Analogously to zbjalg this package contains a g-version of Gosper's algorithm.
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Karr's algorithm [7] for summation in finite terms is being implemented by K.
Eichhorn [2]. This implementation wil be the first that treats Karr's algorithm
in full detail. To emphasize the relevance of this work we note that the algorithm
contains indefinite hypergeometric (Gosper) and $-summation as a special case.

2 Example Sessions
I ]

2. 1 RComp

Let us consider the following encoding of the Fibonacci numbers which originally
is due to I. Schur:

Z(-D* L("-5A;)/2J

In order to find a recurrence relation for the sum, we eliminate the floor function
by splitting the summand according to odd and even n and k, respectively. For
the resulting summands Zeilberger's algorithm applies and zb-alg finds the
corresponding recurrence relations for the subsums with the same (constant)
coefficients {7, -13, 4} and initial terms {1, 2,6}, {0, 0,-!}, {1, 3, 10}, {0, 0, -2},
respectively. The termwise addition and interlace functions of RConp return in
one stroke the recurrence relation for the original sum:

In[5]:= Interlace[Rec[{7. -13,4}, <:!,2, 6}] + Rec[-[7, -13,4}, {0, 0, -l}] ,
Rec[{7, -13, 4}, {l, 3, 10}] + Rec[{7, -13, 4}, {0, 0, -2}]]

Out[5]= Rec[{l, 1}, {1, I}],

which is indeed a defining relation for the Fiboaacci numbers.

2. 2 GeneralingFunctions
We demonstrate the functionality of GeneratingFunctions by computing a
closed form for

.u:=s©(T)<-l>>/21
We apply Euler's transformation like it was used in [3], noticing that the ordi-
nary generating function of (sn)n>o is the Euler transform of/(a;) := Sn>ou"a:""'
where Un = (2^*)/2". First, we derive from the recurrence equation for Un a dif-
ferential equation for /:
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In[l]:= «GeneratingFunctions.a

Out[l]= General ingFimct ions version 0. 4 (01. 12. 1995) loaded.

In[2]:= RE2DE[{(n+l)uCn+l]-(2n+l)u[n] == 0, u[0]==l>, u[n] , f[x33

Out[2]= {-f Ex] + (1 - 2x) f'[x] == 0, fCO] == 1}.

To get Euler's transform of / we compute the substitution x i-> x/(x - 1) and
then multiply the result by 1/(1 - .c):

In[3]:= AlgebraicConpose[ -f[x] + (1 -2 x) f' [x] , f == x/(x-l), f[x]]

2

Out[3]= f[x] + (1 -x) f'[x] ==0

In[4]:= DECauchyC f[x]+(l-x-2) f'[x]==0, f[x]==l/(l-x), f[x] ]

2

Out [4]= x f[x] + (-1+x ) f'[x] == 0.

Finally, the diflFerential equation of the transform is converted to a recurrence
relation, from which a closed form can be easily read off:

In[5]:= DE2RE[x f[x] + (1 - x-2 ) f ' [x] == 0, f[x], s[n]]

Out[5]= (1 - n) sCn] + (2 + n) s[2 + n] == 0.

2.3 zb-alg
To illustrate the implementation zb-alg of Zeilberger's fast algorithm [13], we
refer to [11] for a variety of interesting examples. Now, we consider Prob-
lem 10424 of the American Mathematical Monthly [4]. The solution found
jointly with P. Paule demonstrates, that zb-alg handles the case of non stan-
dard boundaries, which leads to a non-homogeneous recurrence relation. The
problem is to evaluate:

SUM(n) := ^ 2*
0<fc<n/3

n rn-k
n-k\ 2k

Noticing that SUM(n) does not change when the summation is extended for
n/3 < k < n - 1, one sees that Zeilberger's- algorithm applies:
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In[4]:= Zb[ 2-k n/(n-k) Binomial[n-k,2k], {k, 0,n-l}, n, 3]
If '-1+n* is a natural number, then:

Out|:4]= {-2 SUH[n] + SlfflEl + n] - 2 SUH[2 + n] + SUH[3 + n]

> (2 (-3 + n) (-2 + n) (-1 + n) (-5 + 2 n) (-3+2 n) (-1 + 2 n)

2 3
> (18 + 63n+ 53n + 10 n ) Binonial[10, 6+2 (-1 + n)]) / 113400}.

Observing that the right side vanishes for positive integer n we get an easily
solvable recurrence relation for SUM (n).

2.4 qZeil
Andrews [1] gave a detailed account on conjectures recently raised by P. Borwein.
All are related to partition theory, and the one stated most easily is:
Define polynomials An{q), Bn{q), and Cn(q) by

n(l-^-2)(l-^-l)=^(g3)-g^(g3)-<7:>^(?3),
J=l

then each of these polynomials has nonnegative coefficients.
Andrews presented the polynomials in question in terms of sums over Gaussian
polynomials, for instance ([I], (3.4)):

An(<?)= E(-l)V(9fc+l)/2[^"J;
fc=-00

the other representations are of similar form. In addition, he derived three
recurrences relating the polynomials in the following way, for instance ([1] (3. 1)):

An(q) = (1 + <?2n-l)An-i(9) + <?"B^(g) + <?nCn-i(g);
the other representations are also of mixed type, but involving negative signs.
Thus, one could raise the question whether a recurrence involving only polyno-
mials of one type would add some further insight to the problem.

Using qZeil, the task of deriving a recurrence of the type specified above is
pure routine:

In[l]:= «qZeil.n

Out[l]= Axel Riese's q-Zeilberger implementation version 1.4
loaded
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In [2]:- Timing [
qZeil[(-l)"k q"(9/2 k-2+1/2 k) qBinonial[2n,n+3k,q],

{k, -Infinity, Infinity}, n, 3]]

Out[2]= {123. 65 Second, SUM[n] ==

3 -8+3n -7+3n 2
> q (1 -q ) (1 - q ) SUH[-3 +n] + (1+ q+q)

42n2+n42n2+n
(-q - q + q ) (q + q + q ) SUMC-2 + n]

7

q

2 -3 + 2 n
>(l+q+q)(l+q ) SUM[-1 + n]>.

We want to remark that M. Hirschhorn [6] independently came up with this
recurrence by hand computation - spending nontrivial human effort.

2. 5 Karr

Besides indefinite hypergeometric (Gosper) and ̂ -hypergeometric summation,
Karr's algorithm is capable to handle also non hypergeometric extensions of
the field of rational functions. The last example provides a g-hypergeometric
summation.

The following two problems are taken from [5] (Problems 6.53 and 6. 67), where
Hk denotes the k-th harmonic number.

. Find a closed form for ̂ =0 G)~1(-1)A^. when 0^ m ^ n.

. Find A closed form for Sfc=i k2Hn+k-
Concerning the second problem, the authors of [5] explicitly state the desire to
automate the derivation of formulas of such type. Eichhorn's implementation
of Karr's algorithm does this job as follows:
In[l]:= «k.m
- Karr Sunnation Package V 0. 6. 2 loaded. -

In[2]:=Karr[ l/Binonial[n,k] (-D-kH[k], {k. 0,n}]

1 + n
Out [2]= -(---) +

2

(2 + n)
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(-1) (1 -a+n + 2 H[n] + 2 m H[m] + n HCm] + n n H[m])

2

(2 + n) Binonial[n, n]

In[3]:= Karr[(k-n)-2 Sua[l/j, {j, l, k}], {k, n+l, 2n}]

2 2
-1-n n (1+n) 2 (1 + n) a (1+ n)

Out [3]= -- + --- + n (1 + n) - --- - -----+
36 2 12 2

3 2
(I+n) 1+n 2 (1+ n) 2

> --- - (-- +n (l +n) +n (1 + n) - --- - n (1 +n) +
96 2

(1 + n) 1
> ----) (-- + HM) +

3 I + n

23 23
2 n- 24 n - 32 n + 12nH[2n] + 36 n H[2 n] + 24 n H[2 n]

36

This output easily simplifies to the solution given in [5].
We conclude by the following simple g-hypergeometric summation:

In[4]:= Karr[ qBinoaialbn+k.k] q-k,k, {-Clc, l, l}, {q-k, q, 0},
{qBinomial[n+k, k], (l-t[2] q-(m+1) )/(l-t[2] q), 0}}-].

The tupel {k, 1, 1} represents the difference field extension of type crt[Q] = 1 .
([0] + 1, the tupel {qk, q, 0} the extension oftypeo-<[l] = q . t[l}+ 0, the last
tupel the extension of type <r<[2] = (1 -1[2] g(m+l))/(l - t[2]q) . t[2] + 0.
The system returns

Out [4]=
(-1 + q ) qBinonial[k + n, k]

1 + n
-1 + q

which-is the expected answer.
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