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ABSTRACT. In this paper we present a systematic approach to enumeration of diifer-
ent classes of trees and their generalizatioiis. The principal idea is finding a bijectioa
between these trees and some classes of Young diagrams or Young tableaux. The
latter arise from the remarkable representation of the symmetric group studied by
Haiman in connection with diagonal harmomcs (see [7]).

Define the vector space V = (a^i) . . . ^n) I0-   5n, 0 ^ a, ^ i - 1, 1 ^ t $

n). Let the symmetric group Sn act on Vn by the permutation of variables. It is
known that dtm(Vn) =~(n + I)"-1 is equal to the number of labeled trees, and
dim(Vn)sn = ^- (2^*) is equal to the number of plane trees with n vertices. There
are combinatorial interpretations for the other multiplicities. We generalize aU the
results in case of Jfe-dunensional trees and (k + l)-ary trees.
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1. INTRODUCTION.

Define a vector space

(1-1) V ^ (a^iff(l) . . . z^(n) <r   5n, 0 $a. ^i- 1, 1 ^i ^ n)

Let the symmetric group Sn act on V by the permutation of variables. Call this
representation Tn. It has been studied by Mark Haiman in [7] in connection with
diagonal harmonies. He also found the foUowing property of Tn.

Take a vector space U ^ Cl+l and W ^ U'®". Let the symmetric group Sn act
on V by permutation of coordinates. Then in a ring of characters

(1-2) T-=T^W
n
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^From here we immediately have:

(1-3) Am(T^) = (n + l)n-1

i.e. dim(Tn) is equal to the number of labeled trees with n + 1 vertices (see e. g.
[6, 8, 17, 23]).

Denote 5A an ineducible representation of Sn associated with the Young diagram
A (see [9, 16,22,24]). Now we can find multipUcities of Sx in Tn.

Consider an action of the GL(n +1) on W by linear transformations on each V
in TV ̂  y<8>y®- . -07. By the Schur-Weyl duality (see [26]) and the hook-content
formula for the dimension of the irreducible representation of GL(n + 1) (see e.g.
[9, 16,24]) , the miiltiplidty of Sx in 5n-modiile W is given by the followmg formula:

(1-4) ^. ^)=^T, II n-i+ j +1

(*, J)6A h(ij)

where h(i, j} =: \i+ X'j -i -j +1 is the hook length.
In particular, we have:

(1-5) dim(Tn)sn =Sn _ ^2n>
n+1 Vn

i.e. the dimension of invariants is equal to the Catalan niunber (see [7]). This
nuinber has niunerous interpretations, such as the nuinber of plane trees with n +1
vertices or to the number of triangulations of a polygon with n + 2 vertices (see e.g.
[6, 8, 15, 23]).

More generally, we have:

(M) c(r'. s(-''"))=^T("-')("71)
i.e. this multiplicity equal to the number of polygonal subdivisions of (n + 2)-gon
with (n - Z) regions (see [20]).

The main goal of our paper is to explain that all the previous observations are
not coincedental, but a part of the general picture. We shall present a set of
bijections which prove all these and many other results with their k-dimensional
generalizations.

In Section 2 of the abstract we shall state precisely ivhat kind of combinatorial
object appear in this case. In Section 3 we point at the k-dimensional generaliza-
tions.

2. MAIN RESULTS

We shaU recaU definitions of Young diagrams and Young tableaiuc (see e.g [16, 22, 24]).B
The Young diagram of a partition A = (Ai , ^2,... ) is a set ofl x 1 lattice squares

with centers at points (t, j), 1 ^J ^ A» (see diagram (4, 3, 1) on Fig. 3-1. Skew
Young diagram is a set theoretic difference of two Young diagranis. Horisontal
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stripe is a skew Young diagram which contains exactly one square m each coluinn.
Cn-diagram is a. horisontal stripe with n squares inside the staircase shape diagrara
5n = (n, n - 1,..., 1). Denote CVn the set of all Cn-diagrams.

Young tableau of a shape A I- nis a function on the Yoimg diagrara A into Z,
which is nondecreasing in rows and strictly mcrezismg in columns. Young tableau is
standard if it's a bijection into {1, 2,... }. Cn-tableau is a standard Young tableau
of shape (7n-<iiagram. We draw them by putting values mside the squares. Denote
CTnW the set of Cn-tableaux of shape A, and CTn the set of all ̂ n-tableaux.

We call 1/1 o i/z the disjoint union of diagrams v^ and 1/2- Then horisontal stripe
is simply a tinion of rows.

The weight of a tableau A is a sequence w(A) = (wi, W2,... ), where u/i is the
number of elements i m A. Denote CTn(A) the set of all CTn-tahlea.ux A with
weight a/(A) = A.

With each skew Young diagram v is associated a representation Sv of S-n (see
e.g. [16, 22,26]). In particular, mouomial representation M correspons to a skew
diagrain A = Ai o As o ....

Proposition 2. 1.

(2-1) r. = ^ 5-
vecvn

^From here and the Young rule (see e.g. [M, St], we have:

Proposition 2.2.

(2-2) c(Tn, SX)=\CTnW\

Definition 2.3. A sequence a = (ai,..., 0n), 1 ^a, ^ nu ca/Jed majorating
sequence if ̂ {j\aj ^ »"} ̂  i for a/Z i = 1,... , n (see [13, 14]^. Denote Mn a set of
a// majorating sequences.

Define a Dyck sequence 6 = (&i,.. . , &2n), 6»   {1; -1} by the following inequali-
ties: &i +62 +. -. +61 ^ 0, i = l,..., 2n - 1, and 61 + ... +&2n =0. Denote VSn
the set of all Dyck sequences of length 2n.

Definition 2.4. Define the following sets of trees:
1) £.n be a set of labeled trees with n vortices,
2) Pn be a set of plane trees with n vertices ,
3) Bn be a set of nonlabeled binary trees with n vertices,
4) IBn be a set of increasing in both directions binary trees with n vertices,
5) TiBn be the set of increasing to the right binary trees with n vertices,
6) T£. n be the set of increasing labeled trees with n vertices.

Define surjections p : Cn
vertices. Analogously e : CTr
shape.

Pn and r : TZBn -^ Bn by forgetting labels of the
CT>n is a surjection which maps tableau into it s
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Main Theorem 2. 5. There is a set of natural bijections which form the following
commutative diagram:

, T>Sn <- Mr,

. <-1 '1
CVn <- CTn

.1
TZ-Sn

^1
Bn

.1
Vn

'1
rn

P t£

IBn
tB

4
T/;n

where i is simply an inclusion operator.

RemEU-k. We actually present in our paper all these bijections. Some of them are
new, some can be found in the literature (see [1,4, 5, 10, 12, 23, 25]^

4. fc-GENERALIZATIONS

Here we point on a k-generalization of all results in Section 2.
We can analogously define generalized vector space V as follows:

(3-1) V ^ {x^... xa^\ <r 5n, 0 ^a, ̂  k(i -I), 1 ^i $ n)
with action of the symmetric group Sn as before. Call this representation T^.

It has a dunension

(3-2) Am(^)=(fcn+l)(n-l)
i.e. equal to the niunber of fc-dimensional trees (see [2,8]).
Using Schur-Weyl duality and the hook-length formula we have

(3-3) ^^). ^
(̂iJ) A

In particular,

kn+i - j +1
WJ)

(3-4) Am<^-=^((':l)")
i.e. the dimension of invariants is equal to the fc-Catalan number (see f.e. [3])

and the number of {k + l)-ary trees (see [11]).
We claim that in this situation everything works the same way, and we get an

exact analog of the Main Theorem.
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